‘壹’ 生物如何进化
生物进化(或叫演化)的动力,来自自然选择,遗传漂变等。变异为进化提供材料,自然选择筛选合适的变异,淘汰不合适的。这个只是很笼统的原理。
另外,进化在外部表现形式上(即地球的生命历史)呈现明显的进步性的规律,也就是书本上说的“由低等到高等,简答到复杂”的规律性,而不是随意的无规律的“演化”。
现在很多人开始反对“进化”而提倡“演化”,因为他们认为,生命的进化没有表现出“由低等到高等,简答到复杂”的规律性(即所谓的进步性)。他们甚至认为,这种说法是恩格斯为了迎合他哲学思想而错误的理解了达尔文的观点。
实际上,有一点生物学常识的人,都会发现,地球生命的演化历史,存在非常明显的进步性,一句话归纳,主要表现在:繁盛的类群,总是那些比较年轻的类群,总是那些形态上离祖先比较远的类群。或者说,变化小的类群,其繁盛程度最后总是会被变化大的类群超过。生物总体上,向着对环境的适应能力逐渐增强的趋势发展,在现象上,体现为,进化程度最高的生物类群,出现最晚,却总是最繁荣的。
例子很多:现存的种子植物中,被子植物是出现最晚(最年轻),离种子植物祖先差别最大,进化程度最高,且最繁盛的类群。而裸子植物相反。现存的维管植物中,种子植物是出现最晚,离维管植物祖先差别最大,进化程度最高,且最繁盛的类群。而蕨类相反。
动物中也很明显:有翅昆虫,是昆虫中是出现最晚(最年轻),离昆虫的共同祖先差别最大,进化程度最高,且最繁盛的类群。而无翅昆虫相反。羊膜卵动物是陆生四足动物中是出现最晚(最年轻),离陆生四足动物的共同祖先差别最大,进化程度最高,且最繁盛的类群。而两栖类相反。
更明显的例子:真核生物是生物中出现最晚(最年轻),离真核原核共同祖先差别最大,进化程度最高,且最繁盛的类群。而细菌相反(出现时间早的多,发展时间长的多,但是却没有真核生物繁荣,变化也比真核生物小得多)。
总之,例子不胜枚举。
‘贰’ 生物的进化过程是什么
地球上的生命,从最原始的无细胞结构状态进化为有细胞结构的原核生物,从原核生物进化为真核单细胞生物,然后按照不同方向发展,出现了真菌界、植物界和动物界。
植物界从藻类到裸蕨植物再到蕨类植物、裸子植物,最后出现了被子植物。
动物界从原始鞭毛虫到多细胞动物,从原始多细胞动物到出现脊索动物,进而演化出高等脊索动物──脊椎动物。脊椎动物中的鱼类又演化到两栖类再到爬行类,从中分化出哺乳类和鸟类,哺乳类中的一支进一步发展为高等智慧生物,这就是人 。
(2)生物在其一生中如何变化扩展阅读:
生物进化差异性产生原因:
多细胞生物既有时间上的分化,又有空间上的分化。在个体的细胞数目大量增加的同时,分化程度越来越复杂,细胞间的差异也越来越大,而且同一个体的细胞由于所处位置不同而在细胞间出现功能分工,头与尾、背与腹、内与外等不同空间的细胞表现出明显的差别。
胚胎发育不仅需要将分裂产生的细胞分化成具有不同功能的特异的细胞类型, 同时,要将一些细胞组成功能和形态不同的组织和器官,最后形成一个具有表型特征个体。
‘叁’ 地球上的生物是怎样变化的
生命的起源地球在宇宙中形成以后,开始是没有生命的.经过了一段漫长的化学演化,就是说大气中的有机元素氢、碳、氮、氧、硫、磷等在自然界各种能源(如闪电、紫外线、宇宙线、火山喷发等等)的作用下,合成有机分子(如甲烷、二氧化碳、一氧化碳、水、硫化氢、氨、磷酸等等).这些有机分子进一步合成,变成生物单体(如氨基酸、糖、腺甙和核甙酸等).这些生物单体进一步聚合作用变成生物聚合物.如蛋白质、多糖、核酸等.这一段过程叫做化学演化.蛋白质出现后,最简单的生命也随着诞生了.这是发生在距今大约36亿多年前的一件大事.从此,地球上就开始有生命了.生命与非生命物质的最基本区别是:它能从环境中吸收自己生活过程中所需要的物质,排放出自己生活过程中不需要的物质.这种过程叫做新陈代谢,这是第一个区别.第二个区别是能繁殖后代.任何有生命的个体,不管他们的繁殖形式有如何的不同,他们都具有繁殖新个体的本领.第三个区别是有遗传的能力.能把上一代生命个体的特性传递给下一代,使下一代的新个体能够与上一代个体具有相同或者大致相同的特性.这个大致相同的现象最有意义,最值得我们注意.因为这说明它多少有一点与上一代不一样的特点,这种与上一代不一样的特点叫变异.这种变异的特性如果能够适应环境而生存,它就会一代又一代地把这种变异的特性加强并成为新个体所固有的特征.生物体不断地变异,不断地遗传,年长月久,周而复始,具有新特征的新个体也就不断地出现,使生物体不断地由简单变复杂,构成了生物体的系统演化.
地球上早期生命的形态与特性.地球上最早的生命形态很简单,一个细胞就是一个个体,它没有细胞核,我们叫它为原核生物.它是靠细胞表面直接吸收周围环境中的养料来维持生活的,这种生活方式我们叫做异养.当时它们的生活环境是缺乏氧气的,这种喜欢在缺乏氧气的环境中生活的叫做厌氧.因此最早的原核生物是异养厌氧的.它的形态最初是圆球形,后来变成椭圆形、弧形、江米条状的杆形进而变成螺旋状以及细长的丝状,等等.从形态变化的发展方向来看是增加身体与外界接触的表面积和增大自身的体积.现在生活在地球上的细菌和蓝藻都是属于原核生物.蓝藻的发生与发展,加速了地球上氧气含量的增加,从20多亿年前开始,不仅水中氧气含量已经很多,而且大气中氧气的含量也已经不少.细胞核的出现,是生物界演化过程中的重大事件.原核植物经过15亿多年的演变,原来均匀分散在它的细胞里面的核物质相对地集中以后,外面包裹了一层膜,这层膜叫做核膜.细胞的核膜把膜内的核物质与膜外的细胞质分开.细胞里面的细胞核就是这样形成的.有细胞核的生物我们把它称为真核生物.从此以后细胞在繁殖分裂时不再是简单的细胞质一分为二,而且里面的细胞核也要一分为二.真核生物(那时还没有动物,可以说实际上也只是真核植物)大约出现在20亿年前.性别的出现是在生物界演化过程中的又一个重大的事件,因为性别促进了生物的优生,加速生物向更复杂的方向发展.因此真核的单细胞植物出现以后没有几亿年就出现了真核多细胞植物.真核多细胞的植物出现没有多久就出现了植物体的分工,植物体中有一群细胞主要是起着固定植物体的功能,成了固着的器官,也就是现代藻类植物固着器的由来.从此以后开始出现器官分化,不同功能部分其内部细胞的形态也开始分化.由此可见,细胞核和性别出现以后,大大地加速了生物本身形态和功能的发展.
生命的起源关于生命起源的问题,很早就有各种不同的解释.近几十年来,人们根据现代自然科学的新成 就,对于生命起源的问题进行了综合研究,取得了很大的进展.
根据科学的推算,地球从诞生到现在,大约有46亿年的历史.早期的地球是炽热的,地球上的一切元素都呈气体状态,那时候是绝对不会有生命存在的.最初的生命是在地球温度下降以后,在极其漫长的时间内,由非生命物质经过极其复杂的化学过程,一步一步地演变而成的.目前,这种关于生命起源是通过化学进化过程的说法已经为广大学者所承认,并认为这个化学进化过程可以分为下列四个阶段.
从无机小分子物质生成有机小分子物质 根据推测,生命起源的化学进化过程是在原始地球条件下开始进行的.当时,地球表面温度已经降低,但内部温度仍然很高,火山活动极为频繁,从火山内部喷出的气体,形成了原始大气(下图).一般认为,原始大气的主要成分有甲烷(CH4)、氨 原始地球的想象图
(左)原始大气(右)有机物形成
(NH3)、水蒸气(H2O)、氢(H2),此外还有硫化氢(H2S)和氰化氢(HCN).这些气体在大自然不断产生的宇宙射线、紫外线、闪电等的作用下,就可能自然合成氨基酸、核苷酸、单糖等一系列比较简单的有机小分子物质.后来,地球的温度进一步降低,这些有机小分子物质又随着雨水,流经湖泊和河流,最后汇集在原始海洋中.
关于这方面的推测,已经得到了科学实验的证实.1935年,美国学者米勒等人,设计了一套密闭装置(下图).他们将装置内的空气抽出,然后模拟原始地球上的大气成分,通入甲烷、氨、氢、水 米勒实验的装置
蒸气等气体,并模拟原始地球条件下的闪电,连续进行火花放电.最后,在U型管内检验出有氨基酸生成.氨基酸是组成蛋白质的基本单位,因此,探索氨基酸在地球上的产生是有重要意义的.
此外,还有一些学者模拟原始地球的大气成分,在实验室里制成了另一些有机物,如嘌识、嘧啶、核糖,脱氧核糖,脂肪酸等.这些研究表明:在生命的起源中,从无机物合成有机物的化学过程,是完全可能的.
现在,已经有人模拟原始地球的条件,制造出了类似蛋白质和核酸的物质.虽然这些物质与现在的蛋白质和核酸相比,还有一定差别 ,并且原始地球上的蛋白质和核酸的形成过程是否如此,还不能肯定,但是,这已经为人们研究生命的起源提供了一些线索;在原始地球条件下,产生这些有机高分子的物质是可能的.
从有机高分子物质组成多分子体系 根据推测,蛋白质和核酸等有机高分子物质,在海洋里越积越多,浓度不断增加,由于种种原因(如水分的蒸发,粘土的吸附作用),这些有机高分子物质经过浓缩而分离出来,它们相互作用,凝聚成小滴.这些小滴漂浮在原始海洋中,外面包有最原始的界膜,与周围的原始海洋环境分隔开,从而构成一个独立的体系,即多分子体系.这种多分子体系已经能够与外界环境进行原始的物质交换活动了.
从多分子体系演变为原始生命 从多分子体系演变为原始生命,过是生命起源过程中最复杂和最有决定意义的阶段,它直接涉及到原始生命的发生.目前,人们还不能在实验室里验证这一过程.不过,我们可以推测,有些多分子体系经过长期不断地演变,特别是由于蛋白质和核酸这两大主要成分的相互作用,终于形成具有原始新陈代谢作用和能够进行繁殖的原始生命.以后,由生命起源的化学进化阶段进入到生命出现之后的生物进化阶段.
关于生命起源的化学进化过程的研究,虽然进行了大量的模拟实验,但是绝大多数实验只是集中在第一阶段,有些阶段还仅仅限于假说和推测.因此,在对于生命起源,问题还必须继续进行研究和探讨.
蛋白质和核酸是生物体内最重要的物质.没有蛋白质和核酸,就没有生命.1965年,我国科学工作者人工合成了结晶牛胰岛素(一种含有51个氨基酸的蛋白质).1981年,我国科学工作者又用人工的方法合成了酵母丙氨酸转运核糖核酸(核糖核酸的一种).这些工作反映了我国在探索生命起源问题上的重大成就.
‘肆’ 生物进化的演变过程
一切生命形态发生、发展的演变过程。“进化”一词来源于拉丁文evolution,原义为“展开”,一般用以指事物的逐渐变化、发展,由一种状态过渡到另一种状态。1762年,瑞士学者邦尼特最先将此词应用于生物学中。
进化思想的发展 古代人们在栽培植物和驯养动物的生产实践中,积累了关于生物的形态、构造和生活习性的知识,注意到生物机体的变化以及生物与环境的关系,逐步形成了朴素的生物进化思想。古希腊的亚里士多德通过对他那个时代有关动物的知识的系统整理,把540种动物按性状的异同分为有血的和无血的两大群,每群之下又分为若干类。他进一步提出生物等级即生物阶梯的观念,认为自然界所有生物形成一个连续的系列,即从植物一直到人逐渐变得完善起来的直线系列。中国战国时期汇集的《尔雅》一书记载了生物类型的变化;汉初的《淮南子》一书,不仅对动植物作了初步分类,而且提出各类生物是由其原始类型发展而来的。
近代科学诞生以前,进化思想发展缓慢,当时广为流行的是神创论和物种不变论。这种观点直到18世纪仍在生物学中占统治地位,其代表人物是瑞典植物学家C.von 林耐(1707~1778)。他所提出的分类系统虽然有助于揭示生物物种之间的历史联系,但他却把物种看作是上帝创造的不可改变的产物。随着生产和科学的发展,积累了许多新的与物种不变相矛盾的事实。在大量事实的影响下,甚至像林耐这样坚定的神创论者,在晚年也不得不承认由于杂交的结果能产生新种。和林耐的观点相反,法国学者G.L.L.布丰(1707~1788)相信物种是变化的,现代的动物是少数原始类型的后代。他把有机体与居住环境联系起来,认为气候、食物和人的驯养等因素可引起动物性状的变异。1809年,另一位法国学者J.-B.de拉马克(1744~1829)在其《动物学哲学》中,用环境作用的影响、器官的用进废退和获得性的遗传等原理解释生物进化过程,创立了第一个比较严整的进化理论。1859年C.R.达尔文发表《物种起源》一书,论证了地球上现存的生物都由共同祖先发展而来,它们之间有亲缘关系,并提出自然选择学说以说明进化的原因,从而创立了科学的进化理论,揭示了生物发展的历史规律。
19世纪80年代以来,以A.魏斯曼(1834~1914)为代表的新达尔文主义,把种质论和自然选择学说相结合,丰富了达尔文的进化理论。20世纪30年代以来,以T.杜布尚斯基(1906~1975)等人为代表的综合进化论综合了细胞遗传学、群体遗传学以及古生物学等学科的成就,进一步发展了以自然选择为核心的进化理论。60年代末,日本学者木村资生等人提出中性学说,又在分子水平上揭示了进化的某些特征,补充、丰富了进化论。
进化的进步性 地球上的生命,从最原始的无细胞结构生物进化为有细胞结构的原核生物,从原核生物进化为真核单细胞生物,然后按照不同方向发展,出现了真菌界、植物界和动物界。植物界从藻类到裸蕨植物再到蕨类植物、裸子植物,最后出现了被子植物。动物界从原始鞭毛虫到多细胞动物,从原始多细胞动物到出现脊索动物,进而演化出高等脊索动物——脊椎动物。脊椎动物中的鱼类又演化到两栖类再到爬行类,从中分化出哺乳类和鸟类,哺乳类中的一支进一步发展为高等智慧生物,这就是人。
生物界的历史发展表明,生物进化是从水生到陆生、从简单到复杂、从低等到高等的过程,从中呈现出一种进步性发展的趋势。一般说来,进化过程的进步具有如下特征:
①在生物界的前进运动中,可以看到不同层次的形态结构的逐步复杂化和完善化;与此相应,生理功能也愈益专门化,效能亦逐步增高。
②从总体上看,遗传信息量随着生物的进化而逐步增加。
③内环境调控的不断完善及对环境分析能力和反应方式的发展,加强了机体对外界环境的自主性,扩大了活动范围。
生物进化的道路是曲折的,表现出种种特殊的复杂情况。除进步性发展外,生物界中还存在特化和退化现象。特化不同于全面的生物学的完善化,它是生物对某种环境条件的特异适应。这种进化方向有利于一个方面的发展却减少了其他方面的适应性,如马由多趾演变为适于奔跑的单蹄。当环境条件变化时,高度特化的生物类型往往由于不能适应而灭绝,如爱尔兰鹿,由于过分发达的角对生存弊多利少,以至终于灭绝。对寄生或固着生活方式的适应,也可使机体某些器官和生理功能趋向退化。如有一种深海寄生鱼,雄体寄生在雌体上,雄体消化器官退化,唯有精巢特别膨大,以保证种族繁衍。
有些研究者对进化的进步性表示怀疑,认为进步性不是进化的基本特征,也不是进化的本质。科学研究证明,进化不全都引起进步,进化过程中也有退化,但从有机界总的进化过程看,进步性发展是进化的主流和本质。
进化的方式 生物界各个物种和类群的进化,是通过不同方式进行的。物种形成(小进化)主要有两种方式:一种是渐进式形成,即由一个种逐渐演变为另一个或多个新种;另一种是爆发式形成,即多倍化种形成,这种方式在有性生殖的动物中很少发生,但在植物的进化中却相当普遍,世界上约有一半左右的植物种是通过染色体数目的突然改变而产生的多倍体。物类形成(大进化)常常表现为爆发式的进化过程,从而使旧的类型和类群被迅速发展起来的新生的类型和类群所替代。
渐进进化是达尔文进化论的一个基本概念。达尔文认为,在生存斗争中,由适应的变异逐渐积累就会发展为显着的变异而导致新种的形成。因为“自然选择只能通过累积轻微的、连续的、有益的变异而发生作用,所以不能产生巨大的或突然的变化,它只能通过短且慢的步骤发生作用”。与达尔文的主张相反,早期遗传学家如荷兰的H.de弗里斯等相信,新种可由大的不连续变异即突变直接产生,并把这种方式看作是进化变化的主要源泉,认为自然选择对生物的进化不起积极作用。现代进化论坚持达尔文的渐变论思想和自然选择的创造性作用,强调进化是群体在长时期的遗传上的变化,认为通过突变(基因突变和染色体畸变)或遗传重组、选择、漂变、迁移和隔离等因素的作用,整个群体的基因组成就会发生变化,造成生殖隔离,演变为不同物种。20世纪70年代以来,一些古生物学者根据化石记录中显示出的进化间隙,提出间断平衡学说,代替传统的渐进观点。他们认为物种长期处于变化很小的静态平衡状态,由于某种原因,这种平衡会突然被打断,在较短时间内迅速成为新种。
生物的进化既包含有缓慢的渐进,也包含有急剧的跃进;既是连续的,又是间断的。整个进化过程表现为渐进与跃进、连续与间断的辩证统一。
原始单细胞动物---1.(无脊椎)---腔肠动物---扁形动物---线形动物---软体动物---环节动物---节肢动物---棘皮动物---2.(有脊椎)---原始鱼类---原始两栖类---原始爬行类---原始鸟类,原始哺乳类.
‘伍’ 动物的生命周期都要经历哪四个阶段
动物生命周期都要经历出生、生长发育、繁殖、死亡四个阶段。
四个阶段如下:
1、出生:泛指一切生命的产生。人是纵向降生的,以此区别于横向出生(畜生)的动物。
2、生长发育:指身体各器官、系统的长大和形态变化,是量的改变;发育是指细胞、组织和器官的分化完善与功能上的成熟,产质的改变。两者密切相关,生长是发育的物质基础。而发育成熟状况又反映在生长的量的变化。
3、繁衍:使生物数量逐渐增加或增多;某种生命及生命系统的生育、连接和延续过程。是生命孕育后代的行为 ,可分为有性繁衍和无性繁衍。
4、死亡:即一个生命的消失。
根据化石研究,地球上最早出现的动物源于海洋。早期的海洋动物经过漫长的地质时期,逐渐演化出各种分支,丰富了早期的地球生命形态。在人类出现以前,史前动物便已出现,并在各自的活动期得到繁荣发展。
它们在不断变换的生存环境下相继灭绝。但是,地球上的动物仍以从低等到高等、从简单到复杂的趋势不断进化并繁衍至今,并有了如今的多样性。
(5)生物在其一生中如何变化扩展阅读:
不同种类的无脊椎动物的生命周期存在差异。多数无脊椎动物是卵生动物,有些需要经历多种幼虫形态,例如蝶、蛾等昆虫;有些则一孵出便是成体。
大多数无脊椎动物有着明显的前端和后端,感觉器官靠近口部簇生,这种构造能帮助它们在向前运动时及时发觉新情况,并迅速采取应对措施,使运动更快、更敏捷。
脊椎动物最显着的特征是一条脊椎骨或脊柱支撑着身体。典型的脊椎动物体内有连接肌肉、四肢的复杂的感觉器官和大脑。内部复杂的骨架使脊椎动物可以长得相当大,而且适应性强。
脊椎动物在动物界中所占的比重非常小,人类已知的脊椎动物约有4万多种,分为鱼纲、两栖纲、爬行纲、鸟纲和哺乳纲。它们几乎遍及地球上的每个角落。
动物有着各种行为,这些行为可以看作是动物对刺激的反应。行为学是研究动物行为的科学。比较有名的行为理论是康纳德·洛伦茨提出的本能理论。
大多数已知出现在化石中的动物们多是在5亿4千万年前的寒武纪大爆发时的海洋物种。寒武纪大爆发对于进化来说是一个极大的挑战。
‘陆’ 生物生长变化
生物生长变化
生物生长变化,我们都知道我们的生活中共充满了为生物,很多都是肉眼不可见的,微生物在我们生活中无处不在,体内的有益菌,体外的各种细菌,都是微生物,以下分享生物生长变化。
生物生长属于什么变化
生长(growth):生物体由小到大的过程即生长。多细胞生物体的生长,要从细胞分裂和细胞生长两方面来考虑。是指细胞繁殖、增大和细胞间质增加,表现为组织、器官、身体各部以至全身的大小、长短和重量的增加以及身体成分的变化,为量的改变。
单细胞生物的增殖也具有同样的关系。在细菌学的领域里,个体数的增加也称为生长。
生长是极其复杂的生命现象,其奥妙至今尚未被完全揭示。从物理的角度看,生长是动物体尺寸的增长和体重的增加;从生理的角度看,则是机体细胞的增殖和增大,组织器官的发育和功能的日趋完善;
从生物化学的角度看,生长又是机体化学成分,即蛋白质、脂肪、矿物质和水分等的积累;从热力学角度看,生长是能量输入与能量输出的差值。
最佳的生长体现在动物有一个正常的生长速度和成年动物具有功能健全的器官。为了取得最佳的生长效果,必须供给动银陆物各种营养物质的一定数量及其比例适宜的饲粮。
肥育是指肉用畜禽生长后期经强化饲养而使瘦肉和脂肪快速沉积。人们对瘦肉的需求日益增加,生长肥育不但要有高的生长速度,而且要减少脂肪的沉积量。为达此目的,肥育期往往限制增重过快。
而种用畜禽,早期的生长发育影响终生的繁殖成绩,合理饲养,保证具有良好种用体况更为重要。
微生物是怎么生长的
我们都知道新鲜蔬菜被晒干后就不容易腐烂了,这是因为蔬菜的水分减少了,引起蔬菜腐烂的微生物就不容易生长。微生物的生长必须有水
但结合在分子内的水不能被微生物利用,只有游离的水才能被利用。采用“水活度”值这一概念来表示能被微生物利用的实际含水量,微生物所需要的水活度越高, 在干燥的环境下就越不容易生长。
微生物细胞在合适的环境条件下,会不断获取外界的营养物质。这些营养物质在细胞内发生各种化学变化,有些被作为能源消耗了,有些变成了细胞自身的结构组织
如果变成细胞组织的物质多于被消耗掉的物质,细胞物质的总量就会不断增加,细胞个体就会长大.在达到一定程度时,就会繁殖,即由一个细胞变成两个,两个变成四.....最后发展成一个群体。
微生物惊人的繁殖速度
微生物的生长繁殖速度是惊人的。我们知道,高等生物完成一个世代交替的周期要几年甚至几十年,而微生物完成世代交替只需要几分钟。细菌增殖的方式是二分裂法,即以2的n次方递增,拿大肠杆菌来说,大肠杆菌在适宜温度时20分钟即形成一代,24小时则繁殖72代。
当然,因为地球上任何生物都要受到物质条件旦搏山及其他相关条件的制约,不可能无限繁殖,不过,也确实由于许多致病微生物有着惊人的繁殖速度,才使得我们的医疗手段在它们面前无能为力。
细菌如此,其他微生物也是如此。更有甚者是病毒,它们增殖的方法是复制,就像我们翻录磁带一样。病毒在它们所寄生的细胞中,只需按照自己的模样,利用细胞中的各种原料和酶无休止地复制后代个体,直到被寄生的细胞变成空壳为止。
至此,它们从这细胞中破壳而出,一次出来就是上亿个细菌!然后再分别去感染临近的其他细胞,复制新一代的个体。如此,在极短的时间内就可产生数量极多的后代,这也是高等生物自叹不如的。
正是微生物有这样神奇的本领,才得以在地球漫长的进行过程模中中保存下来,而许多较高等的生物却只能在地球上走过短短的进化年代便销声匿迹了。
到哪里获取营养成分
营养是微生物生长的先决条件。
在自然界中,微生物从其生存环境中获取生长所需的各种营养成分。在土壤中,各种有机质是异养微生物细菌、放线菌、霉菌生长所需的碳源和能源。
在茂密的丛林中,枯枝败叶是各种土着微生物赖以生长的天然粮库。许多大型真菌生活在草地上、树干上,甚至是腐木上,有些则是与树木的根部共生,它们的营养方式为腐生、寄生,或二者兼而有之。
微生物也在相互“竞争"
面对饥饿或病毒,微生物会作出什么反应呢。一部分微生物会形成孢子,将DNA (脱氧核糖核酸)封闭起来,使母细胞死亡,这确保了整个菌群的生存。一旦威胁消除,孢子萌发,菌群重新生长繁殖。
在此过程中,微生物还要选择是否进入一种“竞争”状态,即通过改变细胞膜,以更容易吸收来自邻近其他死亡细胞的物质。如此一来,在生存压力消失后,这些微生物可以更快地恢复正常生活。
雅各布教授认为,这是一个艰难的选择,甚至可以说是一场赌博,因为只有当其他微生物进人到孢子休眠状态时,形势才对进人到“竞争”状态的微生物有利。观测显示,只有约10%的微生物进人到“竞争”状态。为什么不是所有的微生物同时进人到“竞争”状态呢?
这是因为微生物不会向自己的.同伴隐瞒自已的意图,也不会说谎或推诿,它们之间可通过发送化学信息来传递个体的意图。个体微生物根据所面对的生存压力、同伴的处境、有多少细胞处于休眠状态以及有多少细胞处于“竞争”状态,来仔细权衡,最终决定个体的状态。
对环境的适应
我们知道,鸡蛋只有在适合的温度下才能孵化成小鸡,这是因为在细胞中进行的生物化学反应是生命活动的基础,而这些反应需要在一"定的温度下进行。
对于大多数微生物来说,温度太低,不能进行营养物质的运输,也不利于各种生命过程的进行。在温度适当升高时,细胞内的生物化学反应速度加快,就能加速微生物的生长。当温度超过微生物所能忍受的极限时,就会导致其死亡。
当然,由于自然界的环境与生物种类的多样性,有些微生物能够在一般生物所不能生存的环境条件下生长,例如生活在南极和北极地区的嗜冷微生物、生活在高温环境中的嗜热微生物以及生长在热泉和火山喷口地区的嗜高热微生物等
从受精卵开始,要经过营养生长和生殖生长。
1.生殖、发育和生长
生殖是生物产生后代的过程,对有性生殖生物来讲,受精卵的形成意味着下一代生命的开始。从受精卵分裂到性(成)熟生物体的形成是发育过程,所以,生长发育是生殖过程的继续,是把受精卵时具有的生命可能性变成生物现实的过程。
发育过程包含着个体生长,生长发育是一个量变到质变的过程,在个体生长过程中,经过量的积累,到性(成)熟时实现质变,从而完成个体发育过程。动物的生长发育过程协调有序地进行是在神经—激素的调节下完成的。
2.个体发育、胚的发育和胚后发育
生物的个体发育是指受精卵经过细胞分裂、组织分化和器官的形成,直到发育成性(成)熟个体的过程。该过程可以分为二个阶段,即胚的发育和胚后发育。
(1)胚的发育:
动物:受精卵发育成幼体的过程。如青蛙是从受精卵→蝌蚪。
被子植物:受精卵和受精极核在胚珠内发育成种子的过程(实质是受精卵发育成种子的胚)。
(2)胚后发育:
动物:幼体从卵膜内孵化出来或从母体内生出→发育成性(成)熟个体的过程。该过程在有些动物是变态发育,如青蛙的蝌蚪发育成成蛙的过程;有些是不完全变态发育,如蝗虫的发育过程,有些是不变态发育,如牛、羊等。
被子植物:种子萌发后,经营养生长,发育成成体;再经生殖生长,发育成性(成)熟的个体的过程。
3.极核与极体、胚囊与囊胚之间的区别
极体是动物卵原细胞经减数分裂与卵细胞同时形成的子细胞,由于含细胞质少,缺乏营养物质,而不能发育,最终被母体吸收。
一个卵原细胞产生的三个极体,有两个(由第一极体产生的)遗传物质相同,另一个与卵细胞内的遗传物质相同。极体、卵细胞所含染色体的数目均是本物种的一半。
极核是游离于被子植物胚囊中的两个核,与精子结合后形成受精极核,将来发育成胚乳,供幼胚发育所需要的营养物质。胚珠内一个大孢子母细胞经减数分裂产生一个大孢子
由大孢子经三次有丝分裂产生8个细胞(含有这8个细胞的结构叫胚囊),其中一个是卵细胞,两个极核,所以两个极核与卵细胞的遗传物质是一样的,所含染色体的数目也均是本物种的一半。动物受精卵经卵裂形成囊胚腔的胚叫囊胚。
4.植物发育过程中各部分染色体与基因型的关系
为了便于记忆植物各部分染色体及基因型的情况,我们可以总结出如下规律进行理解与掌握,即“两个除了”:
(1)从染色体数目看:(假定正常体细胞的染色体数目为2N),除了精子、卵细胞、极核(一个极核)内的染色体数目为N;除了受精极核及发育成的胚乳细胞染色体数目为3N,其余细胞中的染色体数目都为2N。
(2)从基因型看:除了受精卵及发育成的胚,其基因型是由一个卵细胞和一个精子组成;除了受精极核及发育成的胚乳细胞其基因型是由一个精子和两个卵细胞组成,其余细胞的基因型都和母体相同。
5.营养生长与生殖生长
营养生长是指植物根、茎、叶等营养器官的生长。生殖生长是指植物的花、果实、种子等生殖器官的生长。营养生长是生殖生长的物质基础,但营养生长和生殖生长都消耗有机物、争夺着有机物,它们影响或改变着有机物在植物体内的分布部位。
所以,对于栽培的叶、茎、根类蔬菜和牧草等,应当采取措施促进营养生长,抑制生殖生长;对于收获谷粒、菜籽、果实的植物,应当采取措施在营养生长的同时,促进生殖生长,或当营养生长达到一定水平后,控制营养生长,促进生殖生长。
6.羊膜的进化意义
两栖动物还摆脱不了水的限制,两栖动物的生殖和发育(初期)必须在水中,直接依赖外界水环境,所以,两栖类动物不是真正的陆生脊椎动物。羊膜是从爬行动物开始出现的结构,羊膜内有充足的液体——羊水
保证了胚胎发育对水环境的要求,从而解除了个体发育中对外界水环境的依赖,羊膜为脊椎动物的完全陆生打下了基础,同时羊膜内的羊水能缓冲震荡,防止内部的胚胎出现机械损伤。
‘柒’ 简述生物进化历程
生物进化实际上就是不断创造,从生命早期的单细胞生物,到目前最复杂的人,这种天壤之别,只有创造才能将其实现。只要看看生物多样性,这一生物进化的成果,就可以领略生物进化的启示。根据今天地球上生物多样性的分布情况,我们同样可以发现能量、多样性、适应性这三个关键因子在起主要作用。
(1)能量。随着纬度的降低,温度越来越高,能量越来越充沛,生物多样性也在增加,从寒带、温带、暖温带、亚热带、热带,生物多样性是逐渐增加的,其中热带雨林的生物多样性最高[19],这充分体现了能量是复杂系统创造力动力的作用、
(2)多样性。多样性是复杂系统创造力的条件。生物进化史,就是一幅生物圈这一复杂系统展示其非凡创造力的画卷。纵观生物进化历程,可以发现有几个趋势值得关注。第一,生物个体结构复杂性和多样性增长的趋势。第二,从时间顺序上看,生物圈的创造力不是匀速的,而是呈加速度方式发展,具体体现在两个方面,一是具有复杂结构的生物类群在生命史上出现较晚,生物结构越复杂,进化出现的时间越晚;二是生物多样性在生命史早期较为单调,越到晚期越丰富。
这说明生命简单的时候,多样性不高,创造力不强,而当多样性逐渐发展积累到一定程度时,复杂性和多样性会以爆发的形式出现,创造力极大增加。
(3)适应性。对于一个系统而言,适应则生存,不适应则消失或被改变。因此,达尔文将“自然选择,适者生存”作为动物进化的动力。在人类社会中,民族也好,个体也好,越适应自然环境和社会,生存同样才越容易。可是,如果自然进化的动力真是“适者生存”的话,就不可能进化出人类。因为,人类在早期既没有尖爪利齿攻击猎物,又无厚皮硬壳防护自身,也不像马和鹿那样擅长奔跑,根本不是很多猛兽的对手。而真正适应环境的是细菌和一些低等植物,它们才应该是自然选择的对象,因为它们具有适应各种难以想象恶劣环境的能力,这是人类所无法相比拟的。可是进化的结果却恰恰选择了人,人成为地球的主宰。
可见,当一个物种完全适应某一个环境,或者说不管环境如何变化,这个物种都能完全适应的时候,那么,这个物种就没有必要产生重大变异来适应环境,这就是变形虫几十亿年来,不管地球环境如何变化,其形状基本不变的原因。但是人则不行,因为人很不适应环境,正是因为不适应,人类才加速改变,不断创造。
从创造的角度来说,系统越适应,创造力越低。相反,系统对环境不适应,就能造成一种促进变化的压力,系统变异会越多,创造力就越强,恰恰是不适应引发了创造。
综上所述,可以得出这样一个启示,一个复杂系统的创造力与其所具有的能量和多样性成正比,与其适应性成反比。