导航:首页 > 生物信息 > 历史上生物学中有哪些伟大发现

历史上生物学中有哪些伟大发现

发布时间:2023-03-25 22:30:07

⑴ 1990到2015生物学重大发现及历史

19世纪30年代, 德国植物学家施冲中裤莱登(M.J.Sehleiden,18o4— 1881)和动物学家施旺(T.Schwann,1810— 1882)提出了细胞学说,指出细胞是一切动植物结构的基本单位。
1859年,英国生物学家达尔文(C.R.Darwin,1809—1882)出版了《物种起源》一书,科学地阐述了以自然选择学说为核心的生物进化理论。
1900年,孟德尔(G.Mendel,1822- 1884)发现的遗传定律被重新提出,生物学迈进第2个阶段—— 实验生物学阶段。
1944年,美国生物学家艾弗里(O.Avery,1877-1955)用细菌做实验材料,第1次证明了DNA是遗传物质。
1953年,美国科学家沃森(J.D.Watson,1928——)和英国科学家克里克(F.Crick,1916-2004)共同提出了DNA分子双螺旋结构模型。这是20世纪生物科学最伟大的成就,标志着生物科学的发展进入了一个新的阶段——分子生物学阶段。
1773年,意大利科学家斯帕兰札尼(L.Spallanzani,1729- 1799),通过实验证明,胃液有化学性消化作用。
1836年,德国科学家施旺(T.Schwann,1810—1882),从胃液中提取出胃蛋白酶。(第2次出现) 1926年,美国科学家萨姆纳(J.B.Sumner,1887—1955),从刀豆种子中提取出脲酶的结晶,并且通过化学实验证实脲酶是一种蛋白质。
20世纪80年代, 美国科学家切赫(T.R.Cech,1947一)和奥特曼(S.Ahman,1939一)发现少数RNA也有生物催化作用。
1771年, 英国科学家普里斯特利(J.Priestley,1733— 18o4),通过实验发现植物可以更新空气。 1864年,德国科学家萨克斯(J.yon Sachs,1832—1897),通过实验证明光合作用产生了淀粉。1880年, 美国科学家恩格尔曼(G.Engelmann,1809- 184 ),通过实验证明叶绿体是植物进行光合作用的场所。
20世纪,30年代,美国科学家鲁宾(S.Ruben)和卡门(M.Kamen)用同位素标记法证明光合作用中释放的氧全部来自水。
1880年,达尔文(C.R.Darwin,1809—1882)通过实验推想,胚芽鞘的尖端可能会产生某种物质,这种物质在单侧光的照射下,对胚芽鞘下面散简的部分会产生某种影响。(第2次出现)
1928年,荷兰科学家温特(F.W.Went,1903——),通过实验证明,胚芽鞘的尖端确实产生了某种物质,这种物质从尖端运输到下部,并且促使胚芽鞘下面的某些部分生长。
1934年,荷兰科学家郭葛(F.Ko )等人从植物中提取出吲哚乙酸— — 生长素。
1)DNA是主要的遗传物质
1928年,英国科学家格里菲思(F.Grifith,1877—1941),通过实验推想,已杀死的S型细菌中,含有某种“转化因子”,使R型细菌转化为S型细菌。
1944年, 美国科学家艾弗里(O.Avery,1877—1955)和他的同事,通过实验证明上述“转化因子”为DNA,也就是说DNA才是遗传物质。
1952年,培纤赫尔希(A.Hershey)和蔡斯(M.Chase),通过噬菌体侵染细菌的实验证明,在噬菌体中,亲代和子代之间具有连续性的物质是DNA,而不是蛋白质。
2)DNA分子的结构和复制
1953年,美国科学家沃森(J.D.Watson,1928一)和英国科学家克里克(F.Crick,1916-2004)共同提出了DNA分子双螺旋结构模型。1962年,沃森、克里克和维尔金斯共同获得了诺贝尔生理学或医学奖。(第2次出现)
基因的分离定律 孟德尔(G.Mendel,1822-1884),奥国人,通过豌豆等植物的杂交试验,于1865年,在当地的自然科学研究学会上宣读了《植物杂交试验》论文,提出了遗传的分离定律和自由组合定律。(第2次出现)
18世纪英国着名的化学家和物理学家道尔顿(J.Dalton,1766— 184 ),第1个发现了色盲症,也是第1个被发现的色盲症患者。
l9世纪(1859年),达尔文,在其《物种起源》一书中.提出以自然选择学说为核心的生物进化理论。(第3次出现)
1973年,美国科学家科恩(S.N.Cohen,l935一),第1次实现了不同物种间的DNA重组。

⑵ 15年有关生物学的重大发现

2015年,美国人脑研究取得新成果,医学与疾病防治取得多项重大突破,合成生物学成果纷呈;英国重视针对抗生素耐药性机理的研究,开发出药物“身份证”和可靠的“人工胰腺”;巴西农科院已经获批在2016年商业化种植本国产的转基因抗病毒豆类。

1美国

人脑研究取得新成果,医学与疾病防治取得多项重大突破,合成生物学成果纷呈。

2015年,美国科学家在人脑研究领域取得重大突破:8月,俄亥俄州立大学在实验室中培育出近乎完全成型的人类大脑,尽管它只有铅笔上橡皮擦那么大,发育程度与一个5周大胎儿的大脑相当,尚没有任何意识,但具备人脑绝大多数细胞类型和功能,且能像人脑一样进行基因表达,用它可以帮助科学家测试新药及更多认识脑部疾病机理;9月,华盛顿大学研究团队完成目前最复杂的人脑直连实验,他们使用一种脑—脑直连方式,燃团嫌让5对受试者通过互联网传递大脑信号来玩问答游戏。这一试验首次证明两个大脑可以直接连接,且无需发声,一方就能准确猜出另一方的想法。此外,美国科学家还绘制出了超精细的老鼠大脑3D图谱,该图谱由一系列高清图像拼接而成,单个神经细胞在纳米尺度下前所未有的清晰可见。

疫苗研究与设计领域:多家研究机构和企业参与研制的埃博拉疫苗已完成一期或二期人体临床试验。伊利诺斯大学厄本纳-香槟分校通过“基因组挖或毕掘”技术搜寻了1万种细菌,用4年时间就发现了19种前所未知的天然磷酸盐新产品,每种都有望成为有潜力的新药,其中之一已确认可作为抗生素。

癌症研究领域:美国食品和药物管理局(FDA)批准了首个治疗黑色素瘤等癌症的病毒类药物,其核心是利用一种经过修改的工程疱疹病毒,在不伤及健康细胞的情况下杀灭癌细胞,并在人体内部引发抗癌免疫反应;德州大学西南医学中心发现,全基因组测序可识别癌症家族背景人群的患癌风险,提高了诊断有癌变倾向的基因变异的能力;哈佛大学利用受激拉曼散射(SRS)显微镜技术,无需荧光标记即观察到活体皮肤癌细胞分裂过程中DNA分子机理,可在不干扰细胞正常发育的情况了解细胞癌变程度。

艾滋病研究方面:一种基于基因疗法的“强力”新药eCD4-Ig可阻止艾滋病病毒各种已知毒株的感染,恒河猴试验表明其有效性远高于现有效果最好的广谱抗艾药。这种新药通过伪装把病毒“拒之门外”——令人体产生CD4和CCR5两种受体的“山寨”品,“欺骗”艾滋病病毒与之结合,从而让病毒失去进入人体的机会。美研究人员还研制出被称为“分子显微镜”的探针,能够准确检测到艾滋病病毒在细胞内外皮手的隐藏之地,最终能帮助弄清艾滋病病毒长时间存留的谜底,从而将其从体内彻底清除。

⑶ 生物遗传学历史上的重大事件

DNA双螺旋分子结构的发现是人类历史上一个重大事件。
20世纪50年代,世界上有三个小组正在进行DNA生物大分子的分析研究,他们分属于不同派别,竞争非常激烈。结构学派,主要以伦敦皇家学院的威尔金斯和富兰克林(R.Franklin)为代表;生物化学学派是以美国加州理工学院鲍林(L.G.Pauling)为代表;信息学派,则以剑桥大学的沃森和克里克为代表。
结构学派的威尔金斯是新西兰物理学家,他的贡献在于选择了DNA作为研究生物大分子的理想材料,并在方法上采取“X射线衍射法”。他认为DNA分子的X射线衍射研究对于建立严格的分子模型是有帮助的。他和他的同事获得了世界上第一张DNA纤维X射线衍射图,证明了DNA分子是单链螺旋的,并在1951年意大利生物大分子学术会议上报告了他们的研究成果。正如前面所介绍的那样,沃森也参加了那次会议,并受到很大启发。
结构学派的另一位代表人物是富兰克林,她是一位具有卓越才能的英国女科学家。1952年,她在DNA分子晶体搏镇结构研究上成功地制备了DNA样品,更重要的是通过X射线衍射拍摄到一张举世闻名的B型DNA的X射线衍射照片,由此推算DNA分子呈螺旋状,并定量测定了DNA螺旋体的直径和螺距;同时,她已认识到DNA分子不是单链,而是双链同轴排列的。
生物化学学派的代表鲍林是美国着名的化学家。致力于研究DNA、蛋白质等生物大分子在细胞代谢和遗传中如何相互影响及化学结构。1951年,根据结构化学的规律性,成功地建立了蛋白质的。α-螺旋模型。
信息学派的沃森和克里克主要研究信息如何在有机体世代间传递及该信息如何被翻译成特定的生物分子。他们无论是在科学实验的经验,还是学术成就方面都无法与威尔金斯、富兰克林、鲍林相比,然而他们后来居上,在18个月的时间内创造了DNA分子的双螺旋模型,跃上20世纪的科学宝座,摘取“分子生物学”的桂冠,领了半个世纪的风骚。究其根本原因是他们能采百家之长融为一体,化为己用。
自1951年开始,沃森和克里克先后建立了三个DNA分子模型。他们在建立模型时,不只是考虑其结构,还要始终联系DNA的功能和信息。他们要求建立的模型既要满足物理、化学、数学研究的最新事实,如X射线衍射结果、碱基配对的力学要求,还要满足生化知识,如酮型、氢键、键角等,更要使DNA能解释遗传学和代谢理论,这是一种很先进的思想。
第一个模型是一个三链的结构。这是在对实验数据理解错误的基础上建立的,最终失败。但他们并不气馁,继续搜集材料,查阅资料,富兰克林的B型DNA的X射线衍射照片,查尔加夫的DNA化学成分的分析都曾给沃森和克举袜里克很大启示。他们建立的第二个模型是一个双链的螺旋体,糖和磷酸骨架在外,碱基成对的排列在内,碱基是以同配方式即A与A,C与C,G与G,T与T配对。由于配对方式的错误,这个模型同样宣告失败。尽管这次又失败了,但他们从中总结了不少有益的经验教训,为成功地建立第三个模型打下了基础。
1953年2月20日,沃森灵光一现,放弃了碱基同配方案,采用正银激碱基互补配对方案,终于获得了成功。沃森和克里克又经过三周的反复核对和完善,3月18日终于成功地建立了DNA分子双螺旋结构模型,并于4月25日在英国的《自然》杂志上发表。DNA分子规则的双螺旋结构模型与世人见面了,要点如下:DNA分子是由两条平行的脱氧核苷酸长链向右螺旋形成的;DNA分子中脱氧核糖和磷酸交替连结,排列在外侧,构成基本骨架,碱基排列在内侧;两条链上的碱基通过氢键连结起来,形成碱基对,即A与T,C与C配对;DNA分子中两条脱氧核苷酸长链中的原子排列方向相反,一条是5’→3’走向,另一条是3’→5’
数个星期之后,沃森和克里克又在《自然》杂志上进一步提出了DNA分子复制的假说——半保留复制机制,它为进一步揭示遗传信息的奥秘提供了广阔的前景。
从沃森和克里克的成功,我们不难发现,现代科学的创举决非一两个人所能办到的,他们必须采百家之长,充分借鉴别人的成功经验和理论,勤于思考,勇于探索,在掌握先进的科学方法后,有高明正确的科学思想指导才能成功。从科学发展的角度上看,沃森和克里克把各自独立研究的信息学派、结构学派和生化学派对生物遗传的研究统一起来推向前进,建立了不可磨灭的丰功伟绩。是他们完成了历史的、科学的统一,创建了DNA分子的双螺旋结构,这是分子生物学史上划时代的创举,是突破性的进展,人们从此开始从分子角度来研究生命科学,奠定了分子生物学的基础。我国着名的生物学家谈家桢指出:“DNA分子双螺旋结构的发现,不仅是生物科学的重大突破,也是整个自然科学的辉煌成就,其意义足以同迄今已有的任何一次科学发现相媲美”。

⑷ 20世纪最令人震惊的古生物发现都有哪些

1、旋齿鲨



相信很多人都知道,鲨鱼可谓是地球上最古老的物种之一,而他们的祖先旋齿鲨则要让人感到震惊得多。其令人印象深刻的下颚的结构给科学家带来了许多麻烦,因为他们找不到2.2亿年前消失的这种动物的完整复制品。



据推测,这种动物会用这种怪异的牙齿来捕捉一种带有贝壳的软体动物。几个世纪以来人们一直认为它们嘴上的锯状物是在这种生物的鼻子里,但是类似物种的发现得出了它位于下颌的结论。

现代长颈鹿的最古老的前身是在马德里的山营遗址发现的。有趣的是,它们的脖子很短,它们的饮食似乎也更加多种多样,可以树木和草为态拦食。

⑸ 20世纪生物学 成就

20世纪生物学最大的成就是DNA分子双螺旋结构模型的发现
沃森、克里克

沃森
Watson, James Dewey
美国生物学家

克里克
Crick, Francis Harry Compton
英国生物物理学家

20世纪50年代初,英国科学家威尔金斯等用X射线衍射技术对DNA结构潜心研究了3年,意识到DNA是一种螺旋结构。女物理学家富兰克林在1951年底拍到了一张十分清晰的DNA的X射线衍射照片。

1952年,美国化学家鲍林发表了关于DNA三链模型的研究报告,这种模型被称为α螺旋。沃森与威尔金斯、富兰克林等讨论了鲍林的模型。威尔金斯出示了富兰克林在一年前拍下的DNAX射线衍射照片,沃森看出了DNA的内部是一种螺旋形的结构,他立即产生了一种新概念:DNA不是三链结构而应该是双链结构。他们继续循着这个思路深入探讨,极力将有关这方面的研究成果集中起来。根据各方面对DNA研究的信息和自己的研究和分析,沃森和克里克得出一个共识:DNA是一种双链螺旋结构。这真是一个激动人心的发现!沃森和克里克立即行动,马上在实验室中联手开始搭建DNA双螺旋模型。从1953年2月22日起开始奋战,他们夜以继日,废寝忘食,终于在3月7日,将他们想象中的美丽无比的DNA模型搭建成功了。

沃森、克里克的这个模型正确地反映出DNA的分子结构。此后,遗传学的历史和生物学的历史都从细胞阶段进入了分子阶段。

由于沃森、克里克和威尔金斯在DNA分子研究方面的卓越贡献,他们分享1962年的诺贝尔生理医学奖。

詹姆斯·沃森
沃森(出生于1928年)美国生物学家.
20世纪40年代末和50年代初,在DNA被确认为遗传物质之后,生物学家们不得不面临着一个难题:DNA应该有什么样的结构,才能担当遗传的重任?它必须能够携带遗传信息,能够自我复制传递遗传信息,能够让遗传信息得到表达以控制细胞活动,并且能够突变并保留突变。这4点,缺一不可,如何建构一个DNA分子模型解释这一切?

当时主要有三个实验室几乎同时在研究DNA分子模型。第一个实验室是伦敦国王学院的威尔金斯、弗兰克林实验室,他们用X射线衍射法研究DNA的晶体结构。当X射线照射到生物大分子的晶体时,晶格中的原子或分子会使射线发生偏转,根据得到的衍射图像,可以推测分子大致的结构和形状。第二个实验室是加州理工学院的大化学家莱纳斯·鲍林(Linus Pauling)实验室。在此之前,鲍林已发现了蛋白质的a螺旋结构。第三个则是个非正式的研究小组,事实上他们可说是不务正业。23岁的年轻的遗传学家沃森于1951年从美国到剑桥大学做博士后时,虽然其真实意图是要研究DNA分子结构,挂着的课题项目却是研究烟草花叶病毒。比他年长12岁的克里克当时正在做博士论文,论文题目是“多肽和蛋白质:X射线研究”。沃森说服与他分享同一个办公室的克里克一起研究DNA分子模型,他需要克里克在X射线晶体衍射学方面的知识。他们从1951年10月开始拼凑模型,几经尝试,终于在1953年3月获得了正确的模型。关于这三个实验室如何明争暗斗,互相竞争,由于沃森一本风靡全球的自传《双螺旋》而广为人知。值得探讨的一个问题是:为什么沃森和克里克既不像威尔金斯和弗兰克林那样拥有第一手的实验资料,又不像鲍林那样有建构分子模型的丰富经验(他们两个人都是第一次建构分子模型),却能在这场竞赛中获胜?

这些人中,除了沃森,都不是遗传学家,而是物理学家或化学家。威尔金斯虽然在1950年最早研究DNA的晶体结构,当时却对DNA究竟在细胞中干什么一无所知,在1951年才觉得DNA可能参与了核蛋白所控制的遗传。弗兰克林也不了解DNA在生物细胞中的重要性。鲍林研究DNA分子,则纯属偶然。他在1951年11月的《美国化学学会杂志》上看到一篇核酸结构的论文,觉得荒唐可笑,为了反驳这篇论文,才着手建立DNA分子模型。他是把DNA分子当作化合物,而不是遗传物质来研究的。这两个研究小组完全根据晶体衍射图建构模型,鲍林甚至根据的是30年代拍摄的模糊不清的衍射照片。不理解DNA的生物学功能,单纯根据晶体衍射图,有太多的可能性供选择,是很难得出正确的模型的。

沃森在1951年到剑桥之前,曾经做过用同位素标记追踪噬菌体DNA的实验,坚信DNA就是遗传物质。据他的回忆,他到剑桥后发现克里克也是“知道DNA比蛋白质更为重要的人”。但是按克里克本人的说法,他当时对DNA所知不多,并未觉得它在遗传上比蛋白质更重要,只是认为DNA作为与核蛋白结合的物质,值得研究。对一名研究生来说,确定一种未知分子的结构,就是一个值得一试的课题。在确信了DNA是遗传物质之后,还必须理解遗传物质需要什么样的性质才能发挥基因的功能。像克里克和威尔金斯,沃森后来也强调薛定谔的《生命是什么?》一书对他的重要影响,他甚至说他在芝加哥大学时读了这本书之后,就立志要破解基因的奥秘。如果这是真的,我们就很难明白,为什么沃森向印第安那大学申请研究生时,申请的是鸟类学。由于印第安那大学动物系没有鸟类学专业,在系主任的建议下,沃森才转而从事遗传学研究。当时大遗传学家赫尔曼·缪勒(Hermann Muller)恰好正在印第安那大学任教授,沃森不仅上过缪勒关于“突变和基因”的课(分数得A),而且考虑过要当他的研究生。但觉得缪勒研究的果蝇在遗传学上已过了辉煌时期,才改拜研究噬菌体遗传的萨尔瓦多·卢里亚(Salvador Luria)为师。但是,缪勒关于遗传物质必须具有自催化、异催化和突变三重性的观念,想必对沃森有深刻的影响。正是因为沃森和克里克坚信DNA是遗传物质,并且理解遗传物质应该有什么样的特性,才能根据如此少的数据,做出如此重大的发现。

他们根据的数据仅有三条:第一条是当时已广为人知的,即DNA由6种小分子组成:脱氧核糖,磷酸和4种碱基(A、G、T、C),由这些小分子组成了4种核苷酸,这4种核苷酸组成了DNA.第二条证据是最新的,弗兰克林得到的衍射照片表明,DNA是由两条长链组成的双螺旋,宽度为20埃。第三条证据是最为关键的。美国生物化学家埃尔文·查戈夫(Erwin Chargaff)测定DNA的分子组成,发现DNA中的4种碱基的含量并不是传统认为的等量的,虽然在不同物种中4种碱基的含量不同,但是A和T的含量总是相等,G和C的含量也相等。

查加夫早在1950年就已发布了这个重要结果,但奇怪的是,研究DNA分子结构的这三个实验室都将它忽略了。甚至在查加夫1951年春天亲访剑桥,与沃森和克里克见面后,沃森和克里克对他的结果也不加重视。在沃森和克里克终于意识到查加夫比值的重要性,并请剑桥的青年数学家约翰·格里菲斯(John Griffith)计算出A吸引T,G吸引C,A+T的宽度与G+C的宽度相等之后,很快就拼凑出了DNA分子的正确模型。

沃森和克里克在1953年4月25日的《自然》杂志上以1000多字和一幅插图的短文公布了他们的发现。在论文中,沃森和克里克以谦逊的笔调,暗示了这个结构模型在遗传上的重要性:“我们并非没有注意到,我们所推测的特殊配对立即暗示了遗传物质的复制机理。”在随后发表的论文中,沃森和克里克详细地说明了DNA双螺旋模型对遗传学研究的重大意义:一、它能够说明遗传物质的自我复制。这个“半保留复制”的设想后来被马修·麦赛尔逊(Matthew Meselson)和富兰克林·斯塔勒(Franklin W.Stahl)用同位素追踪实验证实。二、它能够说明遗传物质是如何携带遗传信息的。三、它能够说明基因是如何突变的。基因突变是由于碱基序列发生了变化,这样的变化可以通过复制而得到保留。

但是遗传物质的第四个特征,即遗传信息怎样得到表达以控制细胞活动呢?这个模型无法解释,沃森和克里克当时也公开承认他们不知道DNA如何能“对细胞有高度特殊的作用”。不过,这时,基因的主要功能是控制蛋白质的合成,这种观点已成为一个共识。那么基因又是如何控制蛋白质的合成呢?有没有可能以DNA为模板,直接在DNA上面将氨基酸连接成蛋白质?在沃森和克里克提出DNA双螺旋模型后的一段时间内,即有人如此假设,认为DNA结构中,在不同的碱基对之间形成形状不同的“窟窿”,不同的氨基酸插在这些窟窿中,就能连成特定序列的蛋白质。但是这个假说,面临着一大难题:染色体DNA存在于细胞核中,而绝大多数蛋白质都在细胞质中,细胞核和细胞质由大分子无法通过的核膜隔离开,如果由DNA直接合成蛋白质,蛋白质无法跑到细胞质。另一类核酸RNA倒是主要存在于细胞质中。RNA和DNA的成分很相似,只有两点不同,它有核糖而没有脱氧核糖,有尿嘧啶(U)而没有胸腺嘧啶(T)。早在1952年,在提出DNA双螺旋模型之前,沃森就已设想遗传信息的传递途径是由DNA传到RNA,再由RNA传到蛋白质。在1953~1954年间,沃森进一步思考了这个问题。他认为在基因表达时,DNA从细胞核转移到了细胞质,其脱氧核糖转变成核糖,变成了双链RNA,然后再以碱基对之间的窟窿为模板合成蛋白质。这个过于离奇的设想在提交发表之前被克里克否决了。克里克指出,DNA和RNA本身都不可能直接充当连接氨基酸的模板。遗传信息仅仅体现在DNA的碱基序列上,还需要一种连接物将碱基序列和氨基酸连接起来。这个“连接物假说”,很快就被实验证实了。

1958年,克里克提出了两个学说,奠定了分子遗传学的理论基础。第一个学说是“序列假说”,它认为一段核酸的特殊性完全由它的碱基序列所决定,碱基序列编码一个特定蛋白质的氨基酸序列,蛋白质的氨基酸序列决定了蛋白质的三维结构。第二个学说是“中心法则”,遗传信息只能从核酸传递给核酸,或核酸传递给蛋白质,而不能从蛋白质传递给蛋白质,或从蛋白质传回核酸。沃森后来把中心法则更明确地表示为遗传信息只能从DNA传到RNA,再由RNA传到蛋白质,以致在1970年发现了病毒中存在由RNA合成DNA的反转录现象后,人们都说中心法则需要修正,要加一条遗传信息也能从RNA传到DNA.事实上,根据克里克原来的说法,中心法则并无修正的必要。

碱基序列是如何编码氨基酸的呢?克里克在这个破译这个遗传密码的问题上也做出了重大的贡献。组成蛋白质的氨基酸有20种,而碱基只有4种,显然,不可能由1个碱基编码1个氨基酸。如果由2个碱基编码1个氨基酸,只有16种(4的2次方)组合,也还不够。因此,至少由3个碱基编码1个氨基酸,共有64种组合,才能满足需要。1961年,克里克等人在噬菌体T4中用遗传学方法证明了蛋白质中1个氨基酸的顺序是由3个碱基编码的(称为1个密码子)。同一年,两位美国分子遗传学家马歇尔·尼伦伯格(Marshall Nirenberg)和约翰·马特哈伊(John Matthaei)破解了第一个密码子。到1966年,全部64个密码子(包括3个合成终止信号)被鉴定出来。作为所有生物来自同一个祖先的证据之一,密码子在所有生物中都是基本相同的。人类从此有了一张破解遗传奥秘的密码表。

DNA双螺旋模型(包括中心法则)的发现,是20世纪最为重大的科学发现之一,也是生物学历史上惟一可与达尔文进化论相比的最重大的发现,它与自然选择一起,统一了生物学的大概念,标志着分子遗传学的诞生。这门综合了遗传学、生物化学、生物物理和信息学,主宰了生物学所有学科研究的新生学科的诞生,是许多人共同奋斗的结果,而克里克、威尔金斯、弗兰克林和沃森,特别是克里克,就是其中最为杰出的英雄。

克里克
弗朗西斯·哈里·康普顿·克里克(Francis Harry Compton Crick 1916.6.8——2004.7.28)

生于英格兰中南部一个郡的首府北安普敦。小时酷爱物理学。1934年中学毕业后,他考入伦敦大学物理系,3年后大学毕业,随即攻读博士学位。然而,1939年爆发的第二次世界大战中断了他的学业,他进入海军部门研究鱼雷,也没有什么成就。待战争结束,步入"而立之年"的克里克在事业上仍一事无成。1950年,也就是他34岁时考入剑桥大学物理系攻读研究生学位,想在着名的卡文迪什实验室研究基本粒子。

这时,克里克读到着名物理学家薛定谔的一本书《生命是什么》,书中预言一个生物学研究的新纪元即将开始,并指出生物问题最终要靠物理学和化学去说明,而且很可能从生物学研究中发现新的物理学定律。克里克深信自己的物理学知识有助于生物学的研究,但化学知识缺乏,于是开始发愤攻读有机化学、X射线衍射理论和技术,准备探索蛋白质结构问题。

1951年,美国一位23岁的生物学博士沃森来到卡文迪什实验室,他也受到薛定谔《生命是什么》的影响。克里克同他一见如故,开始了对遗传物质脱氧核糖核酸DNA分子结构的合作研究。他们虽然性格相左,但在事业上志同道合。沃森生物学基础扎实,训练有素;克里克则凭借物理学优势,又不受传统生物学观念束缚,常以一种全新的视角思考问题。他们二人优势互补,取长补短,并善予吸收和借鉴当时也在研究DNA分子结构的鲍林、威尔金斯和弗兰克林等人的成果,结果经不足两年时间的努力便完成了DNA分子的双螺旋结构模型。而且,克里克以其深邃的科学洞察力,不顾沃森的犹豫态度,坚持在他们合作的第一篇论文中加上“DNA的特定配对原则,立即使人联想到遗传物质可能有的复制机制”这句话,使他们不仅发现了DNA的分子结构,而且丛结构与功能的角度作出了解释。

1962年,46岁的克里克同沃森、威尔金斯一道荣获诺贝尔生物学或医学奖。

后来,克里克又单独首次提出蛋白质合成的中心法则,即遗传密码的走向是:DNA→RNA→蛋白质。他在遗传密码的比例和翻译机制的研究方面也做出了贡献。1977年,克里克离开了剑桥,前往加州圣地亚哥的索尔克研究院担任教授。

2004年7月28日深夜,弗朗西斯·克里克在与结肠癌进行了长时间的搏斗之后,在加州圣地亚哥的桑顿医院里逝世,享年88岁。

被遗忘的英格兰玫瑰

很多人都知道沃森和克里克发现DNA双螺旋结构的故事,更进一步,有人还可能知道他们与莫里斯·威尔金斯因此分享了1962年的诺贝尔生理学或医学奖。然而,有多少人记得罗莎琳德·富兰克林(Rosalind Franklin),以及她在这一历史性的发现中做出的贡献?

富兰克林1920年生于伦敦,15岁就立志要当科学家,但父亲并不支持她这样做。她早年毕业于剑桥大学,专业是物理化学。1945年,当获得博士学位之后,她前往法国学习X射线衍射技术。她深受法国同事的喜爱,有人评价她“从来没有见到法语讲的这么好的外国人”。1951年,她回到英国,在伦敦大学国王学院取得了一个职位。

在那时候,人们已经知道了脱氧核糖核酸(DNA)可能是遗传物质,但是对于DNA的结构,以及它如何在生命活动中发挥作用的机制还不甚了解。就在这时,富兰克林加入了研究DNA结构的行列——在相当不友善的环境下。她负责起实验室的DNA项目时,有好几个月没有人干活。同事威尔金斯不喜欢她进入自己的研究领域,但他在研究上却又离不开她。他把她看作搞技术的副手,她却认为自己与他地位同等,两人的私交恶劣到几乎不讲话。在那时的科学界,对女科学家的歧视处处存在,女性甚至不被准许在大学的高级休息室里用午餐。她们无形中被排除在科学家间的联系网络之外,而这种联系对了解新的研究动态、交换新理念、触发灵感极为重要。

富兰克林在法国学习的X射线衍射技术在研究中派上了用场。X射线是波长非常短的电磁波。医生通常用它来透视,而物理学家用它来分析晶体的结构。当X射线穿过晶体之后,会形成衍射图样——一种特定的明暗交替的图形。不同的晶体产生不同的衍射图样,仔细分析这种图形人们就能知道组成晶体的原子是如何排列的。富兰克林精于此道,她成功的拍摄了DNA晶体的X射线衍射照片。

富兰克林拍摄的DNA晶体的X射线衍射照片,这张照片正是发现DNA结构的关键

此时,沃森和克里克也在剑桥大学进行DNA结构的研究,威尔金斯在富兰克林不知情的情况下给他们看了那张照片。根据照片,他们很快就领悟到了DNA的结构——现在已经成为了一个众所周知的事实——两条以磷酸为骨架的链相互缠绕形成了双螺旋结构,氢键把它们连结在一起。他们在1953年5月25日出版的英国《自然》杂志上报告了这一发现。这是生物学的一座里程碑,分子生物学时代的开端。

当沃森等人的论文发表的时候,富兰克林已经离开了国王学院,威尔金斯似乎很庆幸这个不讨他喜欢的伙伴的离去。然而富兰克林的贡献是毋庸置疑的:她分辨出了DNA的两种构型,并成功的拍摄了它的X射线衍射照片。沃森和克里克未经她的许可使用了这张照片,但她不以为忤,反而为他们的发现感到高兴,还在《自然》杂志上发表了一篇证实DNA双螺旋结构的文章。

这个故事的结局有些伤感。当1962年沃森、克里克和威尔金斯获得诺贝尔生理学或医学奖的时候,富兰克林已经在4年前因为卵巢癌而去世。按照惯例,诺贝尔奖不授予已经去世的人。此外,同一奖项至多只能由3个人分享,假如富兰克林活着,她会得奖吗?性别差异是否会成为公平竞争的障碍?后人为了这个永远不能有答案的问题进行过许多猜测与争论。

与没有获得诺贝尔奖相比,富兰克林的早逝更加令人惋惜。她是一位才华横溢的女科学家,然而知道她和她的贡献的人寥寥无几。沃森在《双螺旋》(1968年出版)一书中甚至公开诋毁富兰克林的形象与功绩,歪曲她与威尔金斯之间的恩怨。许多关于双螺旋的书籍和文章根本不提及富兰克林,尽管克里克在很多年后承认“她离真相已经只有两步”。富兰克林始终相信人们对才能和专业水准的尊重会与性别无关,但她正是这倾斜的世界中女科学家命运的代表。如果她是男性则可能如何,这种假设固然没有意义,但性别的确一直是她在科研领域发挥才能的绊脚石,并使她的成就长时间得不到应有的认可。

⑹ 近代生物学上取得了哪些成就什么时间(简捷一点的)

近代生物学指从15世纪下半叶到19世纪结束时间段所发展起来的生物科学。从15世纪下半叶到18世纪末是近代生物学的第一阶段,这一时期的生物学研究中,主要有维萨里等人的解剖学,哈维的生理学,林耐的分类学以及拉马克等人的进化学说。19世纪的自然科学,进入了全面繁荣时代。生物学的各主要领域都获得较大的进展。如细胞学说的提出,达尔文进化论的创立,孟德尔遗传学定律的发现。巴赫和巴斯德等人则奠定了微生物学的基础,使其在农业和医学上产生巨大的影响;巴普洛夫等人推动了动物生理学的巨大发展。…… 近现代生物学最有影响力的进展(个人认为):1,生物进化——达尔文1859年发表《物种起源》, 提出了生物进化论学说,从而摧毁了各种唯心的神造论和物种不变论。除了生物学外,他的理论对人类学、心理学及哲学的发展都有不容忽视的影响。恩格斯将“进化论”列为19世纪自然科学的三大发现之一。2,细胞生物学——细胞学说的提出 1838~1839 年间由德国植物学家施莱登和动物学家施旺所提出,直到 1858 年才较完善。它是关于生物有机体组成的学说。细胞学说论证了整个生物界在结构上的统一性,以及在进化上的共同起源。这一学说的建立地推动了生物学的发展,并为辩证唯物论提供了重要的自然科学依据。革命导师 恩格斯 曾把细胞学说与能量守恒和转换定律、达尔文的自然选择学说等并誉为 19 世纪最重大的自然科学发现之一。3,遗传学——1866年奥地利学者孟德尔根据他的豌豆杂交实验结果发表了《植物杂交试验》的论文,揭示了现在称为孟德尔定律的遗传规律,奠定了遗传学的基础。 1875~1884年弗莱明、施特拉斯布格、贝内登、赫特维希等的发现为遗传的染色体学说奠定了基础。生物遗传规律和染色体、基因等被联系在一起。…… 20世纪的生物学属于现代生物学的范畴。

⑺ 中国近20年来在古生物界的重大发现



我就说两个关于早期生命的大新闻吧。
(一)蓝田生物群
2011年安徽皖南蓝田发现了迄今为止最早的宏体生物群,里面有宏体藻类,还有疑似腔肠动物(可见触手与消化道)。蓝田生物群时代差不多6亿年,和瓮安生物群差不多一个时代,但是瓮安的化石主要以疑似动物胚胎为主(也可能是藻大洞大塌类)。啥是宏体生物,就是肉眼可见的生物,要是专业点就是大型的多细胞真核生物,在此之前公认最早的宏体生物群是埃迪卡拉生物群(其中的阿瓦隆生物群5.79亿年,一直被认为是最早的。)
蓝田生物群中的藻类:

参考文献(图片均来源于参考文献中):
Yuan Xunlai, Chen Zhe, Xiao Shuhai, Zhou Chuanming, Hua Hong. 2011. An early Ediacaran assemblage of macroscopic and morphologically differentiated eukaryotes. Nature. 470: 390-393
袁训来, 陈哲, 肖书海, 万斌, 关成国, 王伟, 周传明, 华洪,2012:蓝田生物群: 一个认识多细胞生物起源和早期演化的新窗口。
Zhe Chen, Chuanming Zhou, Shuhai Xiao, Wei Wang, Chengguo Guan, Hong Hua & Xunlai Yuan. 2014. New Ediacara fossils preserved in marine limestone and their ecological implications. Scientific Reports. 4, 4180; DOI:10.1038/srep04180.

阅读全文

与历史上生物学中有哪些伟大发现相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:734
乙酸乙酯化学式怎么算 浏览:1397
沈阳初中的数学是什么版本的 浏览:1343
华为手机家人共享如何查看地理位置 浏览:1036
一氧化碳还原氧化铝化学方程式怎么配平 浏览:877
数学c什么意思是什么意思是什么 浏览:1401
中考初中地理如何补 浏览:1290
360浏览器历史在哪里下载迅雷下载 浏览:693
数学奥数卡怎么办 浏览:1380
如何回答地理是什么 浏览:1014
win7如何删除电脑文件浏览历史 浏览:1048
大学物理实验干什么用的到 浏览:1478
二年级上册数学框框怎么填 浏览:1692
西安瑞禧生物科技有限公司怎么样 浏览:951
武大的分析化学怎么样 浏览:1241
ige电化学发光偏高怎么办 浏览:1330
学而思初中英语和语文怎么样 浏览:1642
下列哪个水飞蓟素化学结构 浏览:1418
化学理学哪些专业好 浏览:1479
数学中的棱的意思是什么 浏览:1050