导航:首页 > 生物信息 > 生物发酵药物用什么方法提纯

生物发酵药物用什么方法提纯

发布时间:2023-04-12 02:59:10

㈠ 从发酵料液中提取微生物活性物质主要应注意哪些问题

你可以考虑以下几方面:
1)初步确定你的发酵液中的活性成份的性质,HPLC显示都是极性非常强只是说明它的水溶性很好,不足以判断它的性质;你可以查阅质料,看一下相关的菌种产生的活性物质的种类,然后设计相关的实验来进行初步验证,比如抗生素能产生抑菌圈,蛋白酶能水解蛋白质底物形成透明圈等相关实验;
2)根据活性成分的性质来设计分离纯化的方法;
3)发酵液的预处理,首先要过滤除去菌体等发酵液中不能溶解的杂质,如果产生色素的话最后先去除色素,以免干扰后面的分离过程;同时要根据活性成分成分的性质对活性成分进行一定的浓缩处理,再根据你要用的柱子来进行必要的处理,比如透析出盐等,同时要注意在预处理的过程中尽量保持活性成分的活性.
离心去菌体后,你可以先用各种有机溶剂如甲醇、氯仿等进行萃取,检查萃取液与沉淀物质的活性,确定你的活性成分的大致性质;也可以先用盐析的方法,用硫酸氨等进行盐析,测试活性.这些工作完了以后,可以过开放柱进行初步的纯化,收集活性物组分.有必要的话,上低压色谱柱或是高压色谱.收集活性峰,一般经过高效液相色谱后,就比较纯了.
如果活性物质极性很强,那你就需要换一根可以分离极性物质的柱子,好像C18或是凝胶柱.
发酵液的预处理和固液分离
根据活性物质的许可范围,可以采取酸化、加热、过滤、絮凝、离心等.
提取(分离浓缩)
经常采用的方法有化学萃取、树脂吸附、沉淀等.
精制(纯化)
常采用的方法有结晶、脱色、色谱层析等.
此外在提取步骤中应用的沉淀、吸附等方法也可用于样品的纯化.
提取方法的选择
1.产品的基本理化性能,如化学结构、化合物的溶解度、极性、pK值、官能团反映等.
2.化合物的稳定性,如耐受的pH范围、耐受的温度条件、光照、氧化等.
此外,在分离纯化过程中值得提及的是,尽可能地避免二次污染.如分离纯化过程中使用的水要求去离子,有机溶剂要求高纯级,使用的树脂应该经过预处理除去其中残留的杂质等.
Hplc纯化时可试试调节pH值,适当降低乙腈或甲醇的量

㈡ 天然药物有效成分的提取方法有几种

1、萃取:水浸泡萃取;酒精等浸泡萃取;植物油矿物油浸泡萃取;
2、蒸锋丛馏;
3、物理方法提纯;
4、化学方法提纯,例如炼丹药等;
5、生物方法提纯,例如利用动物、昆虫实用激脊后在从动银铅樱物、昆虫身体提取.

㈢ 发酵产品不用进行分离可直接提纯对吗

对。发酵产品不用进行分离是可以直接进行进行提纯的。发酵一般泛指利用微生物制造工业原局旅料或产品的过桐携凳程。由微生物(细菌、酵母等)、有机物(主要隐兆是碳水化合物)、培养基等在一定的温度和pH等条件下进行。

㈣ 现代发酵中药提取纯菌种的缺点是什么

中药的缺陷
1、提纯加工工艺原始、粗糙、简单——水煮、醇提;

2、起效相对缓慢,药效成分难以定量;

3、良药苦口,患者难以长时间坚持治疗。

怎样让中药既可以提高药效,又不至于那么苦呢?发酵中药就这样应运而生了。传统的发酵中药工艺全靠经验,而现代的发酵中药更加精准,让中药更利于被人们接受,我们一起去看看传统的发酵中药技术与现代发酵中药技术究竟有哪些区别吧。

什么是发酵中药?
发酵中药是将天然药物(中药)提取液以优选的肠道益生菌菌群中一种或几种、一株或几株益生菌作为菌种,利用微生态学、仿生学的方法,通过生物嫁接的方式,在体外模拟人体的肠道环境和中药成分在人体内的消化分解过程,对提取的中药有效成分进行生物学转化,将中药的大分子物质,经过微橡高生物转化成为能够被人体肠道直接吸收的小分子成分,使中药成为快速吸收、定量疗效的新型药物。

什么是传统发酵中药技术?
传统发酵中药是一种微生物发酵技术,是指药物经过净制或野喊处理后,在一定的温度和湿度条件下,借助微生物和酶的催化分解作用,使药物发泡,产生黄白色霉衣的方法。

什么是现代发酵中药技术?
现代中药发酵技术起步上世纪80年代,最早多为单味中药发酵,且主要集中在真菌自身发酵方面,如灵芝菌,冬虫夏草菌丝体发酵。目前,发酵菌种除了真菌类以外,也扩大到有益细菌类,比如光合细菌类、乳酸菌类、芽孢杆菌类、酵母菌类等。现代中药发酵技术用于中药生产与研究不仅可以炮制中梁脊尺药,还为改进中药制药工艺提供了新技术,有利于改善中药的药理和毒理作用和有效成分的提取与分析。同时利用中药作为发酵基质能够提高发酵效能,这种新的发酵技术在中药发酵中正成为一种趋势。

现代新工艺技术是将天然中草药中的有效物质萃取出来,然后与优选的对人体有益的益生菌菌群中一种或几种共生发酵,得到能直接喝的食物液的中药发酵技术。和传统工艺相比,现代中药发酵技术打破了传统工艺束缚,不管是从方便能直接饮用的角度,还是从效用的角度,都更适合现代人的需求。

同样一副药为什么不同的人吸收度不一样?
患者服用的汤剂或者中成药,都不是直接进入血液发挥药物效果的最终成分,而只是中间物质。

这些中间物质进入体内后,还要通过人体肠胃系统 的益生菌进行再消化和分解,才能转化为最终起作用的有效成分从而进入血液,发挥药物的治疗作用。

但每个人肠胃系统益生菌的菌群状况各不相同:如果菌群平衡,就能最大限度的消化和分解药物,吸收利用有效成分;反之,如果菌群失衡, 益生菌数量较少,药物成分就不能被有效分解、吸收,就会直接随粪便排出体外,药物就不能发挥应有的治病作用。因此传统中药的效果出现因人而异、因病人的身体状况而异,原来吃的效果好,现在吃效果不一定会好。

传统发酵中药技术与现代发酵中药技术在中药产品成分上有什么不同?
1、传统发酵中药技术

发酵多凭经验,缺乏规范的工艺技术及适宜的监控指标,故发酵所得中药产品质量差异较大,难以制定统一的质量标准和检验方法,无法保证发酵中药产品的安全有效性和稳定可控性。

2、现代发酵中药技术

微生物发酵过程中,产生的各种酶类可能会将中药的某些成分分解转化成新的有效成分,或将毒性成分分解以降低药物的毒副作用。

㈤ 大规模药物生产过程中是如何提纯产物的

要看粗盯历敬产物组分,选择成本低,效率高,损耗小,适合规凯慎模生产的方式。 制药工业上重结晶和多次蒸馏,分馏都比较常见,利用溶剂极性萃取等都很常见。 除了精馏,重结晶,液相萃取,超临界萃取,离子交换,膜分离等手段,生化制剂如某类蛋白也会采用盐析,烂派电泳等方式提纯。

㈥ 生物药物的药物制备

(1)、原料选择原则
有效成分芦亮含量高,原料新鲜,来源丰富、易得,产地较近,原料中杂质含量少,成本低。
(2)、预处理与保存
预处理:就地采集后去除结缔组织、脂肪组织等不用的成分,将有用成分保鲜处理,收集微生物原料时,要及时将菌体与培养液分开,进行保鲜处理。
保存方法:冷冻法,适用于所有生物原料,-40℃;有机溶剂脱水法,丙酮,适用于原料少、价值高,有机溶剂对原料生物活性无影响;防腐剂保鲜,常用乙醇、苯酚等,适用于液体原料,如发酵液、提取液。 (1)、组织与细胞的破碎
常用破碎方法:磨切法,机械破碎法,设备为组织捣碎机、胶体磨、匀浆器、球磨机。压力法,加压和减压,设备有法兰西压釜。反复冻融法。超声波震荡破碎法,局部发热,对活性有损失。自溶法或酶解法。
(2)、提取
根据具体对象选择提取试剂,常用水、缓冲溶液、盐溶液、乙醇、有机溶剂(氯仿、丙酮)。提取剂的用量,次数,时间,保证充分提取,且不变性。 非降解法适用于从含一种粘多糖的动物组织中提取粘多糖,用水或盐。
降解悉颂法适用于从组织中提取结合比较牢固的粘多糖,酶解。
分离陪陆宽用沉淀和离子交换。 氨基酸的生产:蛋白质水解,盐酸水解迅速、完全,色氨酸被破坏,丝氨酸部分破坏;碱水解易产生消旋作用;酶水解不完全。发酵法,从发酵液中提取。和学合成与酶促合成法,化学合成产物混旋需拆分,酶促合成效果较好。
分离方法:沉淀法(溶解度差异),吸附法(吸附能力差异),离子交换法(所带电荷不同)。

㈦ 生物药物分离提取技术的特点与原理以及生化药物的特点请知道的大侠说一下,先多谢了。

90、稳态:神经系统、体液和免疫系统调节下,内环境的相对稳定
温度、pH、渗透压,水、无机盐、血糖等化学物质含量
血浆 7.35—7.45 缓冲对 NaHCO3/H2CO3 Na2HPO4/NaH2PO4
2/3细胞内液 组织液

91、65%体液 1/3细胞外液 血浆 淋巴
(内环境) 不是血液 血液>血浆>血清
食物 排尿
92、体内水来源 饮水 水排出途径 出汗 皮肤
代谢水(有氧呼吸)面虫、骆驼 呼气 肺
(氨基酸脱水缩合) 排遗 消化道
93、K不吃也排 不经过出汗排
肾上腺分泌醛固酮(固醇) 保Na排K
高温工作、重体力劳动、呕吐、腹泻→→应特别注意补充足够的水、Na(食盐)
细胞外液渗透压下降,出现四肢发冷、血压下降、心率加快
K对细胞内液细胞渗透压起决定作用,维持心肌紧张、心肌正常兴奋性 K心
94、血糖三来源(食物、分解、转化) 三去向
糖的主要功能:供能
胰岛素 唯一降血糖激素;增加糖的去路,减少糖的来源 胰高血糖素、 肾上腺素 升血糖
胰高血糖素促进胰岛素分泌,胰岛素却抑制胰高血糖素分泌
血 糖 升 高
↓ ↑ ↑
下丘脑某区域→胰岛B细胞 胰高血糖素↑ 肾上腺素↑
↓ ↑ ↑
胰岛素↑ 胰岛A细胞 肾上腺髓质
↓ ↑ ↑ 下丘脑另一区域
血 糖 降 低
<50-60 低早 <45 低晚 >130高 >160-180糖尿
一次性摄糖过多,暂时尿糖 持续糖尿不一定糖尿病,如肾炎重吸收不行
糖尿病 血糖高且有糖尿 验尿验血 三多一少症状?
不吃少吃多吃含膳食纤维多的粗粮和蔬菜
95、营养物质:
蛋白质不足:婴幼儿、儿童、少年生长发育迟缓、体重过轻 成年人浮肿
提供能量
营养物质功能 提供构建和修复机体组织的物质
提供调节机体生理功能的物质
维生素:维持机体新陈代谢、某些特殊生理功能

VA:夜盲症
维生素 VB:脚气病
VC:坏血病
VD:佝偻病、骨软化病、骨质疏松症
96、温度感受器分为冷觉感受器和温觉感受器(分布皮肤、粘膜、内脏器官)
体温来自代谢释放热量(不是ATP提供),体温恒定是产热量,散热量动态平衡结果
寒冷 炎热
↓ ↓
皮肤冷觉感受器 温觉感受器 血管
↓传入神经 ↓ 立毛肌
下丘脑体温调节中枢 下丘脑 骨骼肌
传出神经 ↓ 汗
皮肤血管收缩 骨骼肌战粟(产能特多) 血管舒张
皮肤立毛肌收缩 皮肤立毛肌收缩 汗液分泌增多
↓鸡皮疙瘩 肾上腺素↑
缩小汗毛孔 甲状泉激素↑
减少散热 增加产热 散热量增加 不能减少产热
调节水分、血糖、体温
97、下丘脑 分泌激素:促激素释放激素 抗利尿激素
感受刺激:下丘脑渗透压感受器
传导兴奋:产生渴觉
第一道防线:皮肤、粘膜等
非特异性免疫(先天免疫)第二道防线:体液中杀菌物质、吞噬细胞
98、免疫 特异性免疫(获得性免疫) 第三道防线:体液免疫和细胞免疫
在特异性免疫中发挥免疫作用的主要是淋巴细胞
淋巴细胞的起源和分化:胸腺—T 骨髓—B
免疫细胞:B、T
免疫系统的物质基础 免疫器官:扁桃体、淋巴结、脾
免疫物质:抗体、淋巴因子(白介素、干扰素)
99、抗原特点:①一般异物性 但也有例外:如癌细胞、损伤或衰老的细胞
②大分子性
③特异性 抗原决定簇(病毒的衣壳)
100、体液免疫: 记忆细胞
↓ ↓再次受相同抗原刺激
抗原→→吞噬细胞→→T细胞→→B细胞→→→效应B细胞→→→抗体
↑ (摄取处理) (呈递) (识别)
感应阶段 反应阶段 效应阶段
效应B细胞产生:抗体(免疫球蛋白)、抗毒素、凝集素
效应T细胞产生:淋巴因子、干扰素、白细胞介素
识别抗原:B细胞、效应T细胞、记忆B/T
效应B细胞获得有三途径(直接、间接、记忆)
记忆细胞受相同抗原再次刺激后引起的二次免疫反应:更迅速、更强
再次接受过敏原(概念)
过敏反应 抗体分布 细胞表面
组织胺:体液调节
101、免疫失调引起的疾病 自身免疫疾病:风湿…类风湿…系统性红斑狼疮
先天性:先天性胸腺发育不全
免疫缺陷病 获得性:艾滋病、肺炎、气管炎
(人类免疫缺陷病毒) HIV↓攻击T细胞
(AIDS) 获得性免疫缺陷综合症
102、色素吸收、传递、转换光能 色素不能储存光能
蛋白质、氨基酸也不能储存
少数特殊状态叶绿素a 最终电子供体:水
高能量、易失电子 光能→ 电能 最终电子受体:NADP+
103、C4植物:玉米、高梁、甘庶、苋菜
既C3又C4 CO2固定能力强 先CO2+C3→C4
C3、C4叶肉细胞都含正常叶绿体
选修 C3维管束鞘细胞无叶绿体
图 C4维管束鞘细胞含无基粒的叶绿体 不进行光反应
(P29) C4植物花环型结构 里圈:维管束鞘细胞 外圈:部分叶肉细胞
降低呼吸消耗 增加净光合量
104、提高产量 延长光合作用时间 光:光质、强度、长短
提高农作物对 增大光合作用面积 温度:影响酶的活性
光能利用率 提高光合作用效率 水
矿质元素 N、P、K、Mg
CO2 农家肥、CO2发生器
105、生物固氮:N2 → NH3
根瘤菌的特异性:蚕豆根瘤菌侵入蚕豆、菜豆、豇豆;大豆根瘤菌侵入大豆。
N素
根瘤菌 有机物 豆科植物 异养需氧
共生固氮菌 根瘤 薄壁细胞 愈伤组织
固氮菌 自生≠自养 根瘤菌拌种 豆科植物绿肥
自生固氮菌:圆褐固氮菌(固氮+激素)
生物固氮(主:根瘤菌) 工业固氮 高能固氮
106、N循环 硝化、反硝化、氨化作用
反硝化:氧气不足NO3-→N2
自生固氮菌的分离原理:无氮培养基对固氮菌的选择生长
物质基础:线粒体、叶绿体中的DNA(质基因)
…线粒体
107、细胞质遗传 典型代表 …叶绿体 花斑植株→三种
特点 母系遗传(受精卵中的细胞质几乎全来自卵细胞)
后代性状不出现一定分离比
(形成配子时,质基因不均等分配)
编码区:编码蛋白质 连续的
原核细胞 非编码区 编码区上游:RNA聚合酶结合位点
基因结构 调控 编码区下游
108、基因的结构 真核细胞 非编码区
基因结构 编码区 内含子:非编码序列
外显子:能编码蛋白质内含子>外显子
原核基因无外显子内含子之说
主要分布于微生物
剪刀:限制性内切酶 特异性(专一性)
(200多种) 获得粘性末端
109、基因的操作工具 针线:DNA连接酶:扶手(磷酸二脂键)不是踏板(氢键)
条件①复制保存②多切点③标记基因
种类:质粒、病毒
运输工具:运载体 ①染色体外小型环状DNA
②存在于细菌、酵母菌
质粒特点 ③质粒是常用的运载体
④最常用:大肠杆菌
⑤对宿主细胞的生存无
基因工程 (基因拼接技术、DNA重组技术、转基因技术) 决定性作用
直接分离 常用鸟枪法
提取目的基因 人工合成(反转录法、根据已知AA序列合成DNA)
目的基因与运载体结合 同一种限制酶
110、基因操作步骤 将目的基因导入受体细胞→细菌、酵母菌、动植物
CaCl2处理细胞壁 ( 受精卵好 繁殖速度快)
目的基因的检测和表达:标记基因、目的基因是否表达?
逆转录 碱基互补配对
mRNA 单链DNA 双链DNA
推测 推测 合成
氨基酸序列 mRNA序列 DNA碱基序列 目的基因
药(胰岛素、干扰素、白细胞介素、乙肝疫苗)
111、基因工程的成果 治病:基因诊断与基因治疗(基因替换)
新品种(转基因) 食品工业(食物)
环境监测(DNA分子杂交 探针)
生物固氮、基因诊断、基因治疗、单细胞蛋白(微生物菌体本身)、
单克隆抗体、生物导弹(单抗+抗癌药物)
112、 间接联系 核心 核膜
高尔基体 内质网 细胞膜
线粒体膜
间接(具膜小泡) (内吞外排说明双向)
分泌蛋白:抗体、蛋白质类激素、胞外酶(消化酶)等分泌到细胞外
粗面内质网上的核糖体 内质网运输加工 高尔基体加工 成熟蛋白质 胞外
113、生物膜系统(不等于生物膜):细胞膜、核膜及由膜围绕而成的细胞器
离体→营养物质+激素 适宜温度+无菌
植物组织培养 离体→愈伤组织→根芽(胚状体)→植物体
选无病毒 尖(生长点) 紫草素
114、植物细胞工程 两种不同→杂种细胞→新植物体
植物体细胞 去掉细胞壁→原生质体→杂种细胞→新植物体
杂交 种间存在生殖隔离 不能有性杂交
好处:克服远源杂交不亲和障碍 培育新品种
是其它动物细胞工程技术的基础
动物细胞培养 液体培养基:动物血清
115、 动 取自动物胚胎或出生不久的幼龄动物的器官或组织
物 用胰蛋白酶处理
细 原代培养→传代培养(细胞株→细胞系 遗传物质发生改变)
胞 灭活的病毒做诱导剂+物理、化学方法
工 动物细胞融合 最重要用途:制备单克隆抗体
程 理论基础:细胞膜的流动性
单克隆抗体→指单个B淋巴细胞经克隆形成的细胞群产生的化学性质单一、特异性强的抗体(优点:特异性强、灵敏度高)。每一个B淋巴细胞只分泌一种特异性抗体(共百万种) *杂交瘤细胞 *生物导弹
116、微生物包含了除植物界和动物界以外的所有生物
质粒(小型环状DNA)控制抗药性、固氮、抗生素生成
核区(大型环状DNA)控制主要遗传性状 有的细菌有荚膜、芽孢、鞭毛
碳源:无机/有机碳源 自养/异养
117、 微生物生长 氮源:加不加额外的氮源
所需的营养物质 生长因子:(维生素、氨基酸、碱基→构成酶和核酸)
水:
无机盐:
固体培养基:分离、鉴定、计数
物理性质 半固体培养基:运动、保藏菌种
液体培养基:工业生产
118、培养基 天然培养基:工业生产
化学性质 合成培养基:分类鉴定
选择培养基 青霉素→选出酵母菌、霉菌等真菌
用途 NaCl:金黄色葡萄球菌
鉴定培养基:伊红美蓝→大肠杆菌→深紫色和金属光泽
自己设计实验:把混合在一起的圆褐固氮菌、硝化细菌、大肠杆菌区分开,并筛选纯种。

酶合成的调节 诱导酶:基因和诱导物控制
119、微生物代谢调节 酶活性的调节 结构改变 可逆 快速 准确
必需物质,一直产生 氨基酸、核苷酸、维生素
初级代谢产物 无种的特异性 多糖、脂类
120、代谢产物 非必需物质,一定阶段 抗生素、毒素
次级代谢产物 有种的特异性 四素 色素、激素
121、微生物群体生长曲线: 3

2 4
1

(1)调整期:代谢活跃,开始合成诱导酶 初级代谢产物收获的最佳时期
(2)对数期:形态和生理特性稳定,代谢旺盛;科研用菌种,接种最佳时期
(3)稳定期:次级代谢产物收获最佳时期,芽孢生成(种内斗争最剧烈)
及时补充营养物质,可以延长稳定期
(4)衰亡期:多种形态,出现畸形,释放次级代谢产物 生存环境恶劣
与无机环境斗争最激烈的是4衰亡期。
营养物质消耗有害代谢产物积累PH不适宜导致3.4时期的出现。
注意:前三个时期类似“S”型增长曲线,但是多了衰亡期
122、影响微生物生活的环境因素
PH值:影响酶的活性、细胞膜的稳定性,从而影响微生物对营养物质的吸收
温度:影响酶和蛋白质的活性
O2浓度:产甲烷杆菌
123、高压蒸汽灭菌法:1/5、1/2、2/3、75% 由里向外、细密、不重复
溶化后分装前必须要 调节pH
细菌培养的过程:培养基的配制→灭菌→搁置斜面→接种→培养观察
实例:谷氨酸发酵(黄色短杆菌、谷氨酸棒状杆菌)
概念:
菌种选育:诱变育种、基因工程、细胞工程
培养基的配制:成分、比例,pH适宜
124、发酵工程 内容 灭菌:去除杂菌
扩大培养和接种:菌种多次培养达到一定数量
发酵过程:(中心阶段)控制各种条件,生产发酵产品
分离提纯 菌体:过滤、沉淀(单细胞蛋白即微生物菌体本身)
代谢产物:蒸馏、萃取、离子交换
应用 医药工业:生产药品和基因工程药品
食品工业:传统发酵产品、食品添加剂、单细胞蛋白等
125、 C/N=4/1 菌体大量繁殖但产生的谷氨酸少(P79)
记住 C/N=3/1 菌体繁殖受抑制,但谷氨酸的合成量大增
溶氧不足: 产生乳酸或琥珀酸
pH呈酸性: 产生乙酰谷氨酰胺(P95)

㈧ 用发酵工程生产的产品,如果是菌体,则进行分离提纯时可采用的方法是

答案B
发酵工程生产的产品有尺帆侍两类:一类是代谢产物,另一类是菌体本身。产品不同,分离提纯的方法一般不同。如轿态果产品是菌体,可采用过滤,沉淀等方法将菌体从培养液中分离出来;如果产品是代陵吵谢产物,可用萃取、蒸馏、离子交换等方法进行提取。

㈨ 微生物发酵产物离子交换提取法原理

90、稳态:神经系统、体液和免疫系统调节下,内环境的相对稳定
温度、pH、渗透压,水、无机盐、血糖等化学物质含量
血浆 7.35—7.45 缓冲对 NaHCO3/H2CO3 Na2HPO4/NaH2PO4
2/3细胞内液 组织液

91、65%体液 1/3细胞外液 血浆 淋巴
(内环境) 不是血液 血液>血浆>血清
食物 排尿
92、体内水来源 饮水 水排出途径 出汗 皮肤
代谢水(有氧呼吸)面虫、骆驼 呼气 肺
(氨基酸脱水缩合) 排遗 消化道
93、K不吃也排 不经过出汗排
肾上腺分泌醛固酮(固醇) 保Na排K
高温工作、重体力劳动、呕吐、腹泻→→应特别注意补充足够的水、Na(食盐)
细胞外液渗透压下降,出现四肢发冷、血压下降、心率加快
K对细胞内液细胞渗透压起决定作用,维持心肌紧张、心肌正常兴奋性 K心
94、血糖三来源(食物、分解、转化) 三去向
糖的主要功能:供能
胰岛素 唯一降血糖激素;增加糖的去路,减少糖的来源 胰高血糖素、 肾上腺素 升血糖
胰高血糖素促进胰岛素分泌,胰岛素却抑制胰高血糖素分泌
血 糖 升 高
↓ ↑ ↑
下丘脑某区域→胰岛B细胞 胰高血糖素↑ 肾上腺素↑
↓ ↑ ↑
胰岛素↑ 胰岛A细胞 肾上腺髓质
↓ ↑ ↑ 下丘脑另一区域
血 糖 降 低
<50-60 低早 <45 低晚 >130高 >160-180糖尿
一次性摄糖过多,暂时尿糖 持续糖尿不一定糖尿病,如肾炎重吸收不行
糖尿病 血糖高且有糖雀橡尿 验尿验血 三多一少症状?
不吃少吃多吃含膳食纤维多的粗粮和蔬菜
95、营养物质:
蛋白质不足:婴幼儿、儿童、少年生长发育迟缓、体重过轻 成年人浮肿
提供能量
营养物质功能 提供构建和修复机体组织的物质
提供调节机体生理功能的物质
维生素:维持机体新陈代谢、某些特殊生理功能

VA:夜盲症
维生素 VB:脚气病
VC:坏血病
VD:佝偻病、骨软化病、骨质疏松症
96、温度感受器分为冷觉感受器和温觉感受器(分布皮肤、粘膜、内脏器官)
体温来自代谢释放热量(不是ATP提供),体温恒定是产热量,散热量动态平衡结果
寒冷 炎热
↓ ↓
皮肤冷觉感受器 温觉感受器 血管
↓传入神经 ↓ 立毛肌
下丘脑体温调节中枢 下丘脑 骨骼肌
传出神经 ↓ 汗
皮肤血管收缩 骨骼肌战粟(产能特多) 血管舒张
皮肤立毛肌收缩 皮肤立毛肌收缩 汗液分泌增多
↓鸡皮疙瘩 肾上腺素↑
缩小汗毛孔 甲状泉激素↑
减少散热 增加产热 散热量增加 不能减少产热
调节水分、血糖、体温
97、下丘脑 分泌激素:促激素释放激素 抗利尿激素
感受刺激:下丘脑渗透压感受器
传导兴奋:产生渴觉
第一道防线:皮肤、粘膜等
非特异性免疫(先天免疫)第二道防线:体液中杀菌物质、吞噬细胞
98、免疫 特异性免疫(获得性免疫) 第三道防线:体液免疫和细胞免疫
在特异性免疫中发挥免疫作用的主要是淋巴细胞
淋巴细胞的起源和分化:胸腺—T 骨髓—B
免疫细胞:B、T
免疫系统的物质基础 免疫器官:扁桃体、淋巴结、脾
免疫物质:抗体、淋巴因子(白介素、干扰素)
99、抗原特点:①一般异物性 但也有例外:如癌细胞、损伤或衰老的细胞
②大分子性
③特异性 抗原决定簇(病毒的衣壳)
100、体液免疫: 记忆细胞
↓ ↓再次受相同抗原刺激
抗原→→吞噬细胞→→T细胞→→B细胞→→→效应B细胞→→→抗体
↑ (摄取处理) (呈递) (识别)
感应阶段 反应阶段 效应阶段
效应B细胞产生:抗体(免疫球蛋白)、抗毒素、凝集素
效应T细胞产生:淋巴因子、干扰素、白细胞介素
识别抗原:B细胞、效应T细胞、记忆B/T
效应B细胞获得有三途径(直接、间接、记忆)
记忆细胞受相同抗原再次刺激后引起的二次免疫反应:更迅速、更强
再次接受过敏原(概念)或猜
过敏反应 抗体分布 细胞表面
组织胺:体液调节
101、免疫失调引起的疾病 自身免疫疾病:风湿…类风湿…系衫岁型统性红斑狼疮
先天性:先天性胸腺发育不全
免疫缺陷病 获得性:艾滋病、肺炎、气管炎
(人类免疫缺陷病毒) HIV↓攻击T细胞
(AIDS) 获得性免疫缺陷综合症
102、色素吸收、传递、转换光能 色素不能储存光能
蛋白质、氨基酸也不能储存
少数特殊状态叶绿素a 最终电子供体:水
高能量、易失电子 光能→ 电能 最终电子受体:NADP+
103、C4植物:玉米、高梁、甘庶、苋菜
既C3又C4 CO2固定能力强 先CO2+C3→C4
C3、C4叶肉细胞都含正常叶绿体
选修 C3维管束鞘细胞无叶绿体
图 C4维管束鞘细胞含无基粒的叶绿体 不进行光反应
(P29) C4植物花环型结构 里圈:维管束鞘细胞 外圈:部分叶肉细胞
降低呼吸消耗 增加净光合量
104、提高产量 延长光合作用时间 光:光质、强度、长短
提高农作物对 增大光合作用面积 温度:影响酶的活性
光能利用率 提高光合作用效率 水
矿质元素 N、P、K、Mg
CO2 农家肥、CO2发生器
105、生物固氮:N2 → NH3
根瘤菌的特异性:蚕豆根瘤菌侵入蚕豆、菜豆、豇豆;大豆根瘤菌侵入大豆。
N素
根瘤菌 有机物 豆科植物 异养需氧
共生固氮菌 根瘤 薄壁细胞 愈伤组织
固氮菌 自生≠自养 根瘤菌拌种 豆科植物绿肥
自生固氮菌:圆褐固氮菌(固氮+激素)
生物固氮(主:根瘤菌) 工业固氮 高能固氮
106、N循环 硝化、反硝化、氨化作用
反硝化:氧气不足NO3-→N2
自生固氮菌的分离原理:无氮培养基对固氮菌的选择生长
物质基础:线粒体、叶绿体中的DNA(质基因)
…线粒体
107、细胞质遗传 典型代表 …叶绿体 花斑植株→三种
特点 母系遗传(受精卵中的细胞质几乎全来自卵细胞)
后代性状不出现一定分离比
(形成配子时,质基因不均等分配)
编码区:编码蛋白质 连续的
原核细胞 非编码区 编码区上游:RNA聚合酶结合位点
基因结构 调控 编码区下游
108、基因的结构 真核细胞 非编码区
基因结构 编码区 内含子:非编码序列
外显子:能编码蛋白质内含子>外显子
原核基因无外显子内含子之说
主要分布于微生物
剪刀:限制性内切酶 特异性(专一性)
(200多种) 获得粘性末端
109、基因的操作工具 针线:DNA连接酶:扶手(磷酸二脂键)不是踏板(氢键)
条件①复制保存②多切点③标记基因
种类:质粒、病毒
运输工具:运载体 ①染色体外小型环状DNA
②存在于细菌、酵母菌
质粒特点 ③质粒是常用的运载体
④最常用:大肠杆菌
⑤对宿主细胞的生存无
基因工程 (基因拼接技术、DNA重组技术、转基因技术) 决定性作用
直接分离 常用鸟枪法
提取目的基因 人工合成(反转录法、根据已知AA序列合成DNA)
目的基因与运载体结合 同一种限制酶
110、基因操作步骤 将目的基因导入受体细胞→细菌、酵母菌、动植物
CaCl2处理细胞壁 ( 受精卵好 繁殖速度快)
目的基因的检测和表达:标记基因、目的基因是否表达?
逆转录 碱基互补配对
mRNA 单链DNA 双链DNA
推测 推测 合成
氨基酸序列 mRNA序列 DNA碱基序列 目的基因
药(胰岛素、干扰素、白细胞介素、乙肝疫苗)
111、基因工程的成果 治病:基因诊断与基因治疗(基因替换)
新品种(转基因) 食品工业(食物)
环境监测(DNA分子杂交 探针)
生物固氮、基因诊断、基因治疗、单细胞蛋白(微生物菌体本身)、
单克隆抗体、生物导弹(单抗+抗癌药物)
112、 间接联系 核心 核膜
高尔基体 内质网 细胞膜
线粒体膜
间接(具膜小泡) (内吞外排说明双向)
分泌蛋白:抗体、蛋白质类激素、胞外酶(消化酶)等分泌到细胞外
粗面内质网上的核糖体 内质网运输加工 高尔基体加工 成熟蛋白质 胞外
113、生物膜系统(不等于生物膜):细胞膜、核膜及由膜围绕而成的细胞器
离体→营养物质+激素 适宜温度+无菌
植物组织培养 离体→愈伤组织→根芽(胚状体)→植物体
选无病毒 尖(生长点) 紫草素
114、植物细胞工程 两种不同→杂种细胞→新植物体
植物体细胞 去掉细胞壁→原生质体→杂种细胞→新植物体
杂交 种间存在生殖隔离 不能有性杂交
好处:克服远源杂交不亲和障碍 培育新品种
是其它动物细胞工程技术的基础
动物细胞培养 液体培养基:动物血清
115、 动 取自动物胚胎或出生不久的幼龄动物的器官或组织
物 用胰蛋白酶处理
细 原代培养→传代培养(细胞株→细胞系 遗传物质发生改变)
胞 灭活的病毒做诱导剂+物理、化学方法
工 动物细胞融合 最重要用途:制备单克隆抗体
程 理论基础:细胞膜的流动性
单克隆抗体→指单个B淋巴细胞经克隆形成的细胞群产生的化学性质单一、特异性强的抗体(优点:特异性强、灵敏度高)。每一个B淋巴细胞只分泌一种特异性抗体(共百万种) *杂交瘤细胞 *生物导弹
116、微生物包含了除植物界和动物界以外的所有生物
质粒(小型环状DNA)控制抗药性、固氮、抗生素生成
核区(大型环状DNA)控制主要遗传性状 有的细菌有荚膜、芽孢、鞭毛
碳源:无机/有机碳源 自养/异养
117、 微生物生长 氮源:加不加额外的氮源
所需的营养物质 生长因子:(维生素、氨基酸、碱基→构成酶和核酸)
水:
无机盐:
固体培养基:分离、鉴定、计数
物理性质 半固体培养基:运动、保藏菌种
液体培养基:工业生产
118、培养基 天然培养基:工业生产
化学性质 合成培养基:分类鉴定
选择培养基 青霉素→选出酵母菌、霉菌等真菌
用途 NaCl:金黄色葡萄球菌
鉴定培养基:伊红美蓝→大肠杆菌→深紫色和金属光泽
自己设计实验:把混合在一起的圆褐固氮菌、硝化细菌、大肠杆菌区分开,并筛选纯种。

酶合成的调节 诱导酶:基因和诱导物控制
119、微生物代谢调节 酶活性的调节 结构改变 可逆 快速 准确
必需物质,一直产生 氨基酸、核苷酸、维生素
初级代谢产物 无种的特异性 多糖、脂类
120、代谢产物 非必需物质,一定阶段 抗生素、毒素
次级代谢产物 有种的特异性 四素 色素、激素
121、微生物群体生长曲线: 3

2 4
1

(1)调整期:代谢活跃,开始合成诱导酶 初级代谢产物收获的最佳时期
(2)对数期:形态和生理特性稳定,代谢旺盛;科研用菌种,接种最佳时期
(3)稳定期:次级代谢产物收获最佳时期,芽孢生成(种内斗争最剧烈)
及时补充营养物质,可以延长稳定期
(4)衰亡期:多种形态,出现畸形,释放次级代谢产物 生存环境恶劣
与无机环境斗争最激烈的是4衰亡期。
营养物质消耗有害代谢产物积累PH不适宜导致3.4时期的出现。
注意:前三个时期类似“S”型增长曲线,但是多了衰亡期
122、影响微生物生活的环境因素
PH值:影响酶的活性、细胞膜的稳定性,从而影响微生物对营养物质的吸收
温度:影响酶和蛋白质的活性
O2浓度:产甲烷杆菌
123、高压蒸汽灭菌法:1/5、1/2、2/3、75% 由里向外、细密、不重复
溶化后分装前必须要 调节pH
细菌培养的过程:培养基的配制→灭菌→搁置斜面→接种→培养观察
实例:谷氨酸发酵(黄色短杆菌、谷氨酸棒状杆菌)
概念:
菌种选育:诱变育种、基因工程、细胞工程
培养基的配制:成分、比例,pH适宜
124、发酵工程 内容 灭菌:去除杂菌
扩大培养和接种:菌种多次培养达到一定数量
发酵过程:(中心阶段)控制各种条件,生产发酵产品
分离提纯 菌体:过滤、沉淀(单细胞蛋白即微生物菌体本身)
代谢产物:蒸馏、萃取、离子交换
应用 医药工业:生产药品和基因工程药品
食品工业:传统发酵产品、食品添加剂、单细胞蛋白等
125、 C/N=4/1 菌体大量繁殖但产生的谷氨酸少(P79)
记住 C/N=3/1 菌体繁殖受抑制,但谷氨酸的合成量大增
溶氧不足: 产生乳酸或琥珀酸
pH呈酸性: 产生乙酰谷氨酰胺(P95)
专家提供:

㈩ 发酵液为何需要预处理 处理方法有哪些

发酵液预处理的根本目的是“净化”。即将发酵后的残留原料(培养基)、发酵用微生物残留菌丝体等固体分杂质与母液分离。从而使发酵母液得以净化;以利于后续加工。
众所周知,啤酒、葡萄酒、红霉素、青霉素、麦迪霉素等都是通过发酵工艺生产的不同产品。当然他们使用的发酵原料(培养基)和菌种是不同的。但是,发酵结束后的母液净化工艺是基本相同的。都要经过发酵混合料液的絮凝、压滤、精滤(膜处理);将发酵母液中的固体分与母液分离开来。以利于后续产品深加工。
精滤后的啤酒母液,经过调配和检验后即可作为产品上市。葡萄酒则需要装进橡木桶进酒窖陈放,醇酯化。
发酵药青霉素、红霉素、麦迪霉素的精滤药液经过多道提纯结晶工艺加工后,可得到符合要求的原料药。可供后续系列药品的深加工。
从上述可知,发酵母液的净化处理是发酵工程产品生产的必不可少的基本加工工序之一。

阅读全文

与生物发酵药物用什么方法提纯相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:703
乙酸乙酯化学式怎么算 浏览:1371
沈阳初中的数学是什么版本的 浏览:1316
华为手机家人共享如何查看地理位置 浏览:1009
一氧化碳还原氧化铝化学方程式怎么配平 浏览:846
数学c什么意思是什么意思是什么 浏览:1368
中考初中地理如何补 浏览:1259
360浏览器历史在哪里下载迅雷下载 浏览:670
数学奥数卡怎么办 浏览:1349
如何回答地理是什么 浏览:988
win7如何删除电脑文件浏览历史 浏览:1021
大学物理实验干什么用的到 浏览:1447
二年级上册数学框框怎么填 浏览:1658
西安瑞禧生物科技有限公司怎么样 浏览:826
武大的分析化学怎么样 浏览:1212
ige电化学发光偏高怎么办 浏览:1300
学而思初中英语和语文怎么样 浏览:1605
下列哪个水飞蓟素化学结构 浏览:1387
化学理学哪些专业好 浏览:1451
数学中的棱的意思是什么 浏览:1016