导航:首页 > 生物信息 > 生物化学的研究对象和目的是什么

生物化学的研究对象和目的是什么

发布时间:2023-04-16 08:38:48

‘壹’ 生物化学的内容是什么

1、生物化学组成

除了水和无机盐之外,活细胞的有机物主要由碳原子与氢、氧、氮、磷、硫等结合组成,分为大分子和小分子两大类。

前者包括结合态的蛋白质、核酸、多糖和脂质;后者包括合成生物大分子所需的维生素、激素、各种代谢中间产物和氨基酸、核苷酸、糖、脂肪酸和甘油。在不同的生物体中,也有各种次生代谢产物,如萜烯类、生物碱类、毒素类、抗生素类等。

2、代谢调节控制

新陈代谢由合成代谢和分解代谢组成。前者是生物体从环境中取得物质,转化为体内新的物质的过程,也称为同化;后者是有机体中原始物质转化为环境中物质的过程,也称为异化。同化和异化的过程由一系列中间步骤组成。

3、结构与功能

生物大分子的多种多样功能与它们特定的结构有密切关系。蛋白质的主要功能是催化、运输和储存、机械支持、运动、免疫保护、信息接收和传递、代谢调节和基因表达。由于结构分析技术的发展,人们可以在分子水平上研究它们的各种功能。酶催化原理的研究就是这方面的一个突出例子。



(1)生物化学的研究对象和目的是什么扩展阅读:

生物化学的特点:

1、 由于采用生物催化剂,并可通过重组DNA技术和细胞融合技术进行修饰。但生物催化剂易失活,易受环境和污染的影响,一般采用分批操作;春运

2、可采用再生性的生物资源为原料,来源丰富,价格低廉,生产过程中产生的废弃物危害扒裂梁较小,原材料成分难以控制,影响生产控制和产品质量;

3、生产设备较为简单,能量消耗较少,但由于基质和产品较高,酶会受到抑制,微生物细胞无法承受外界溶液的高渗压,反应溶液源枣的底物和产物浓度不能太高,导致反应器容积大;

4、酶反应的专一性强,转化率高,但成本较高;发酵工艺应用广泛,成本低,但反应机理复杂,难以控制,产品中常含有杂质,使提取困难。

‘贰’ 生物化学是研究什么的

生命的本质是人类千百万年一直在探索的亘古不变郑誉悄的课题之一。生物化学是从分子水平探讨生命的本质。

1.生物化学重点研究生物大喊渣分子。生物大分子一般分子量大于10000。生物大分子的重要特征之一是具有信息功能,因此也称之为生物信息分子。

看来人体内部就是一个异常繁杂的信息社会,无数的生物大分子之间相互转导信号,使得人体这部大机器得以正常运转。谁是所有信息的发号施令者呢?是大脑吗?大脑也是一个器官,它本身的信号传导又是谁主导的呢?生命真的是太神奇了!

2.物质代谢及其调节。生命体的基本特征是新陈代谢,通过与外界环境的物质交换维持内环境相对稳定。

新陈代谢构成了生命的周期,生老病死,春夏秋冬,万物皆有时。在时空交错中,迎来送往。一个人在一生中与环境进行着大量的物质交换,1个活到60岁的人要和环境交换60吨水,10吨糖,600公斤蛋白质,1吨脂类。而其中细胞信息传递的机制和网络也是研究的重要领域,这与我们的互联网何其相似,早在便捷的互联网存在之前我们人体的内部就已经是个信息互联体了。

3.基因信息及其调控。虚神DNA是遗传的主要物质基础,基因即DNA分子的功能片段。

基因检测现在已经广泛应用于临床,在我的专业里主要用于产前诊断,但是对于大量的检测出的功能片段如何解释却是个问题,仍然有大量未解的谜。

‘叁’ 生物化学简介

目录

1 拼音

shēng wù huà xué

2 英文参考

Biochemistry

生物化学是用化学的理论和技术研究生命运动中所包含的化学运动的科学。简言之,是研究生命的化学。它在现代科学发展中居领先地位。生命运动是自然物质最高级的运动形式,它包含并制约着生物体内的机械的、物理的、化学的运动形式厅唤或。对生命运动形式中所包含的化学运动的研究,有助于认识生命运动。虽然恩格斯早就提出了这种研究的必要性,作为研究生命的化学——生物化学链配,约在19世纪20年代才开始逐渐兴起,直到1903年才引进“生物化学”这一名称而成为一门独立学科。纵观其发展,可划分为叙述生物化学,动态生物化学和机能生物化学三阶段。按研究对象可分为:普通生物化学、动物生物化学、植物生物化学、人体生理化学、医用生物化学、农业生物化学等。生物化学的原理和方法已进入各门生物科学中,对生命的起源、进化、分化,对生物的生长发育、生殖、遗传、疾病、衰老和死亡等生物学现象的扮伍研究具有理论导向作用。

3 生物化学的研究领域

生物化学的研究领域广泛,主要有以下几方面:

(1)生物大分子物质(糖类、脂类、蛋白质和核酸)的化学结构和功能。

(2)生物活性物质的结构和功能。主要指酶、激素和维生素三类物质。

(3)物质代谢和调控。

生物化学今后的研究主要集中在如下几方面:

(1)生物大分子物质的人工合成。

(2)生物膜的研究。

(3)代谢调控的研究。

(4)基因工程的研究。

(5)免疫化学的研究。

(6)脑化学和神经化学的研究。

(7)衰老生化的研究。

(8)食物营养学的研究。

‘肆’ 生物化学的研究和目的

生物化学对其他各门生物学科的深刻影响首先反映在与其关系比较密切的细胞学、微生物学、遗传学、生理学等领域。通过对生物高分子结构与功能进行的深入研究,揭示了生物体物质代谢、能量转换、遗传信息传递、光合作用、神经传导、肌肉收缩、激素作用、免疫和细胞间通讯等许多奥秘,使人们对生命本质的认识跃进到一个崭新的阶段。

‘伍’ 医学生物化学的研究对象主要是

医学生物化学研究的袜宽主要对象是生物大分子,主要研究在分子原子的水平上物质的变化和应用。衡好戚医学生物化学是一门重要的医学基础课程,是学习病理学等医学基础课及临床咐陵专业课的基础。
《医学生物化学》分为四篇:生物分子的结构与功能;物质代谢及其调控;遗传信息的传递

‘陆’ 什么是生物化学生物化学的主要研究内容是什么

生物化学是研究生物体中的化学进程的一门学科,常常被简称为生化。主要用于研究细胞内各组分,如蛋白质、糖类、脂类、核酸等生物大分子的结构和功能。而对于化学生物学来说,则着重于利用化学合成中的方法来解答生物化学所发现的相关问题。
生物化学若以不同的生物为对象,可分为动物生化、植物生化、微生物生化、昆虫生化等。若以生物体的不同组织或过程为研究对象,则可分为肌肉生化、神经生化、免疫生化、生物力能学等。因研究的物质不同,又可分为蛋白质化学、核酸化学、酶学等分支。研究各种天然物质的化学称为生物有机化学。研究各种无机物的生物功能的学科则称为生物无机化学或无机生物化学。60年代以来,生物化学与其他学科融合产生了一些边缘学科如生化药理学、古生物化学、化学生态学等;或按应用领域不同,分为医学生化、农业生化、工业生化、营养生化等。

‘柒’ 跪求帮忙

生物化学
一、 生物化学的概念及其研究内容
生物体的生命现象(过程)作为物质运动的一种独有的特殊的运动形式,其基本表现形式就是(新陈代谢和自我繁殖)。那么构成这种特殊运动形式物质基础又是什么呢?恩格斯很早就说过“蛋白质是生命活动的体现者”。现在已知仅有蛋白质是远远不够的,还要有核酸,糖类、脂类、维生素、激素、萜类,卜啉等。正是这些生命物质之间的相互协调的作用才形成了丰富多彩的生命现象,那么,这些生命物质到底有那些呢?他们是怎样产生和消亡,又是怎样相互转变和相互作用呢?这就是生物化学所要研究的内容。

那么就让我们试着给生物化学下一个定义吧。

生物化学是研究生物体的物质组成和生命过程中的化学变化的一门科学。或者说生物化学是研究生命现象中的物质基础和化学变化的一门科学。更简单地说生物化学就是研究生命现象的化学本质。有人也称生物化学就是生命的化学。

生物化学是研究生命物质的化学组成结构,及生命过程中各种化学变化的生物学分支学科。

若以不同的生物为对象,生物化学可分为动物生化、植物生化、微生物生化、昆虫生化等;若以生物体的不同组织或过程为研究对象,则可分为肌肉生化、神经生化、免疫生化、生物力能学等;因研究的物质不同,又可分为蛋白质化学、核酸化学、酶学等分支;研究各种天然物质的化学称为生物有机化学;研究各种无机物的生物功能的学科则称为生物无机化学或无机生物化学。

二十世纪六十年代以来,生物化学与其它学科又融合产生了—些边缘学科,如生化药理学、古生物化学、化学生态学等;或按应用领域不同,有医学生化、农业生化、工业生化、营养生化等。

二、 生物化学的研究方法

以上讲了生物化学的研究对象,那么现代生物化学家们整天干些什么呢?四个字;分离分析。

从观察一个具体的生命现象开始,通过抽提、过滤、离心、色谱(层析)等生化技术分离出某种未知的生化物质(生化组分)比如一个新的未知蛋白组分,新基因片段,或新的次生代谢物,然后进行分析,

1. 结构与性质:采用系列测定、X—射线衍射、波谱,质谱、圆二色散性等技术分析其结构和功能,结构是功能的基础,有其结构必有其功能。

2.功能:生理、病理、信好转导、抗病、抗旱、耐水肥、肥胖等、

3.代谢及其细胞调控:表达的时空特异性,该物质何时产生与消亡,在什么组织表达?从哪儿来最终到哪儿去,其代谢受什么调控?(潜伏、激活、沉默)。

4改造和利用 认识世界是为了改造世界,通过分离、分析后搞清了这些生命现象,最后就可以对症下药:基因治疗:血友病、癌症、肥胖等。生化药物(基因工程药物):红细胞生成素,磺胺药。遗传改良:抗虫、抗病、抗病毒等。

三.生物化学发展简史

生物化学这一名词的出现大约在19世纪末、20世纪初,但它的起源可追溯得更远,其早期的历史是生理学和化学的早期历史的一部分。例如18世纪80年代,拉瓦锡证明呼吸与燃烧一样是氧化作用,几乎同时科学家又发现光合作用本质上是动物呼吸的逆过程。又如1828年沃勒首次在实验室中合成了一种有机物——尿素,打破了有机物只能靠生物产生的观点,给“生机论”以重大打击。

1860年巴斯德证明发酵是由微生物引起的但他认为必需有活的酵母才能引起发酵。1897年毕希纳兄弟发现酵母的无细胞抽提液可进行发酵,证明没有活细胞也可进行如发酵这样复杂的生命活动,终于推翻了“生机论”。

生物化学的发展大体可分为三个阶段。

第一阶段从19世纪末到20世纪30年代,主要是静态的描述性阶段,对生物体各种组成成分进行分离、纯化、结构测定、合成及理化性质的研究。其中菲舍尔测定了很多糖和氨基酸的结构,确定了糖的构型,并指出蛋白质是肚键连接的。1926年萨姆纳制得了脲酶结晶,并证明它是蛋白质。

此后四、五年间诺思罗普等人连续结晶了几种水解蛋白质的酶,指出它们都无例外地是蛋白质,确立了酶是蛋白质这一概念。通过食物的分析和营养的研究发现了一系列维生素,并阐明了它们的结构。

与此同时,人们又认识到另一类数量少而作用重大的物质——激素。它和维生素不同,不依赖外界供给,而由动物自身产生并在自身中发挥作用。肾上腺素、胰岛素及肾上腺皮质所含的甾体激素都在这一阶段发现。此外,中国生物化学家吴宪在1931年提出了蛋白质变性的概念。

第二阶段约在20世纪30~50年代,主要特点是研究生物体内物质的变化,即代谢途径,所以称动态生化阶段。其间突出成就是确定了糖酵解、三羧酸循环以及脂肪分解等重要的分解代谢途径。对呼吸、光合作用以及腺苷三磷酸(ATP)在能量转换中的关键位置有了较深入的认识。

当然,这种阶段的划分是相对的。对生物合成途径的认识要晚得多,在50~60年代才阐明了氨基酸、嘌岭、嗜啶及脂肪酸等的生物合成途径。

第三阶段是从20世纪50年代开始,主要特点是研究生物大分子的结构与功能。生物化学在这一阶段的发展,以及物理学、技术科学、微生物学、遗传学、细胞学等其他学科的渗透,产生了分子生物学,并成为生物化学的主体。

生物化学的基本内容

除了水和无机盐之外,活细胞的有机物主要由碳原子与氢、氧、氮、磷、硫结合组成,分为大分子和小分子两大类。前者包括蛋白质、核酸、多糖和以结合状态存在的脂质;后者有维生素、激素、各种代谢中间物,以及合成生物大分子所需的氨基酸、核苷酸、糖、脂肪酸和甘油等。在不同的生物中,还有各种次生代谢物,如萜类、生物碱、毒素、抗生素等。

虽然对生物体组成的鉴定是生物化学发展初期的特点,但直到今天,新物质仍不断在发现。如陆续发现的干扰素、环核苷磷酸、钙调蛋白、粘连蛋白、外源凝集素等,已成为重要的研究课题。

早已熟知的化合物也会发现新的功能,20世纪初发现的肉碱,50年代才知道是一种生长因子,而到60年代又了解到是生物氧化的一种载体;多年来被认为是分解产物的腐胺和尸胺,与精胺、亚精胺等多胺被发现有多种生理功能,如参与核酸和蛋白质合成的调节,对DNA超螺旋起稳定作用以及调节细胞分化等。

新陈代谢由合成代谢和分解代谢组成。前者是生物体从环境中取得物质,转化为体内新的物质的过程,也叫同化作用;后者是生物体内的原有物质转化为环境中的物质,也叫异化作用。同化和异化的过程都由一系列中间步骤组成。中间代谢就是研究其中的化学途径的。

在物质代谢的过程中还伴随有能量的变化。生物体内机械能、化学能、热能以及光、电等能量的相互转化和变化称为能量代谢,此过程中ATP起着中心的作用。新陈代谢是在生物体的调节控制之下有条不紊地进行的。生物体内绝大多数调节过程是通过别构效应实现的。

生物大分子的多种多样功能与它们特定的结构有密切关系。蛋白质的主要功能有催化、运输和贮存、机械支持、运动、免疫防护、接受和传递信息、调节代谢和基因表达等。由于结构分析技术的进展,使人们能在分子水平上深入研究它们的各种功能,蛋白质分子内部的运动性是它们执行各种功能的重要基础。

80年代初出现的蛋白质工程,通过改变蛋白质的结构基因,获得在指定部位经过改造的蛋白质分子。这一术不仅为研究蛋白质的结构与功能的关系提供了新的途径;而且也开辟了按一定要求合成具有特定功能的、新的蛋白质的广阔前景。

核酸的结构与功能的研究为阐明基因的本质,了解生物体遗传信息的流动作出了贡献。碱基配对是核酸分子相互作用的主要形式,这是核酸作为信息分子的结构基础。

基因表达的调节控制是分子遗传学研究的一个中心问题,也是核酸的结构与功能研究的一个重要内容。对于原核生物的基因调控已有不少的了解;真核生物基因的调控正从多方面探讨。如异染色质化与染色质活化;DNA的构象变化与化学修饰;DNA上调节序列如加强子和调制子的作用;RNA加工以及转译过程中的调控等。

生物体的糖类物质包括多糖、寡糖和单糖。在多糖中,纤维素和甲壳素是植物和动物的结构物质,淀粉和糖元等是贮存的营养物质。单糖是生物体能量的主要来源。寡糖在结构和功能上的重要性在20世纪70年代才开始为人们所认识。寡糖和蛋白质或脂质可以形成糖蛋白、蛋白聚糖和糖脂。

由于糖链结构的复杂性,使它们具有很大的信息容量,对于细胞专一地识别某些物质并进行相互作用而影响细胞的代谢具有重要作用。从发展趋势看,糖类将与蛋白质、核酸、酶并列而成为生物化学的4大研究对象。

生物大分子的化学结构一经测定,就可在实验室中进行人工合成。生物大分子及其类似物的人工合成有助于了解它们的结构与功能的关系。有些类似物由于具有更高的生物活性而可能具有应用价值。通过DNA化学合成而得到的人工基因可应用于基因工程而得到具有重要能的蛋白质及其类似物。

生物体内几乎所有的化学反应都是酶催化的。酶的作用具有催化效率高、专一性强等特点。这些特点取决于酶的结构。酶的结构与功能的关系、反应动力学及作用机制、酶活性的调节控制等是酶学研究的基本内容。酶与人类生活和生产活动关系十分密切,因此酶在工农业生产、国防和医学上的应用一直受到广泛的重视。

生物膜主要由脂质和蛋白质组成,一般也含有糖类,其基本结构可用流动镶嵌模型来表示,即脂质分子形成双层膜,膜蛋白以不同程度与脂质相互作用并可侧向移动。生物膜与能量转换、物质与信息的传送、细胞的分化与分裂、神经传导、免疫反应等都有密切关系,是生物化学中一个活跃的研究领域。

激素是新陈代谢的重要调节因子。激素系统和神经系统构成生物体两种主要通讯系统,二者之间又有密切的联系。70年代以来,激素的研究范围日益扩大,许多激素的化学结构已经测定,它们主要是多肽和甾体化合物。一些激素的作用原理也有所了解,有些是改变的通透性,有些是激活细胞的酶系,还有些是影响基因的表达。维生素对代谢也有重要影响,可分水溶性与脂溶性两大类。它们大多是酶的辅基或辅酶,与生物体的健康有密切关系。

生物进化学说认为:地球上数百万种生物具有相同的起源,并在大约40亿年的进化过程中逐渐形成。生物化学的发展为这一学说在分子水平上提供了有力的证据。

在生物化学的发展中,许多重大的进展均得力于方法上的突破。90年代以来计算机技术广泛而迅速地向生物化学各个领域渗透,不仅使许多分析仪器的自动化程度和效率大大提高,而且为生物大分子的结构分析,结构预测以及结构功能关系研究提供了全新的手段。生物化学今后的继续发展无疑还要得益于技术和方法的革新。

生物化学对其它各门生物学科的深刻影响首先反映在与其关系比较密切的细胞学、微生物学、遗传学、生理学等领域。通过对生物高分子结构与功能进行的深入研究,揭示了生物体物质代酣、能量转换、遗传信息传递、光合作用、神经传导、肌肉收缩、激素作用、免疫和细胞间通讯等许多奥秘,使人们对生命本质的认识跃进到一个崭新的阶段。

生物学中一些看来与生物化学关系不大的学科,如分类学和生态学,甚至在探讨人口控制、世界食品供应、环境保护等社会性问题时,都需要从生物化学的角度加以考虑和研究。

此外,生物化学作为生物学和物理学之间的桥梁,将生命世界中所提出的重大而复杂的问题展示在物理学面前,产生了生物物理学、量子生物化学等边缘学科,从而丰富了物理学的研究内容,促进了物理学和生物学的发展。

生物化学是在医学、农业、某些工业和国防部门的生产实践的推动下成长起来的,反过来,它又促进了这些部门生产实践的发展。

生物化学在发酵、食品、纺织、制药、皮革等行业都显示了强大的威力。例如皮革的鞣制、脱毛,蚕丝的脱胶,棉布的浆纱都用酶法代替了老工艺。近代发酵工业、生物制品及制药工业包括抗生素、有机溶剂、有机酸、氨基酸、酶制剂、激素、血液制品及疫苗等均创造了相当巨大的经济价值,特别是固定化酶和固定化细胞技术的应用更促进了酶工业和发酵工业的发展。

五.生物化学与二十一世纪生命科学展望
1、 生物化学和分子生物学是二十一世纪生命科学的带头学科。学科热点:基因组、蛋白质组、生物克隆
2、 生物化学与农业原始农业:采集与狩猎,游牧式;传统农业:原始的种植业,畜牧业;现代农业:化肥,农药;绿色革命(杂种优势),生物防治,分子育种。;分子农业(工厂化农业):离开土地,细胞水平甚至是分子水平的生化加工业,仿生学原理。;植物:光合作用 → 固定化细胞培养,叶绿体→光合器。;动物:细胞培养。
3、 生物化学与环保。生物净化:;生物传感:酶,细胞,指示植物;
4、 生物化学与轻工业;发酵工业:抗生素、氨基酸。食品工业与饲料工业:酶,添加剂,香味剂,制革与造纸工业:生物电子学:DNA储存器。
5、 生物化学与医药。生化药物:疫苗,基因工程药物:基因治疗:
6、 生物化学的机遇与挑战。(1)、 机遇:研究手段和研究方法的出现;(2)、 挑战:许多重大的理论问题没有解决
光合作用、生物能学、基因表达与调控。

‘捌’ 生物化学主要研究什么

生物化学主要研究生物体分子结构与功能、物质代谢与调节以及遗传信息传递的分子基础与调控规律。
生物体的化学组成
除了水和无机盐之外,活细胞的有机物主要由碳原子与氢、氧、氮、磷、硫等结合组成,分为大分子和小分子两大类。前者包括蛋白质、核酸、多糖和以结合状态存在的脂质;后者有维生素、激素、各种代谢中间物以及合成生物大分子所需的氨基酸、核苷酸、糖、脂肪酸和甘油等。在不同的生物中,还有各种次生代谢物,如萜类、生物碱、毒素、抗生素等。
虽然对生物体组成的鉴定是生物化学发展初期的特点,但直到今天,新物质仍不断在发现。如陆续发现的干扰素、环核苷一磷酸、钙调蛋白、粘连蛋白、外源凝集素等,已成为重要的研究课题。有的简单的分子,如作为代谢调节物的果糖-2,6-二磷酸是1980年才发现的。另一方面,早已熟知的化合物也会发现新的功能,20世纪初发现的肉碱,50年代才知道是一种生长因子,而到60年代又了解到是生物氧化的一种载体。多年来被认为是分解产物的腐胺和尸胺,与精胺、亚精胺等多胺被发现有多种生理功能,如参与核酸和蛋白质合成的调节,对DNA超螺旋起稳定作用以及调节细胞分化等。
新陈代谢与代谢调节控制
新陈代谢由合成代谢和分解代谢组成。前者是生物体从环境中取得物质,转化为体内新的物质的过程,也叫同化作用;后者是生物体内的原有物质转化为环境中的物质,也叫异化作用。同化和异化的过程都由一系列中间步骤组成。中间代谢就是研究其中的化学途径的。如糖元、脂肪和蛋白质的异化是各自通过不同的途径分解成葡萄糖、脂肪酸和氨基酸,然后再氧化生成乙酰辅酶A,进入三羧酸循环,最后生成二氧化碳。
在物质代谢的过程中还伴随有能量的变化。生物体内机械能、化学能、热能以及光、电等能量的相互转化和变化称为能量代谢,此过程中ATP起着中心的作用。
新陈代谢是在生物体的调节控制之下有条不紊地进行的。这种调控有3种途径:①通过代谢物的诱导或阻遏作用控制酶的合成。这是在转录水平的调控,如乳糖诱导乳糖操纵子合成有关的酶;②通过激素与靶细胞的作用,引发一系列生化过程,如环腺苷酸激活的蛋白激酶通过磷酰化反应对糖代谢的调控;③效应物通过别构效应直接影响酶的活性,如终点产物对代谢途径第一个酶的反馈抑制。生物体内绝大多数调节过程是通过别构效应实现的。
生物大分子的结构与功能
生物大分子的多种多样功能与它们特定的结构有密切关系。蛋白质的主要功能有催化、运输和贮存、机械支持、运动、免疫防护、接受和传递信息、调节代谢和基因表达等。由于结构分析技术的进展,使人们能在分子水平上深入研究它们的各种功能。酶的催化原理的研究是这方面突出的例子。蛋白质分子的结构分4个层次,其中二级和三级结构间还可有超二级结构,三、四级结构之间可有结构域。结构域是个较紧密的具有特殊功能的区域,连结各结构域之间的肽链有一定的活动余地,允许各结构域之间有某种程度的相对运动。蛋白质的侧链更是无时无刻不在快速运动之中。蛋白质分子内部的运动性是它们执行各种功能的重要基础。
80年代初出现的蛋白质工程,通过改变蛋白质的结构基因,获得在指定部位经过改造的蛋白质分子。这一技术不仅为研究蛋白质的结构与功能的关系提供了新的途径;而且也开辟了按一定要求合成具有特定功能的、新的蛋白质的广阔前景。
核酸的结构与功能的研究为阐明基因的本质,了解生物体遗传信息的流动作出了贡献。碱基配对是核酸分子相互作用的主要形式,这是核酸作为信息分子的结构基础。脱氧核糖核酸的双螺旋结构有不同的构象,J.D.沃森和F.H.C.克里克发现的是B-结构的右手螺旋,后来又发现了称为 Z-结构的左手螺旋。DNA还有超螺旋结构。这些不同的构象均有其功能上的意义。核糖核酸包括信使核糖核酸(mRNA)、转移核糖核酸(tRNA)和核蛋白体核糖核酸(rRNA),它们在蛋白质生物合成中起着重要作用。新近发现个别的RNA有酶的功能。
基因表达的调节控制是分子遗传学研究的一个中心问题,也是核酸的结构与功能研究的一个重要内容。对于原核生物的基因调控已有不少的了解;真核生物基因的调控正从多方面探讨。如异染色质化与染色质活化;DNA的构象变化与化学修饰;DNA上调节序列如加强子和调制子的作用;RNA加工以及转译过程中的调控等。生物体的糖类物质包括多糖、寡糖和单糖。在多糖中,纤维素和甲壳素是植物和动物的结构物质,淀粉和糖元等是贮存的营养物质。单糖是生物体能量的主要来源。寡糖在结构和功能上的重要性在20世纪70年代才开始为人们所认识。寡糖和蛋白质或脂质可以形成糖蛋白、蛋白聚糖和糖脂。由于糖链结构的复杂性,使它们具有很大的信息容量,对于细胞专一地识别某些物质并进行相互作用而影响细胞的代谢具有重要作用。从发展趋势看,糖类将与蛋白质、核酸、酶并列而成为生物化学的4大研究对象。
生物大分子的化学结构一经测定,就可在实验室中进行人工合成。生物大分子及其类似物的人工合成有助于了解它们的结构与功能的关系。有些类似物由于具有更高的生物活性而可能具有应用价值。通过 DNA化学合成而得到的人工基因可应用于基因工程而得到具有重要功能的蛋白质及其类似物。
酶学研究
生物体内几乎所有的化学反应都是酶催化的。酶的作用具有催化效率高、专一性强等特点。这些特点取决于酶的结构。酶的结构与功能的关系、反应动力学及作用机制、酶活性的调节控制等是酶学研究的基本内容。通过 X射线晶体学分析、化学修饰和动力学等多种途径的研究,一些具有代表性的酶的作用原理已经比较清楚。70年代发展起来的亲和标记试剂和自杀底物等专一性的不可逆抑制剂已成为探讨酶的活性部位的有效工具。多酶系统中各种酶的协同作用,酶与蛋白质、核酸等生物大分子的相互作用以及应用蛋白质工程研究酶的结构与功能是酶学研究的几个新的方向。酶与人类生活和生产活动关系十分密切,因此酶在工农业生产、国防和医学上的应用一直受到广泛的重视。
生物膜和生物力能学
生物膜主要由脂质和蛋白质组成,一般也含有糖类,其基本结构可用流动镶嵌模型来表示,即脂质分子形成双层膜,膜蛋白以不同程度与脂质相互作用并可侧向移动。生物膜与能量转换、物质与信息的传送、细胞的分化与分裂、神经传导、免疫反应等都有密切关系,是生物化学中一个活跃的研究领域。
以能量转换为例,在生物氧化中,代谢物通过呼吸链的电子传递而被氧化,产生的能量通过氧化磷酸化作用而贮存于高能化合物ATP中,以供应肌肉收缩及其他耗能反应的需要。线粒体内膜就是呼吸链氧化磷酸化酶系的所在部位,在细胞内发挥着电站作用。在光合作用中通过光合磷酸化而生成 ATP则是在叶绿体膜中进行的。以上这些研究构成了生物力能学的主要内容。
激素与维生素
激素是新陈代谢的重要调节因子。激素系统和神经系统构成生物体两种主要通讯系统,二者之间又有密切的联系。70年代以来,激素的研究范围日益扩大。如发现肠胃道和神经系统的细胞也能分泌激素;一些生长因子、神经递质等也纳入了激素类物质中。许多激素的化学结构已经测定,它们主要是多肽和甾体化合物。一些激素的作用原理也有所了解,有些是改变膜的通透性,有些是激活细胞的酶系,还有些是影响基因的表达。维生素对代谢也有重要影响,可分水溶性与脂溶性两大类。它们大多是酶的辅基或辅酶,与生物体的健康有密切关系。
生命的起源与进化
生物进化学说认为地球上数百万种生物具有相同的起源并在大约40亿年的进化过程中逐渐形成。生物化学的发展为这一学说在分子水平上提供了有力的证据。例如所有种属的 DNA中含有相同种类的核苷酸。许多酶和其他蛋白质在各种微生物、植物和动物中都存在并具有相近的氨基酸序列和类似的立体结构,而且类似的程度与种属之间的亲缘关系相一致。DNA复制中的差错可以说明作为进化基础的变异是如何发生的。生物由低级向高级进化时,需要更多的酶和其他蛋白质,基因的重排和突变为适应这种需要提供了可能性。由此可见,有关进化的生物化学研究将为阐明进化的机制提供更加本质的和定量的信息。

‘玖’ 什么叫生物化学研究对象包括哪些主要内容

生物化学(biochemistry)是一门研究生物体的化学组成及其变化规律,从分子水平上揭示生命现象本质的一门生命科学,又称生命的化学。

生物化学的研究对象:蛋白质、核酸、酶。

生物化学的主要内容:

1、人体的物质组成;

2、生物分子的结构与功能;

3、物质代谢及调控;

4、基因信息传递与表达及调控;

5、器官生化。

(9)生物化学的研究对象和目的是什么扩展阅读

生物化学若以不同的生物为对象,可分为动物生化、植物生化、微生物生化、昆虫生化等。若以生物体的不同组织或过程为研究对象,则可分为肌肉生化、神经生化、免疫生化、生物力能学等。因研究的物质不同,又可分为蛋白质化学、核酸化学、酶学等分支。

生物化学对其他各门生物学科的深刻影响首先反映在与其关系比较密切的细胞学、微生物学、遗传学、生理学等领域。

通过对生物高分子结构与功能进行的深入研究,揭示了生物体物质代谢、能量转换、遗传信息传递、光合作用、神经传导、肌肉收缩、激素作用、免疫和细胞间通讯等许多奥秘,使人们对生命本质的认识跃进到一个崭新的阶段。

阅读全文

与生物化学的研究对象和目的是什么相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:734
乙酸乙酯化学式怎么算 浏览:1397
沈阳初中的数学是什么版本的 浏览:1343
华为手机家人共享如何查看地理位置 浏览:1036
一氧化碳还原氧化铝化学方程式怎么配平 浏览:877
数学c什么意思是什么意思是什么 浏览:1401
中考初中地理如何补 浏览:1290
360浏览器历史在哪里下载迅雷下载 浏览:693
数学奥数卡怎么办 浏览:1380
如何回答地理是什么 浏览:1014
win7如何删除电脑文件浏览历史 浏览:1047
大学物理实验干什么用的到 浏览:1478
二年级上册数学框框怎么填 浏览:1692
西安瑞禧生物科技有限公司怎么样 浏览:949
武大的分析化学怎么样 浏览:1241
ige电化学发光偏高怎么办 浏览:1330
学而思初中英语和语文怎么样 浏览:1642
下列哪个水飞蓟素化学结构 浏览:1418
化学理学哪些专业好 浏览:1479
数学中的棱的意思是什么 浏览:1050