导航:首页 > 生物信息 > 生物有多少年历史

生物有多少年历史

发布时间:2022-03-03 02:35:35

Ⅰ 人类至今有多少年的历史了

根据科学家测算,宇宙的年龄大约是150亿年。人类所赖以生存的地球,在大宇宙中已旋转了46亿年。生物的历史至少也有33亿年,而人类的历史大概为300万年。
约33亿年前—25亿年前的太古代,是生命的开端。在太古代的中期阶段,出现了最早的生物——原核细胞的菌类。
约25亿年前—6亿年前的元古代,生物开始繁盛。元古代的前期,出现了真核细胞的藻类,晚期开始产生原始的腔肠动物、软体动物和节肢动物。
约6亿年前—2.25亿年前的古生代,是生物大爆炸的时代。古生代的寒武纪(约6亿年前),出现了无脊椎动物,海藻开始繁盛;奥陶纪(约5亿年前),出现脊椎动物,海生无脊椎动物开始繁盛;志留纪(约4.4亿年前),出现鱼类,植物开始上陆;泥盆纪(约4亿年前),出现两栖类,鱼类开始繁盛;石炭纪(约3.5亿年前)出现原始爬行动物,两栖类开始繁盛;二叠纪(约2.7亿年前),出现类似于哺乳动物的爬行动物。
约2.25亿年前—7000万年前的中生代,是爬行动物的时代。三叠纪(约2.25亿年前)出现最早的恐龙;侏罗纪(约1.8亿年前),出现最早的哺乳动物及鸟类,裸子植物繁盛,恐龙繁盛;白垩纪(约1.35亿年前),出现有袋及有胎盘的哺乳动物,出现最早的有花植物,恐龙称霸于世。
约7000万年前至今的新生代,是哺乳动物和人类的时代。在新生代的第三纪(约7000万年前—300万年前)的古新世(约7000万年前),诞生了高级的哺乳动物;始新世(约6000万年前)出现了最早的灵长类;在渐新世(约4000万年前),灵长类中产生了猴类和古猿类;中新世(约2500万年前)时,古猿在欧亚大陆扩散;到上新世(约1200万年前)时,古猿逐渐向人转化。新生代的第四纪(约300万年前至今)是人类的时代。在第四纪的更新世(约300万年前),原始人开始向现代人演化。人类就是从高级灵长类古猿发展而来的。
人类在成为完全角成的人之后,经历了四个发展阶段。
一是早期猿人,也称能人。出现在300万年至200万年前之间。
二是晚期猿人,也称直立人。其生存年代约从180万年至二三十万年前。
三是早期智人,也称称古人。生活在20万年至4万年前。
四是晚期智人,也称新人。出现在4万年前至今。晚期智人就是现代人类。

Ⅱ 植物历史多少年

今生睡在方块坟,我们就是方块人此生不悔入MC,来世愿做方块人曲终人散、黄粱一梦,该醒了方块树上方块果,方块树下你和我上撸天、下撸地、轻松撸爆TNT!学会红石,改变Minecraft命运要致富,先撸树Herobrine

Ⅲ 生物,历史

我怎么知道,分类选错了!!!

Ⅳ 有几十亿年历史的生物是怎样的

地球上数量最多的恐怕是那些我们用肉眼看不见的、手摸不着的微生物了。微生物可称得上是地球生命中辈分最大的“老祖宗”它已经有几十亿年的历史。自从人类在地球上出现

生物学有哪些发展历程

“生物学”一词是由法国博物学家拉马克和德国博物学家特来维拉纳斯于1802年分别提出的。经过近200年的发展,生物学经历了一个从形态到结构、从现象到本质、从定性到定量、从简单到复杂的发展过程,而形成了一个具有多层次、多分支、多学科,系统而完整的科学体系。

现代生物学在不同层次(分子、细胞、个体和群体)上研究一切生物体的结构、功能、发生和发展的规律,及其与环境间的相互关系。生物学的研究,其目的在于阐明生命的本质,有效地控制生命活动和能动地加以改造、利用,使之为人类服务。由于生命科学的发展,特别是分子生物学、细胞遗传学、生物化学等基础研究,使生物学结束了描述阶段,而进入了模拟和试验技术的发展阶段,以帮助我们理解最基本的生命过程,在现代技术设备条件下,生物学取得了许多重大突破,从而为生物技术的发展奠定了坚实的基础。生物技术的发展,又推进了生命科学基础研究的进程,使生命科学从单纯说明和利用自然,跃上了改造和创造生命物质的新阶段。

生物工程的发展

(1)创建发酵原理:微生物学奠基人巴斯德在1857年提出的“在化学上不同的发酵是由生理上不同的生物所引起的”重要论断,为发酵技术的发展提供了坚实的理论基础;

(2)发明纯种培养技术:1881年,德国细菌学家科赫发明了营养明胶上划线以分离细菌纯种的方法,后在助手夫人的建议下改用更实用的琼脂来取代明胶,有力地推动了纯种分离技术的发展;1882年,丹麦的汉逊纯化了酵母菌,并把它广泛应用于酿酒行业上;

(3)发现酶及其催化功能:1897年,德国化学家布赫纳用磨碎酵母菌的细胞汁对葡萄糖进行酒精发酵获得成功,并由此开创了微生物生物化学和酶学研究的新纪元。

(4)建立深层通气培养技术:1942年,由于第二次世界大战中救护伤员的迫切需要,推动了青霉素深层液体发酵技术的发展,并导致在发酵工程中建立具有革命性和普遍意义的生物反应器技术;

(5)体外基因重组技术的问世:1973年,美国斯坦福大学医学院的科恩等人和旧金山大学医学院的博耶等人将大肠杆菌中两种不同特性的质粒片段用内切酶和连接酶进行剪切和拼接,获得了第一个重组质粒,然后通过转化技术将它引入大肠杆菌细胞中进行复制,并发现它能表达原先两个亲本质粒的遗传信息,从而开创了遗传工程的新纪元;

(6)固定化酶和固定化细胞技术的出现:日本的千畑一郎等于1969年首先将固定化氨基酰化酶应用于DL氨基酸的拆分工作,1973年,他又进一步利用固定化细胞连续生产L天冬氨酸,开创了固定化酶和固定化细胞工业应用的新局面;

(7)细胞和原生质体融合技术的建立:1962年,日本的冈田善雄利用仙台病毒的促融作用,首次诱导了艾氏腹水瘤细胞的融合,1974年,高国楠利用OEG(聚乙二醇)完成了植物细胞原生质体融合的实验,1979年,生达利用操作简便、快速和无毒的电脉冲技术完成了植物细胞原生质体的融合,从此,这类新兴的细胞融合技术就在动、植物和各种微生物新种的培育过程中发挥着越来越重要的作用。

Ⅵ 生物历史

发展历史
在自然科学还没有发展的古代,人们对生物的五光十色、绚丽多彩迷惑不解,他们往往把生命和无生命看成是截然不同、没有联系的两个领域,认为生命不服从于无生命物质的运动规律。不少人还将各种生命现象归结为一种非物质的力,即“活力”的作用。这些无根据的臆测,随着生物学的发展而逐渐被抛弃,在现代生物学中已经没有立足之地了。
20世纪特别是40年代以来,生物学吸收了数学、物理学和化学等的成就,逐渐发展成一门精确的、定量的、深入到分子层次的科学。人们已经认识到生命是物质的一种运动形态。生命的基本单位是细胞,它是由蛋白质、核酸、脂质等生物大分子组成的物质系统。生命现象就是这一复杂系统中物质、能和信息三个量综合运动与传递的表现。生命有许多为无生命物质所不具备的特性。例如,生命能够在常温、常压下合成多种有机化合物,包括复杂的生物大分子;能够以远远超出机器的生产效率来利用环境中的物质和能制造体内的各种物质,而不排放污染环境的有害物质;能以极高的效率储存信息和传递信息;具有自我调节功能和自我复制能力;以不可逆的方式进行着个体发育和物种的演化等等。揭露生命过程中的机制具有巨大的理论和实践意义。 现代生物学是一个有众多分支的庞大的知识体系,本文着重说明生物学研究的对象、分科、方法和意义。关于生命的本质和生物学发展的历史,将分别在“生命”、“生物学史”等条目中阐述。
生物学的分支学科各有一定的研究内容而又相互依赖、互相交叉。此外,生命作为一种物质运动形态,有它自己的生物学规律,同时又包含并遵循物理和化学的规律。因此,生物学同物理学、化学有着密切的关系。生物分布于地球表面,是构成地球景观的重要因素。因此,生物学和地学也是互相渗透、互相交叉的。
早期的生物学
主要是对自然的观察和描述,是关于博物学和形态分类的研究。所以生物学最早是按类群划分学科的,如植物学、动物学、微生物学等。由于生物种类的多样性,也由于人们对生物学的了解越来越多,学科的划分也就越来越细,一门学科往往要再划分为若干学科,例如植物学可划分为藻类学、苔藓植物学、蕨类植物学等;动物学划分为原生动物学、昆虫学、鱼类学、鸟类学等;微生物不是一个自然的生物类群,只是一个人为的划分,一切微小的生物如细菌以及单细胞真菌、藻类、原生动物都可称为微生物,不具细胞形态的病毒也可列入微生物之中。因而微生物学进一步分为细菌学、真菌学、病毒学等。 按生物类群划分学科,有利于从各个侧面认识某一个自然类群的生物特点和规律性。但无论具体对象是什么,研究课题都不外分类、形态、生理、生化、生态、遗传、进化等方面。为了强调按类型划分的学科已经不仅包括形态、分类等比较经典的内容,而且包括其他各个过程和各种层次的内容,人们倾向于把植物学称为植物生物学,把动物学称为动物生物学。 生物在地球历史中有着40亿年左右的发展进化历程。大约有1500万种生物已经绝灭,它们的一些遗骸保存在地层中形成化石。古生物学专门通过化石研究地质历史中的生物,早期古生物学多偏重于对化石的分类和描述,近年来生物学领域的各个分支学科被引入古生物学,相继产生古生态学、古生物地理学等分支学科。现在有人建议,以广义的古生物生物学代替原来限于对化石进行分类描述的古生物学。 生物的类群是如此的繁多,需要一个专门的学科来研究类群的划分,这个学科就是分类学。林奈时期的分类以物种不变论为指导思想,只是根据某几个鉴别特征来划分门类,习称人为分类。现代的分类是以进化论为指导思想,根据物种在进化上的亲疏远近进行分类,通称自然分类。现代分类学不仅进行形态结构的比较,而且吸收生物化学及分子生物学的成就,进行分子层次的比较,从而更深刻揭示生物在进化中的相互关系。现代分类学可定义为研究生物的系统分类和生物在进化上相互关系的科学。 生物学中有很多分支学科是按照生命运动所具有的属性、特征或者生命过程来划分的。 形态学是生物学中研究动、植物形态结构的学科。在显微镜发明之前,形态学只限于对动、植物的宏观的观察,如大体解剖学、脊椎动物比较解剖学等。比较解剖学是用比较的和历史的方法研究脊椎动物各门类在结构上的相似与差异,从而找出这些门类的亲缘关系和历史发展。显微镜发明之后,组织学和细胞学也就相应地建立起来,电子显微镜的使用,使形态学又深入到超微结构的领域。但是形态结构的研究不能完全脱离机能的研究,现在的形态学早已跳出单纯描述的圈子,而使用各种先进的实验手段了。 生理学是研究生物机能的学科,生理学的研究方法是以实验为主。按研究对象又分为植物生理学、动物生理学和细菌生理学。植物生理学是在农业生产发展过程中建立起来的。生理学也可按生物的结构层次分为细胞生理学、器官生理学、个体生理学等。在早期,植物生理学多以种子植物为研究对象;动物生理学也大多联系医学而以人、狗、兔、蛙等为研究对象;以后才逐渐扩展到低等生物的生理学研究,这样就发展了比较生理学。
遗传学
是研究生物性状的遗传和变异,阐明其规律的学科。遗传学是在育种实践的推动下发展起来的。1900年孟德尔的遗传定律被重新发现,遗传学开始建立起来。以后,由于T.H.摩尔根等人的工作,建成了完整的细胞遗传学体系。1953年,遗传物质DNA分子的结构被揭示,遗传学深入到分子水平。基因组计划的进展,从基因组、蛋白质组到代谢组的遗传信息传递,以及细胞信号传导、基因表达调控网络的研究,1994年系统遗传学的概念、词汇与原理于中科院提出与发表。现在,遗传信息的传递、基因的调控机制已逐渐被了解,遗传学理论和技术在农业、工业和临床医学实践中都在发挥作用,同时在生物学的各分支学科中占有重要的位置。生物学的许多问题,如生物的个体发育和生物进化的机制,物种的形成以及种群概念等都必须应用遗传学的成就来求得更深入的理解。
胚胎学
是研究生物个体发育的学科,原属形态学范围。1859年达尔文进化论的发表大大推动了胚胎学的研究。19世纪下半叶,胚胎发育以及受精过程的形态学都有了详细精确的描述。此后,动物胚胎学从观察描述发展到用实验方法研究发育的机制,从而建立了实验胚胎学。现在,个体发育的研究采用生物化学方法,吸收分子生物学成就,进一步从分子水平分析发育和性状分化的机制,并把关于发育的研究从胚胎扩展到生物的整个生活史,形成发育生物学。
生态学
是研究生物与生物之间以及生物与环境之间的关系的学科。研究范围包括个体、种群、群落、生态系统以及生物圈等层次。揭示生态系统中食物链、生产力、能量流动和物质循环的有关规律,不但具有重要的理论意义,而且同人类生活密切相关。生物圈是人类的家园。人类的生产活动不断地消耗天然资源,破坏自然环境。特别是进入20世纪以后,由于人口急剧增长,工业飞速发展,自然环境遭到空前未有的破坏性冲击。保护资源、保持生态平衡是人类当前刻不容缓的任务。生态学是环境科学的一个重要组成成分,所以也可称环境生物学。人类生态学涉及人类社会,它已超越了生物学范围,而同社会科学相关联。 生命活动不外物质转化和传递、能的转化和传递以及信息的传递三个方面。因此,用物理的、化学的以及数学的手段研究生命是必要的,也是十分有效的。交叉学科如生物化学、生物物理学、生物数学就是这样产生的。 生物化学是研究生命物质的化学组成和生物体各种化学过程的学科,是进入20世纪以后迅速发展起来的一门学科。生物化学的成就提高了人们对生命本质的认识。生物化学和分子生物学的内容有区别,但也有相同之处。一般说来,生物化学侧重于生命的化学过程、参与这一过程的作用物、产品以及酶的作用机制的研究。例如在细胞呼吸、光合作用等过程中物质和能的转换、传递和反馈机制都是生物化学的研究内容。分子生物学是从研究生物大分子的结构发展起来的,现在更多的仍是研究生物大分子的结构与功能的关系、以及基因表达、调控等方面的机制问题。 生物物理学是用物理学的概念和方法研究生物的结构和功能、研究生命活动的物理和物理化学过程的学科。早期生物物理学的研究是从生物发光、生物电等问题开始的,此后随着生物学的发展,物理学新概念,如量子物理、信息论等的介入和新技术如 X衍射、光谱、波谱等的使用,生物物理的研究范围和水平不断加宽加深。一些重要的生命现象如光合作用的原初瞬间捕捉光能的反应,生物膜的结构及作用机制等都是生物物理学的研究课题。生物大分子晶体结构、量子生物学以及生物控制论等也都属于生物物理学的范围。 生物数学是数学和生物学结合的产物。它的任务是用数学的方法研究生物学问题,研究生命过程的数学规律。早期,人们只是利用统计学、几何学和一些初等的解析方法对生物现象做静止的、定量的分析。20世纪20年代以后,人们开始建立数学模型,模拟各种生命过程。现在生物数学在生物学各领域如生理学、遗传学、生态学、分类学等领域中都起着重要的作用,使这些领域的研究水平迅速提高,另一方面,生物数学本身也在解决生物学问题中发展成一独立的学科。 有少数生物学科是按方法来划分的,如描述胚胎学、比较解剖学、实验形态学等。按方法划分的学科,往往作为更低一级的分支学科,被包括在上述按属性和类型划分的学科中。 生物界是一个多层次的复杂系统。为了揭示某一层次的规律以及和其他层次的关系,出现了按层次划分的学科并且愈来愈受人们的重视。 分子生物学是研究分子层次的生命过程的学科。它的任务在于从分子的结构与功能以及分子之间的相互作用去揭示各种生命过程的物质基础。现代分子生物学的一个主要分科是分子遗传学,它研究遗传物质的复制、遗传信息的传递、表达及其调节控制问题等。 细胞生物学是研究细胞层次生命过程的学科,早期称细胞学是以形态描述为主的。以后,细胞学吸收了分子生物学的成就,深入到超微结构的水平,主要研究细胞的生长、代谢和遗传等生物学过程,细胞学也就发展成细胞生物学了。 个体生物学是研究个体层次生命过程的学科。在复式显微镜发明之前,生物学大都是以个体和器官系统为研究对象的。研究个体的过程有必要分析组成这一过程的器官系统过程、细胞过程和分子过程。但是个体的过程又不同于器官系统过程、细胞过程或分子过程的简单相加。个体的过程存在着自我调节控制的机制,通过这一机制,高度复杂的有机体整合为高度协调的统一体,以协调一致的行为反应于外界因素的刺激。个体生物学建立得很早,直到现在,仍是十分重要的。 种群生物学是研究生物种群的结构、种群中个体间的相互关系、种群与环境的关系以及种群的自我调节和遗传机制等。种群生物学和生态学是有很大重叠的,实际上种群生物学可以说是生态学的一个基本部分。 以上所述,还仅仅是当前生物学分科的主要格局,实际的学科比上述的还要多。例如,随着人类的进入太空,宇宙生物学已在发展之中。又如随着实验精确度的不断提高,对实验动物的要求也越来越严,研究无菌生物和悉生态的悉生生物学也由于需要而建立起来。总之,一些新的学科不断地分化出来,一些学科又在走向融合。生物学分科的这种局面,反映了生物学极其丰富的内容,也反映了生物学蓬勃发展的景象。

Ⅶ 生物学发展历史

生物学大事年表

公元前5~前3世纪 中国古医书《黄帝内经》(包括《素问》和《灵枢》两部分),成书于公元前475~前221年间,对人体内脏的部位、大小、长短及功能已有一定认识,并指出人体的生理功能与生活条件及精神状态有密切关系。对男女的生长发育过程及生理特征也有比较切实的描述
中国古书《尔雅》将植物区别为草本和木本,并将相近的物种排在一起,以示同类;将动物分为虫、鱼、鸟、兽、畜,亦将其中相近的物种排在一起;还使用了“鼠属”、“牛属”、“马属”等名称
公元前460~前370年 希波克拉底等建立希腊医学并提出了健康与病态理论,认为人体中的黑胆汁、黄胆汁、血液和粘液是否处于平衡和有无特殊变化,决定着人的健康与性格
公元前384~前322年 希腊学者亚里士多德描述了 500多种动物并予分类,将动物分成有血动物和无血动物。前者又分成有毛胎生四足类、鸟类、鲸类、鱼类、蛇类、卵生四足类;后者又分成软体类、甲壳类、有壳类、昆虫类,他还对一部分动物做了解剖和胚胎发育的观察。着有:《动物志》、《动物的结构》、《动物的繁殖》和《论灵魂》,是最早的动物学研究成果
公元前372~前287年 希腊学者狄奥弗拉斯特阐明了动物和植物在结构上的基本区别,描述500多种野生和栽培植物,着有《植物志》和《论植物的本源》等
公元23~79年 罗马博物学家老普林尼着《自然志》(又称博物志)37卷,概述了当时所知的自然知识和技术
公元129~200年 罗马医生加伦把希腊解剖知识和医学知识系统化,创立人体生理解剖学
公元533~公元544年 中国北魏农学家贾思勰着《齐民要术》,全面地总结了秦汉以来中国黄河中下游的农业生产经验,其中含有丰富的生物学知识。如粟的品种分类,作物与环境的某些关系、一些作物的遗传性和变异性、一些作物的性别以及人工选择的某些成就等
公元1452~1519年 意大利文艺复兴时期的艺术家、自然科学家和工程师列奥纳多·达·芬奇由于艺术创作的需要,研究了人体解剖、肌肉活动、心脏跳动、眼睛的结构与成像以及鸟类的飞翔机制等。绘制了前所未有的精确的解剖图,首次提出一切血管均起始于心脏
公元1530~1536年 德国植物学家O.布龙费尔斯撰写并出版《草本植物志》,摆脱前人书本知识的束缚,根据自己的观察,对植物做了生动逼真的描述
公元1543年 比利时医学家A.维萨里所着《人体的结构》出版,首次否定加伦关于血液通过心脏中膈细孔而运行的论点,并作了其他修正,创立近代人体解剖学
公元1583年 意大利医生、植物学家A.切萨皮诺以果实为基础提出植物分类系统,完成巨着《植物》一卷
公元1596年 中国药物学家李时珍《本草纲目》52卷刻印出版。它记述了丰富的动植物知识,订正前人之误,明确规定部、类、种三级分类程序。分植物为草、谷、菜、果、木五部,分动物为虫、鳞、介、禽、兽、人六部。每部(除人之外)之下又各分若干类。类之下分种。对生物的形态、结构描述之仔细和以此为基础的较准确的分类,均超过了前人
公元1609年 意大利物理学家、天文学家G.伽利略制造一台复合显微镜,并用于观察昆虫的复眼
公元1628年 英国医生、解剖学家W.哈维所着《动物心血运动的研究》出版,建立血液循环理论
公元1660年 意大利解剖学家M.马尔皮基观察到蛙肺里连接动脉和静脉的毛细血管,证实了哈维的血液循环理论
公元1665年 英国物理学家R.胡克在显微镜下观察软木切片,发现蜂窝状小室,称之为“细胞”
公元1668年 意大利医生F.雷迪通过蝇卵生蛆的对比实验,为反对自然发生说提供了第一个证据
公元1677年 荷兰显微镜学家 A.van列文虎克用自制的、当时分辨率最高的显微镜进行了广泛观察,发现了由种种活着的“小动物”组成的微生物世界,发现了人的精子
公元1682年 英国植物学家N.格鲁编着的《植物解学》出版,其中也包括植物生理学的研究成果
公元1686年 英国博物学家J.雷所着《植物史》第一卷出版,以后继续出版第二、三卷,在其中讨论了种的定义
公元1727年 中国医学家俞茂鲲在《痘科金镜赋集解》中记载,人痘接种术起于明朝隆庆年间(1567~1572);《医宗金鉴》(1742)介绍了痘衣、痘浆、水苗、旱苗四种方法。据俞正燮(1775~1840)在《癸巳存稿》 中记载,1688年(清康熙二十七年)俄国已派医生来学“人痘法”
公元1735年 瑞典植物学家 C.von林奈所着《自然系统》第一版出版,把自然界的植物、动物、矿物、分成纲、目、属、种。首先实现了植物与动物分类范畴的统一,其后又使用了国际化的双名制
公元1771年 英国化学家J.普里斯特利用实验证明,绿色植物可恢复蜡烛因燃烧而“损坏”了的空气
公元1777年 法国化学家A.—L.拉瓦锡确认动物呼吸是一种缓慢的燃烧过程
公元1791年 意大利解剖学家L.伽伐尼证明用静电刺激蛙神经,能引起与其连接的肌肉收缩;发现了神经的电传导现象
公元1796年 英国医生E.C.琴纳最先在欧洲采用牛痘接种法防天花,实现了人体的主动免疫
公元1797年 德国胚胎学家C.F.沃尔夫在《发生论》中,根据植物器官与鸡胚的发育,阐述了发育的渐成特性,主张后成论
公元1802年 法国生物学家 J.-B.de拉马克和德国博物学家G.特雷维拉努斯分别采用“生物学”(Biology) 这个术语
公元1804年 瑞士化学家 N.-T.de索绪尔阐述绿色植物以阳光为能源,以二氧化碳和水为原料,形成有机物和氧的光合作用过程
公元1805年 法国动物学家比较解剖学家和古生物学家G.居维叶提出各器官形态结构与功能之间的相关理论。他用比较解剖学方法研究绝灭动物的化石遗骸,提出灾变论
公元1809年 J.-B.de 拉马克所着《动物哲学》出版。该书系统地论述进化思想,认为用进废退和获得性遗传是物种进化的机制
公元1827年 俄国胚胎学家 К.М.贝尔发表《论哺乳动物卵的起源》,首次准确地描述了哺乳动物的卵。1828、1837年又出版了《动物胚胎学》这是最早的比较胚胎学着作
公元1828年 德国化学家F.沃勒发表《论尿素的人工制成》,第一次用非生命物质为原料合成原来由生物体产生的有机物尿素
公元1830年 中国医学家王清任着《医林改错》。他根据对尸体的观察,重新绘制脏腑图,改正中国前人旧说,正确地区分了胸腔、腹腔的部位,指出隔肌之上只有心脏、肺脏;其余内脏器官均在隔肌之下。记述了气管、支气管和细支气管,纠正了“肺有二十四孔”之误。提出“灵机记性在脑不在心”,还提出听觉、视觉、嗅觉均与大脑有密切联系的看法
公元1831年 英国植物学家R.布朗确认植物细胞内有细胞核
公元1838~1839年 德国植物学家M.J.施莱登和德国动物学家T.A.H.施万通过先后分别发表《植物发生论》、《动植物结构和生长一致性的显微研究》共同建立了细胞学说
公元1840年 德国化学家J.李比希所着《化学在农业和植物生理学上的应用》出版,推翻植物的“腐殖质”营养学说,创立矿物质营养学说
公元1848年 德国电生理学家E.H.杜布瓦-雷蒙测定了动物的肌肉与神经处于活动状态时产生的电流
中国植物学家吴其浚的《植物名实图考》记述了植物1714种,每物附图,绘图精审,有的可据以定科或目。它基本上按李时珍的系统进行分类,不同的是取消苔草类,增加群芳类。是中国19世纪的一部重要植物学专着
公元1849~1859年 法国生理学家C.贝尔纳发现并验证肝脏内的糖原生成作用,血管舒缩神经,胰液消化作用,箭毒与一氧化碳及其他毒物的作用性质,提出“内环境稳定”概念
公元1850年 德国生理学家 H.von亥姆霍兹发现肌肉收缩时形成一种酸(乳酸);测定了神经传导速度
公元1851~1855年 法国化学家 J.-B.布森戈证实植物中的氮来自土壤中硝酸盐;而碳源则是大气中的二氧化碳
公元1852~1855年 德国生物学家R.雷马克与德国病理学家R.C.菲尔肖分别明确指出细胞分裂的普遍性
公元1857年 法国微生物学家L.巴斯德证实乳酸发酵是由有生命的微生物引起的
公元1858年 德国病理学家R.C.菲尔肖着《细胞病理学》出版,提出了“一切细胞来自细胞”的概念,发展了细胞学说
英国生物学家C.R.达尔文与A.R.华莱 士联合发表阐述生物进化思想的论文。《论物种形成变种的倾向;兼论自然选择法所引起的变种和物种的存续》
公元1859年 达尔文所着《物种起源》出版
公元1861年 德国生物学家M.舒尔策证实植物与动物的生活物质和最低等生物的“肉浆”是同一种物质,并统称之为原生质
公元1861~1864年 L.巴斯德通过实验驳斥了F.A.普歇所支持的自然发生说
公元1862~1865年 德国植物学家 J.von萨克斯指出淀粉是光合作用的产物,以后又指出叶绿素包含在特殊的小体内(1883年命名为叶绿体)
公元1863年 俄国生理学家 И.М.谢切诺夫证实中脑和大脑里存在着抑制激发脊髓反射的机制——中枢抑制。开创了脑功能的研究
公元1864年 英国解剖学家R.欧文描述了1861年德国巴伐利亚索尔恩霍芬侏罗纪地层里的始祖鸟(Archaeopteryx) 的第一个较完整骨骼化石
公元1865年 奥地利修道士G.J.孟德尔宣读并于次年发表《植物杂交的试验》论文,报道他通过豌豆杂交试验所发现的两个遗传规律。后被称为遗传学的“孟德尔定律”
公元1866年 德国生物学家E.海克尔所着《形态学概论》出版,在其中首次创用“生态学”一词。该书还建议把原生植物和原生动物合并为原生生物Drotista,列为植物和动物之间的第三界
公元1869年 瑞士生理化学家J.F.米舍尔首次分离出核素(即核酸)
公元1875年 德国生物学家O.赫特维希指出受精是雄性原核与雌性原核的融合
公元1876年 德国医生、微生物学家R.科赫发现炭疽病病原体,并创建了细菌的培养技术
公元1877年 德国水生生物学家K.A.默比乌斯提出了生物群落(biocoenosoe) 的概念
公元1879~1884年 德国细胞学家W.弗勒明阐述了动物细胞的有丝分裂过程
德国植物学家E.A.施特拉斯布格阐述了植物细胞有丝分裂过程
公元1880~1885年 L.巴斯德研制出鸡霍乱病疫苗、炭疽病疫苗、猪丹毒疫苗、狂犬病疫苗等
公元1882年 R.科赫发现结核杆菌,并证明其传染性
公元1883年 英国生物统计学家F.戈尔顿论述了人体测量、人口数量及其统计方法。为了有目的地改良人类的遗传素质,他创建了“优生学”。他也是生物统计的奠基人之一
比利时胚胎学家 E.van贝内登发现马蛔虫受精卵的染色体为雌性原核与雄性原核染色体之和;最早发现染色体的减数现象
公元1883~1885年 德国胚胎学家W.鲁、E.A.施特拉斯布格、O.赫特维希、A.魏斯曼等提出细胞核或染色体是遗传物质(种质)的载体的设想
意大利神经解剖及组织学家C.高尔基创建了神经细胞的硝酸银染色法并提出神经系统的网状结构学说
公元1884年 俄国微生物学家И.И.梅契尼科夫发现吞噬细胞
公元1886年 德国微生物学家H.黑尔里格尔、H.维尔法特用实验证明豆科植物能固氮
公元1887年 德国细胞学家T.H.博韦里确认生殖性细胞染色体减数现象的普遍性;提出染色体个体性 (cnromosome in-diviality)学说,导致后来从染色体“行为”来解释孟德尔所发现的遗传规律
公元1889年 西班牙神经组织学家S.拉蒙·伊·卡哈尔发现神经细胞的树突和轴突
公元1890年 德国军医 E.A.von贝林发现动物感染某些疾病(如破伤风、白喉)后,其血清可产生相应的抗毒素。开创了医学上的“血清疗法”
公元1890~1897年 荷兰医学家C.艾克曼在今印度尼西亚发现脚气病同食物中缺乏米糠有关,成为研究B族维生素的开始
公元1891年 德国动物学家H.亨金发现染色体配对及其分离的减数分裂过程;观察到性染色体
德国生物学家H.A.E.德里施发表海胆卵的实验将发育到两细胞时期的受精卵依分裂面分开,结果每个分裂球都能发育为完整的、但体形较小的幼体
俄国微生物学家C.H.维诺格拉茨基发现细菌中的化能自养型细菌——硝化细菌
公元1892年 俄国微生物学家Д.И.伊万诺夫斯基证实烟草花叶病是由病叶的过滤提取液——过滤性病毒感染的
德国动物学家A.魏斯曼所着《种质论》出版,主张种质可以世代连续相传
公元1896年 德国化学家E.毕希纳用无细胞酵母压出液发酵产生了酒精,首次证明离开活细胞的“酿酶”仍具有活性
公元1897年 德国微生物学家F.A.J.勒夫勒与P.弗罗施证明口蹄疫由一种过滤性病毒引起
公元1898年 中国思想家严复的《天演论》出版。《天演论》是英国赫胥黎《进化论与伦理学》一书的意译,对中国思想界影响很大,介绍了“物竞天择,适者生存”的进化思想
公元1899年 德裔美国生理学家胚胎学家J.勒布在不同时期用不同溶液处理海胆卵,实现完全孤雌发育,得到正常的幼虫
公元1900年 荷兰的H.德·弗里斯、德国的C.E.科伦斯和奥地利的 E.von切尔马克分别重新发现了孟德尔遗传规律
奥地利免疫学家K.兰德施泰纳发现用不同人血液中的红细胞和血清作交叉试验,有时出现红细胞的凝集现象。次年发现A、B、O三种血型
公元1901年 德·弗里斯的着作《突变论》两卷于1901~1903年先后出版
公元1902年 英国医生A.E.加罗德发现黑尿症(现称苯丙酮尿症)是一种由于代谢途径异常而致的遗传性疾病
美国细胞学家C.E.麦克朗提出副染色体(X)决定性别的设想
德国化学家E.H.菲舍尔和另一位德国化学家F.霍夫迈斯特分别提出蛋白质分子结构的肽键理论
英国生理学家W.M.贝利斯和E.H.斯塔林提取出“肠促胰液肽”(secre-tin)并命名为“激素”(hormone)
И.П.巴甫洛夫首次提出“条件反射”的概念
公元1902~1903年 德国生化学家A.科塞尔和俄国出生的美国生化学家D.A.列文等从胸腺核酸中分析出胞嘧啶。在此前后(1879~1909)。他们和其他科学家合作分析出核酸的4种碱基和两种核糖
公元1902~1904年 美国生物学家、医生W.S.萨顿和德国生物学家T.H.博韦里提出由于孟德尔式的遗传同细胞中染色体的行为相平行,所以染色体是遗传物质基础的理论
公元1905年 美国细胞学家、胚胎学家、遗传学家E.B.威尔逊和N.M.史蒂文斯各自独立地以细胞学上的事实确定染色体同性别的关系。并指出XX为雌性,XY或XO为雄性
公元1906年 英国生理学家C.S.谢灵顿的《神经系统的整合作用》出版,该书系统地阐述了中枢神经系统的整合功能,深入地分析了脊髓的反射机制,提出了神经元和突触活动的基本概念
公元1907年 丹麦植物学家A.M.卢茨发现四倍体植物
公元1908年 法国外科医生,器官移植的先驱和实验生物学家A.卡雷尔在美国成功地在体外培养温血动物的细胞。此后,组织培养方法应用于生物学研究的许多方面
英国数学家G.H.哈迪和德国医生W.魏因贝格各自独立发现,在一个不发生突变、迁移和选择的无限大的随机交配群体中,其基因频率和基因型频率将代代保持不变,后称哈迪-魏因贝格定律
公元1909年 丹麦遗传学家W.L.约翰森提出了“基因”(gene)、“基因型”(genotype)、“表型”(phenotype)等遗传学的基本概念
公元1910年 美国遗传学家T.H.摩尔根发现伴性遗传现象,第一次用实验证明“基因”坐落在染色体上
公元1911年 出生于波兰的美国生化学家C.芬克在英国从米糠中分离出具有活性的抗脚气病的白色晶体,并将这类必需的微量营养物质命名为维生素
公元1912年 英国生化学家F.G.霍普金斯用实验肯定了维生素的存在,并提出营养缺乏症的概念
德国生化学家O.瓦尔堡证明在细胞中有一种激活氧的呼吸酶,并发现氰化物能抑制这种酶的活性,提出呼吸作用需要铁参加
公元1914年 美国生化学家E.R.肯德尔分离出纯甲状腺素
公元1915年 T.H.摩尔根和他的学生A.H.斯特蒂文特、C.B.布里奇斯出版了《孟德尔遗传原理》:用果蝇为材料的大量实验证明基因在染色体上呈线形排列,发现连锁和交换现象,补充发展了孟德尔定律
德国化学家R.M.维尔施泰特发现在叶绿素分子中镁离子间 4个氮原子相连,而氮则分别位于4个闭环的烃链上,从而提出了镁在叶绿素分子中的地位同铁在血红素分子中的地位相当
英国微生物学家F.W.特沃特发现溶菌现象。1917年法国出生的加拿大人F.H.德埃雷尔将这种溶菌因素命名为噬菌体
美国营养学家E.V.麦科勒姆发现维生素A,1922年E.V.麦科勒姆等又发现维生素D,并证明其与软骨病有关。他还把维生素分为水溶性和油溶性两大类
公元1916年 德国植物学家H.温克勒发现,番茄同龙葵嫁接后,在切断处生长出的芽,是四倍体。这是一个用人工方法取得的体细胞异源四倍体(嵌合体)
公元1917年 丹麦植物学家O.温厄提出。自然界的四倍体植物是由二倍体突变而成的理论
美国遗传学家 D. F.琼斯建立了使玉米高产的双杂交育种法,这是根据1908年美国遗传学家G.H.沙尔发现的由于自交变弱的品种,通过杂交可以恢复优势的事实提出来的
公元1918年 ·德国胚胎学家H.施佩曼发现了胚胎诱导作用和在胚胎发育中的“组织者” (organizer)效应
公元1918~1921年 中国植物学家钟观光(1868~1940)用了约四年时间采集植物标本,足迹遍及华北、长江流域及华南的11个省,采得标本约16000余种,此后,在北京大学建立了用现代科学分类标记的标本馆
公元1920年 德国生物学家 J.von于克斯屈尔发表《理论生物学》把环境概念引入生态学
公元1921年 出生于德国,后来到美国的动物学家、遗传学家R.B.戈德施米特发表关于桦尺蛾(Biston betularia)的“工业黑化” (instrial melanism)研究的第一篇文章。这是一项持续25年之久的、阐述自然选择进化理论的研究
奥地利出生的美国生理学家O.勒维在德国用实验证明,刺激迷走神经后,产生一种使心跳减缓的物质,称迷走神经物质
中国生物学家秉志(1886~1965)在南京高等师范学校(原东南大学前身)创建中国第一个大学的生物系(不包括外国教会在中国办的大学)
公元1922年 加拿大生理学家F.G.班廷和C.H.贝斯特提取出纯胰岛素
中国科学社委托动物学家秉志、植物学家胡先骕和杨铨(杏佛)三人筹建的第一个中国生物学研究机构——中国科学社生物研究所,于1922年8月18日在南京正式成立
公元1923年 阿根廷生理学家B.A.奥塞发现垂体前叶对糖代谢,特别是对糖尿病的影响,第一次发现垂体对激素的控制功能
瑞典物理化学家T.斯韦德贝里创立了第一台超速离心机
美国生化学家E.A.多伊西分离出雌性激素
公元1924年 苏联生化学家А.И.奥帕林的《生命起源》出版,提出生命的化学起源学说
波兰出生的英国生物化学家D.基林发现细胞色素。1927年又提出生物氧化过程电子传递的初步设想
公元1925年 美国细胞学家 E. B.威尔逊着《发育和遗传中的细胞》出版,这是他的《细胞学》(1896)的第三版,但在内容上作了重大修改和充实。该书总结了经典细胞学的研究,并努力在细胞水平上汇合胚胎学和遗传学
中国生理学家蔡翘发现,在美洲袋鼠的中脑结构上,有一个视觉与眼球运动的功能部位一顶盖前核,又称“蔡氏区”
公元1926年 瑞典生化学家A.蒂塞利乌斯同T.斯韦德贝里共同建立电泳法
美国生物化学家J.B.萨姆纳第一个取得纯酶-尿素酶的结晶,并证明酶的蛋白质本质
T.H.摩尔根的《基因论》出版(1928年修订)。系统地阐述遗传学在细胞水平上的基因理论
在英国生理学家、药理学家H.H.戴尔的建议下,德国药理学家O.勒维在自己于1921年发现迷走神经物质的基础上,进一步用毒扁豆碱抑制乙酰胆碱酯酶的作用,发现在刺激蛙心迷走神经后,有加强和延长乙酰胆碱的效果,从而证明乙酰胆碱是神经传导的化学递质。30年代H.H.戴尔作了一系列神经——肌肉的研究,证明乙酰胆碱是内脏及横纹肌上神经传导的化学递质,对突触传递的化学学说的建立作出了贡献
公元1927年 英国生态学家C.S.埃尔顿所着《动物生态学》一书出版强调应对种群进行独立研究。他们的研究工作为种群生态学打下了基础
美国遗传学家H.J.马勒发表了用 X射线照射果蝇的人工诱发突变的实验报告
公元1928年 中国生物化学家吴宪及其合作者进行了一系列素食与荤食动物的比较研究,证明素食动物在生长、发育等方面差,植物蛋白的营养价值也低于动物蛋白等。他们还编制出中国最早的《食物成分表》
英国微生物学家A.弗莱明发现青霉素的抑菌和杀菌作用
荷兰出生的美国植物生理学家F.W.温特首次发现生长素
中国生理学家朱鹤年的研究表明,美洲袋鼠间脑的室旁核具有神经分泌的特征
奥地利出生的美国生物学家 L.von贝塔兰菲着的《现代发展理论》和在1932年着的《理论生物学》阐述了一切生物是时空上有限的具有复杂结构的一种自然系统
公元1929年 美国生化学家C.E.科里夫妇发现肌糖原、血乳酸、肝糖原和血糖之间的转化,后称科里循环
德国化学家A.布特南特提取出雄性激素的结晶
D. A. 列文发现核酸有脱氧核糖核酸(DNA)和核糖核酸(RNA)之分,但他提出的“四核苷酸结构假说”是错误的
德国生化学家C.H.菲斯克、Y.萨巴-罗、K.洛曼从肌肉提取液中分离出ATP,1935年K.洛曼又阐明了ATP的化学结构
中国植物学家李继侗和殷宏章发现光照改变对光合作用速率的瞬间效应。并得出准确的曲线图
中国古生物、古人类学家裴文中在北京西南约50公里的周口店龙骨山发现北京猿人第一个头盖骨及用火遗迹,对研究人类起源有重大意义。1927年,北平协和医学院加拿大籍人类学家步达生曾鉴定在该处发现的臼窑化石为一人类新属,并定名为北京猿人(Sinanthropus pekinensis)
公元1930年 英国遗传学家、生物统计学家R.A.费希尔的《自然选择的遗传原理》一书出版,开始把孟德尔遗传学与自然选择理论结合起来
公元1931年 中国生物化学家吴宪提出蛋白质变性现象是由于蛋白质的结构发生了变化,是在蛋白质分子中紧紧缠绕的多肽链变为松散状态的结果
公元1932年 德国物理学家M.克诺尔和E.鲁斯卡创制了第一台电子显微镜模型。1933年鲁斯卡改进的模型被认为是现代电子显微镜的原型
德国生化学家H.A.克雷布斯同助手K.亨斯莱特发现尿素合成的鸟氨酸循环
美国化学家H.C.尤里发现氘。开始了用重元素同位素标记代谢物,进行生物体内代谢途径的研究
中国植物生理学家汤佩松发现在植物中细胞色素氧化酶的存在和作用
中国生理学家冯德培在肌肉放热的研究中,发现了肌肉的“静息代谢能”因肌肉拉长而增加的现象,被称为“冯氏效应”。1936~1940年间,他在中国又开创了神经肌肉接头这一重要研究领域,进行了一系列有关物理、化学反应的研究
公元1933年 美国遗传学家T.S.佩因特发现果蝇唾腺细胞巨大染色体,为制详细的染色体图提供了材料
公元1934年 挪威生化学家J.A.福林发现苯丙酮尿症是由于缺乏苯丙氨酸羟化酶所致
加拿大出生的美国解剖学家R.R.本斯利从豚鼠肝细胞中分离出线粒体,开创了细胞器的研究
公元1935年 德国生化学家G.G.埃姆布登、O.迈尔霍夫和J.K.帕尔纳斯等完成阐明糖原酵解过程的全部12个步骤
美国生化学家W.M.斯坦利分离并结晶出烟草花叶病毒
奥地利动物学家、个体生态学家K.Z.洛伦茨发表《痕迹》,发现动物的本能有些是遗传的,而另一些则是早期生活留下的印痕
英国植物生态学家A.G.坦斯利提出了“生态系统”(Systems Ecology)的概念
匈牙利放射化学家兼生物化学家G.C.de海韦希制得人工放射性磷,开始了用放射性同位素示踪方法进行生物化学的研究
公元1936年 德国微生物学家M.施莱辛格报道了噬菌体的化学成分约含有等量的蛋白质和DNA
美国化学家A.E.米尔斯基和L.C.波林发展了氢键理论,并提出氢键在蛋白质结构中起着使多肽键形成稳定构形的作用。当变性时,这种氢键被破坏,构形也随之被破坏
公元1937年 俄国血统的美国遗传学和进化论学家T.多布然斯基发表《遗传学和物种起源》,把细胞遗传学同进化论相结合,建立了“综合进化论”
H.A.克雷布斯在英国提出代谢的公共途径“柠檬酸循环”设想,1940年H.A.克雷布斯又用实验作了证实
中国生理学家张锡钧创立“迷走神经-垂体后叶反射”假说,开辟了神经对垂体内分泌调节作用的研究
公元1940年 英国植物生理学家R.希尔测到离体叶绿体的放氧反应
英籍奥地利裔病理学家H.W.弗洛里和英籍德国裔生化学家E.B.钱恩等成功地制备了浓缩的青霉素提取液
英国生物化学家A.J.P.马丁和R.L.M.辛格建立色层析法,后来又发展为纸层析法
公元1941年 美籍德国血统的生化学家F.A.李普曼提出了具有高效传递化学能的高能磷酸键的概念
美国生化遗传学家G.W.比德尔和生化学家E.L.塔特姆合作,提出“一个基因一个酶”的假说
美国生态学家R.L.林德曼发表了有关“食物链效率”和“能量金字塔”的研究报告,促进了生态系统的研究
中国昆虫学家胡经甫着 6卷本《中国昆虫名录》出版。这是他历时12年采集、研究的结果
公元1942年

Ⅷ 生物发展史

这不是生物的进化史吗???
化学进化论 主张从物质的运动变化规律来研究生命的起源。认为在原始地球的条件下,无机物可以转变为有机物,有机物可以发展为生物大分子和多分子体系直到最后出现原始的生命体。1924年苏联学者A.N.奥帕林首先提出了这种看法;1929年英国学者J.B.S.霍尔丹也发表过类似的观点。他们都认为地球上的生命是由非生命物质经过长期演化而来的;这一过程被称为化学进化,以别于生物体出现以后的生物进化。1936年出版的奥帕林的《地球上生命的起源》一书,是世界上第一部全面论述生命起源问题的专着。他认为原始地球上无游离氧的还原性大气在短波紫外线等能源作用下能生成简单有机物(生物小分子),简单有机物可生成复杂有机物(生物大分子)并在原始海洋中形成多分子体系的团聚体,后者经过长期的演变和“自然选择”,终于出现了原始生命即原生体。化学进化论的实验证据越来越多己为绝大多数科学家所接受。(好像有点难懂)
http://ke..com/view/2413.htm
http://ke..com/view/8970.htm
和这两个结合,就差不多了。

Ⅸ 生物的历史

生命的起源与演化是和宇宙的起源与演化密切相关的。生命的构成元素如碳、氢、氧、氮、磷、硫等是来自“大爆炸”后元素的演化。资料表明前生物阶段的化学演化并不局限于地球,在宇宙空间中广泛地存在着化学演化的产物。在星际演化中,某些生物单分子,如氨基酸、嘌呤、嘧啶等可能形成于星际尘埃或凝聚的星云中,接着在行星表面的一定条件下产生了象多肽、多聚核苷酸等生物高分子。通过若干前生物演化的过渡形式最终在地球上形成了最原始的生物系统,即具有原始细胞结构的生命。至此,生物学的演化开始,直到今天地球上产生了无数复杂的生命形式。

38亿年前,地球上形成了稳定的陆块,各种证据表明液态的水圈是热的,甚至是沸腾的。现生的一些极端嗜热的古细菌和甲烷菌可能最接近于地球上最古老的生命形式,其代谢方式可能是化学无机自养。澳大利亚西部瓦拉伍那群中35亿年前的微生物可能是地球上最早的生命证据。

原始地壳的出现,标志着地球由天文行星时代进入地质发展时代,具有原始细胞结构的生命也开始逐渐形成。但是在很长的时间内尚无较多的生物出现,一直到距今5.4亿年前的寒武纪,带壳的后生动物才大量出现,故把寒武纪以后的地质时代称为显生宙。

在中世纪的西方,《圣经》上描绘的上帝,在七天之内造就万物之说,也是非常流行。今天看来,生命起源并不像这些古老传说,或神话描绘的那样,但表明了人类长期以来,对生命起源之谜倾注了极大地热情和关注。但生命起源应该是怎样发生的?科学又是怎样对这一千古之谜进行探索的?我们已经取得了哪些进展?还有哪些问题没有解决?

首先,生命起源之说,第一个谜是生命的时间,起源的时间问题。在中世纪的西方,人们对《圣经》的上帝造人的故事是深信不疑的。在1650年,一位爱尔兰大主教根据圣经上所描述的,计算出上帝创世的确切时间是公元前4004年,而另一位牧师甚至把创世时间更加精确地计算到公元前4004年10月23号上午九点钟。也就是说,生命起源距今是六千年前,这当然不是真的,而真的是什么呢?真的就是用科学的回答,科学是怎么回答这个生命起源的时间呢?那就是说用化石,是保存在岩石中的化石来回答。我们知道,生物死亡后,它们的遗迹在适当的条件下,就保存在岩石之中,我们把它们称作化石。地质历史中形成的岩层,就像一部编年史书,地球生物的演化历史,就深深埋藏在这些岩石之中,年代越久远的生物化石,就保存在岩层的最底层。

迄今为止,我们发现了最古老的生物化石是来自澳大利亚西部,距今约三十五亿年前的岩石,这些化石类似于现在的蓝藻,它们是一些原始的生命,是肉眼看不见的。它的大小只有几个微米,到几十个微米。因此我们可以说,生命起源它不晚于三十五亿年。同时我们知道地球的形成年龄大约在46亿年前,有这两个数据我们就可以看到生命起源的年龄,大致可以界定在46亿年到35亿年之间。今天,随着科学的发展,地质学家认为,在地球形成的早期,地球受到了大量的小行星和陨石的撞击,它是不适合生命的生存。与其说当时地球上有生命,还不如说它在毁灭生命,因此地球上生命起源的时间,它不早于40亿年。另外,在格陵兰的38.5亿年的岩石中发现了碳,这个碳的话,我们知道,碳分两种,一个无机碳、一个有机碳。另外,这个碳的话,它有重碳和轻碳之分,因此我们可以根据这个碳之中的轻碳和重碳之比,就来可以推测这些碳的来源。科学家根据碳的同位素分析,推测这些碳它是有机碳,是来源于生物体。也就是说,这样我们把生命起源的时间大大缩短了,也就是在距今40亿年到38亿年之间,自从地球上生命起源之后,一直到现在45亿年,就是生生不息的生命演化史。

好,首先我们现在已经有了生命起源的时间概念,是距今40亿年到38亿年之间。那生命是怎样起源的?它在什么地方起源的?这样我们不得不回顾一些有关生命起源的假说。

第一个是创世说,在《旧约全书》的第一章写到,上帝在七天之内创造了世间之万物,在中世纪的西方大家普遍接受这个观念,可以说一直到现在,这种观念还被很多人接受,当然这也不是真的。第二个呢,是自生论,比如说希腊人认为,昆虫生于土壤,春天万象更新,种子从泥土里萌发,昆虫从去年留下的卵壳中破壳而出。但这不是生命的起源,而是生命的延续,可以说这个自生论,现在已经被彻底抛弃了。与这个类似的说法,还有比如说埃及人认为生命来自于尼罗河,在中国古代也有腐草生萤之说。

第三个有关生命起源的假说,就是有生源论,这个在19世纪的西方也相当地流行,有生源论认为,生命是宇宙生来就固有的,你要问我生命从哪里来的,你首先给我回答一个问题,宇宙怎么起源的?物质怎么来的?你给我回答了物质是怎么来的,生命我就可以说是从哪儿来的,其实这是一个不可知论。在20世纪的后半叶,有生源论逐渐发展到现在的宇宙胚种论,直到现在,有许多科学家认为,生命必须的酶,像蛋白质,和遗传物质的形成,需要数亿年的时间,在地球早期并没有可以完成这些过程的充足时间段。因为它就两亿年,因此他们认为生命一定是以孢子或者其他生命的形式,从宇宙的某个地方来到了地球,这种观念也是有一定的依据的。

Ⅹ 地球上现存的生物是经过多少年进化来的

目前地球生物种类有数百上千万种,各自分别起源的时间有所不同。说到所有的地球生物,最终都是起源于约40亿年前出现的原始生命,种群的分化和独立演化形成现代生物。

研究地球生命起源的最好材料就是化石,化石能够记录从地球诞生后不久到现代的信息,只是由于化石的分布问题,人类目前发现的化石大概只有一丢丢,目前科学家发现了几种数十亿年前的古老生物化石,2013年一个国际研究小组在澳大利亚发现了30多亿年前的古老浮游生物化石,这种生物体长大约为20至60微米。

地球生命的起源问题将会是很长时间的一个谜题,现代科学家虽然通过实验验证了有机物可以在自然界由小分子物质碰撞反应产生,却没能解释为什么生物选择了蛋白质和核酸为主要的构成物质,这两种物质最终是怎样联系在一起的也没能搞明白。

阅读全文

与生物有多少年历史相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:736
乙酸乙酯化学式怎么算 浏览:1399
沈阳初中的数学是什么版本的 浏览:1345
华为手机家人共享如何查看地理位置 浏览:1037
一氧化碳还原氧化铝化学方程式怎么配平 浏览:880
数学c什么意思是什么意思是什么 浏览:1403
中考初中地理如何补 浏览:1293
360浏览器历史在哪里下载迅雷下载 浏览:696
数学奥数卡怎么办 浏览:1382
如何回答地理是什么 浏览:1018
win7如何删除电脑文件浏览历史 浏览:1050
大学物理实验干什么用的到 浏览:1479
二年级上册数学框框怎么填 浏览:1695
西安瑞禧生物科技有限公司怎么样 浏览:958
武大的分析化学怎么样 浏览:1243
ige电化学发光偏高怎么办 浏览:1332
学而思初中英语和语文怎么样 浏览:1646
下列哪个水飞蓟素化学结构 浏览:1420
化学理学哪些专业好 浏览:1481
数学中的棱的意思是什么 浏览:1053