1. 微生物代谢工程中的常用基因操作技术有哪些
微生物的基因操作技术有:核酸的凝胶电泳、核酸租亏友的分子杂交技术、DNA 序列分析、基 因的定点诱变、细菌的转化、利用 DNA 与蛋白质的相互作用进行核酸研究、PCR 技术等。
基因定点突变(site-directed mutagenesis):通过改变基因特定位点核苷酸序列来改变所编 码的氨基酸序列,用于研究氨基酸残基对蛋白质的结构、催化活性以及结合配体能力的影响, 也可用于改造 DNA 调控元件特征序列、修饰表达载体、引入新的酶切位点等。主要采用两 种 PCR 方法,包括重叠延伸技术和大引物诱变法。在硫化细菌核苷弊槐水解酶对底物专一性的研 究中,采用定点突变技术,对编码 221 位和 228 位氨基酸的 DNA 序列进行突变,改变两个位点的氨基酸,从而研究氨基酸残基对底物结合的影响。
基因敲除(gene knock-out):又称基因打靶,通过外源 DNA 与染色体 DNA 之间的同源重 组,进行精确的定点修饰和基因改造,具有专一性强、染色体 DNA 可与目的片段共同稳定 遗传等特点,可分为完全基因敲除和条件型基因敲除。在谷氨酸棒杆菌生产缬氨酸的研究中,采用基因敲除的方法进行高产菌株构建。如 ilvA 基因敲除,使苏氨酸脱氨酶的合成减少,降低异亮氨酸合成的前空好体,从而减少异亮氨酸的合成,增加缬氨酸的生成。
2. 原核微生物的基因重组有几种方式各是什么
原核微生物中,自然发生的基因重组方式主要有结合、转导、转化和原生质融合等方式.真核微生物中有有性杂交、准性杂交败携、酵母察汪伏菌
2
m
m
质粒转移等等.
还陵脊有人为的基因重组方式,主要是基因工程
3. 论述真核微生物的基因重组的主要方式
在真核微生物中,基因重组主要有有性杂交、准性杂交、原生质体融合和遗传转化等。
有蔽搜性杂交:
有性杂交,一般指性细胞间的结合和随之发生的染色体重组,并产生新遗传型后代的一种育种技术。
凡是能产生有性孢子的酵母菌和霉菌,都能进行有性杂交。
生产实践上利用有性杂交培育优良品种的例子很多,例如,把用于酒精发酵的酵母和用于面包发酵的酵母两者杂交,就得到了既能生产酒精,有对麦芽糖和葡萄糖有很强发酵能力的新菌株。
准性生殖:
准性丛核生殖是一种类似于有性生殖,但比它更为原始的一种生殖方式,它可使同种生物两个不同菌株宏郑历的体细胞发生融合,且不以减数分裂的方式而导致低频率的基因重组并产生重组子。
准性生殖常见于某些真菌,尤其是半知菌中。其主要过程为:
(1)菌丝联结
(2)形成异核体
(3)核融合或核配
(4)体细胞交换和单倍体化
4. 基因是如何改造的
基因改造是基因工程的一项技术,日常说的基因改造即是基因工程基因工程genetic engineering
【简介】
基因工程是生物工程的一个重要分支,它和细胞工程、酶工程、蛋白质工程和微生物工程共同组成了生物工程。 所谓基因工程(genetic engineering)是在分子水平上对基因进行操作的复杂技术,是将外源基因通过体外重组后导入受体细胞内,使这个基因能在受体细胞内复制、转录、翻译表达的操作。它是用人为的方法将所需要的某一供体生物的遗传物质——DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源物质在其中“安家落户”,进行正常的复制和表达,从而获得新物种的一种崭新技术。 基因工程是在分子生物学和分子遗传学综合发展基础上于本世纪70年代诞生的一门崭新的生物技术科学。一般来说,基因工程是指在基因水平上的遗传工程,它是用人为方法将所需要的某一供体生物的遗传物质--DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源遗传物质在其中"安家落户",进行正常复制和表空灶达,从而获得新物种的一种崭新的育种技术。 这个定义表明,基因工程具有以下几个重要特征:首先,外源核酸分子在不同的寄主生物中进行繁殖,能够跨越天然物种屏障,把来自任何一种生物的基因放置到新的生物中,而这种生物可以与原来生物毫无亲缘关系,这种能力是基因工程的第一个重要特征。第二个特征是,一种确定的DNA小片段在新的寄主细胞中进行扩增,这样实现很少量DNA样品"拷贝"出大量的DNA,而且是大量没有污染任何其它DNA序列的、绝对纯净的DNA分子群体。科学家将改变人类生殖细胞DNA的技术称为“基因系治疗”(germlinetherapy),通常所说的“基因工程”则是针对改变动植物生殖细胞的。无论称谓如何,改变个体生殖细胞的DNA都将可能使其后代发生同样的改变。 迄今为止,基因工程还没有用于人体,但已在从细菌到家畜的几乎所有非人生命物体上做了实验,并取得了成功。事实上,所有用于治疗糖尿病的胰岛素都来自一种细菌,其DNA中被插入人类可产生胰岛素的基因,细菌便可自行复制胰岛素。基因工程技术使得许多植物具有了抗病虫害和抗除草剂的能力;在美国,大约有一半的大豆和四分之一的玉米都是转基因的。目前,是否该在农业中采用转基因动植物已成为人们争论的焦点:支持者认为,转基因的农产品更容易生长,也含有更多的营养(甚圆亏铅至药物),有助于减缓世界范围内的饥荒和疾病;而反对者则认为,在农产品中引入新的基因会产生副作用,尤其是会破坏环境。 诚然,仍有许多基因的功能及其协同工作的方式不为人类所知,但想到利用基因工程可使番茄具有抗癌作用、使鲑鱼长得比自然界中的橘好大几倍、使宠物不再会引起过敏,许多人便希望也可以对人类基因做类似的修改。毕竟,胚胎遗传病筛查、基因修复和基因工程等技术不仅可用于治疗疾病,也为改变诸如眼睛的颜色、智力等其他人类特性提供了可能。目前我们还远不能设计定做我们的后代,但已有借助胚胎遗传病筛查技术培育人们需求的身体特性的例子。比如,运用此技术,可使患儿的父母生一个和患儿骨髓匹配的孩子,然后再通过骨髓移植来治愈患儿。 、
【基因工程的基本操作步骤】1.获取目的基因是实施基因工程的第一步。2.基因表达载体的构建是实施基因工程的第二步,也是基因工程的核心。3.将目的基因导入受体细胞是实施基因工程的第三步。4.目的基因导入受体细胞后,是否可以稳定维持和表达其遗传特性,只有通过检测与鉴定才能知道。这是基因工程的第四步工作。基因工程的前景科学界预言,21世纪是一个基因工程世纪。基因工程是在分子水平对生物遗传作人为干预,要认识它,我们先从生物工程谈起:生物工程又称生物技术,是一门应用现代生命科学原理和信息及化工等技术,利用活细胞或其产生的酶来对廉价原材料进行不同程度的加工,提供大量有用产品的综合性工程技术。
美国的吉尔伯特是碱基排列分析法的创始人,他率先支持人类基因组工程 如果将一种生物的DNA中的某个遗传密码片断连接到另外一种生物的DNA链上去,将DNA重新组织一下,不就可以按照人类的愿望,设计出新的遗传物质并创造出新的生物类型吗?这与过去培育生物繁殖后代的传统做法完全不同,它很像技术科学的工程设计,即按照人类的需要把这种生物的这个“基因”与那种生物的那个“基因”重新“施工”,“组装”成新的基因组合,创造出新的生物。这种完全按照人的意愿,由重新组装基因到新生物产生的生物科学技术,就被称为“基因工程”,或者称之为“遗传工程”。 人
5. 微生物基因重组形式有哪几种,试述其定义,并对这些重组形式进行比较
两种不同的病毒感染同一细胞时,可能会发生染色质的交换.细菌之间可以通过一种鞭毛进行质体的交换
6. 细菌基因转移与重组的方式有哪些
细菌基因的转移与重组的方式芦升有转化、转导、溶原性转换、接合。
1、转化:受体菌直接摄取供体菌游离的DNA段,从而获得新的遗传性状。
2、转导:以温和噬菌体为载体,将供体菌的遗传物质转移到受体菌中去,使受体菌获得新的遗传性状。
3、接合:是指细菌通过性菌毛将遗传物质让蔽(主要为质粒)从供体菌转移给受体菌,使受体菌获得新的遗传性状。
4、溶原陪滑老性转换:是由于温和噬菌体的DNA(前噬菌体)整合到宿主菌的染色体DNA后,使细菌的基因型发生改变,从而获得新的遗传性状。
(6)改造微生物基因的方式有哪些方面扩展阅读:
细菌基因的转移与重组属于细菌变异。细菌从外源取得DNA,并与自身染色体DNA进行重组,引起细菌原有基因组的改变,导致细菌遗传性状的改变。
细菌变异现象在临床上的实际意义:
1、诊断:应注意细菌的变异株,以免误诊,漏诊。
2、治疗:为提高抗菌药物疗效,防止耐药菌株的出现与扩散,在治疗前应先做药敏实验。
3、预防:用人工方法使病原出产生变异,减低毒力,保存免疫原性,制备减霉活疫苗,预防传染病。
7. 对微生物的基因改造有哪些
微生物的物理、化学诱变;细胞融合;基因的重组和敲出
8. 微生物基因工程改造的目的有哪些改造的基本策略有哪些
获得新的微生物性状,通过基因拼接完成!
9. 列举几种原核微生物基因重组的方法,并简述转化、转导、转染、溶源性转变的差异。
主要有转化、转导、接合、原生质体融合
转化:受体菌直接吸收供体菌的DNA片段而获得后者都分遗传性状的现象。
转导:通过缺陷噬菌体的媒介,把供体细胞的小片段DNA携带到受体细缺桐渣胞中,通过交换与整合,使后轮雹者获得前者部分遗传性状的现象。
转染:用提纯的病毒核酸(DNA或RNA)去感染其宿主细胞或其原生质体,可增殖出一群正常病毒后代的现象,从表面上看,转染似与转化相似,但实质上两者的区别十分明显。因为作为转染的病伏悄毒核酸,绝不是作为供体菌的功能,被感染的宿主也绝不是能形成转化子得受体菌。
溶源转变:当正常的温和噬菌体感染其宿主而使其发生溶源化时,因噬菌体整合到宿主的核基因上,而使宿主获得了除免疫性外的新遗传性状的现象,是一种不携带任何外源基因的正常噬菌体;是噬菌体的基因而不是供体菌的基因提供了宿主的新性状;新性状是宿主细胞溶源化时的表型,而不是经遗传重组形成的稳定转导子;获得的性状可随噬菌体的消失而同时消失。
10. 自然条件下原核微生物基因重组的方式有哪些类型各有什么特点
原核微生物的基因重组
(一)转化 (transformation)
转化是细菌中最早被发现的遗传物质转移形式。 l928 年 Griffith 用肺炎链球菌对小鼠的感染实验以及 10 多年后 Avery 等体外转化过程的实现,转化因子 DNA 的证实,是现代生命科学发展的重要起点。
1 .几个概念
转化 受体菌直接吸收了来自供体菌的 DNA 片段,通过交换把它整合到自己的基因组中,从而获得了新的遗传特性的现象。
转化子( transformant ) 受体细胞经复制分裂后出现了供体性状的子代。
感受态 (competence) 细菌能够从周围环境中吸收 DNA 分子进行转化的生理状态。
(二) 转导 (transction)
1952 年 Zinder 和 Lederberg 在验证鼠伤寒沙门氏菌是否也存在接合现象时发现了转导现象。
通过完全缺陷或部分缺陷噬菌体为媒介,把供体细胞的 DNA 片段携带到受体细胞中,通过交换与整合,从而使后者获得前者部分遗传性状的现象,称为转导。获得新性状的受体细胞,称为转导子 (transctant) 。携带供体部分遗传物质 (DNA 片段 ) 的噬菌体称为转导噬菌体。在噬菌体内仅含有供体菌 DNA 的称为完全缺陷噬茵体;在噬菌体内同时含有供体 DNA 和噬菌体 DNA 的称为部分缺陷噬菌体 ( 部分噬菌体 DNA 被供体 DNA 所替换 ) 。
根据噬菌体和转导 DNA 产生途径的不同,可将转导分为普遍性转导和局限性转导。
1 .普遍性转导 (general transction)
通过完全缺陷噬菌体对供体菌任何 DNA 小片断的“误包”,而实现其遗传性状传递至受体菌的转导现象,称为普遍性转导。
普遍性转导的机制——“包裹选择模型”,当噬菌体侵染敏感细菌并在细菌内大量复制增殖时,亦把寄主 DNA 降解为许多小的片段,在装配时,少数噬菌体 (10 -6 一 10 -8 ) 错误地包装了宿主的 DNA 片段并能形成“噬菌体”,这种噬菌体称普遍性转导噬菌体 ( 为完全缺陷噬菌体 ) 。随着细菌的裂解,转导噬菌体也被大量释放。当这些转导噬菌体再次侵染受体菌时,其中的供体 DNA 片段被注入受体菌。 如果该 DNA 片段能与受体菌 DNA 同源区段配对,通过遗传物质的双交换而进行基因重组并形成稳定的转导子,称完全普遍性转导。如鼠伤寒沙门氏菌的 P22 噬菌体、大肠杆菌的 P1 噬菌体和枯草芽孢杆菌的 PBS1 和 SP10 等噬菌体中都能进行完全转导。 如果该 DNA 片断不能与受体菌 DNA 进行交换、整合和复制,只以游离和稳定的状态存在,而仅进行转录、转译和性状表达,称流产转异。发生流产转导的细胞在其进行分裂后,只能将这段外源 DNA 分配给一个子细胞,而另一子细胞仅获得供体基因转录、转译而形成的少量产物 -- 酶,因此在表型上仍可出现轻微的供体菌特征,每经分裂一次,就受到一次“稀释”。所以能在选择培养基上形成微小菌落就成了流成转导子的特点。
2 .局限性转导 (specialized transction)
通过部分缺陷噬的温和噬菌体把供体菌的少数特定基因携带到受体菌中,并获得表达的转导现象)。转导后获得了供体部分遗传特性的重组受体细胞称为局限转导子。
(1) 局限性转导的机制——“杂种形成模型” λ噬菌体的线状双链 DNA 分子的两端为 12 个核苷酸单链(粘性未端 cos 位点),在溶源状态下,以前噬菌体状态存在于细胞染色体上。被诱导后,在裂解细菌时,其以粘性末端形成的环状分子通过滚环复制形成一个含多个基因组的 DNA 多联体,以 2 个 cos 位点之间的距离决定其包装片段的大小而进行切割、包装,最终形成转导噬菌体。在极少数情况下 ( 约 10 -5 ) ,在前噬菌体两端邻近位点上与细菌染色体发生错误的切割,使其重新形成的环状 DNA 中,同时失去前噬菌体的一部分 DNA 和增加了一段相应长度的细菌宿主染色体 DNA ,这样形成的杂合 DNA 可正常被包装、复制。形成的新转导噬菌体称为部分缺陷噬体。因为λ前噬菌体位点两端是细菌染色体的 gal + ( 发酵半乳糖基因 ) 和 bio + ( 利用生物素基因 ) ,故形成的转导噬菌体通常带有 gal + 或 bi0 + 基因,故这些部分缺陷噬菌体表示为λ dga1( 缺陷型半乳糖转导噬菌体 ) 或λ dbio( 缺陷性生物素转导噬菌体 ) 。这些转导噬菌体可重新侵入受体菌,侵入后,噬菌体 DNA 与受体菌的 DNA 同源区段配对,通过双交换而整合到受体菌的染色体组上,使受体菌获得了供体的这部分遗传特性。
( 2 )局限性转导中的低频转导与高频转导 低频转导 (LFT) :由于宿主染色体上进行不正常切离的频率极低,因而在裂解物中所含的部分缺陷噬菌体的比例是极低( 10 -4 --10 -6 )的,这种裂解物称为 LFT 裂解物。 LFT 裂解物在低 m.o.i(multiplicity of infection) 情况下感染宿主,就可获得极少量的转导子。高频转导 (HFT) :形成转导子的频率很高,理论上可达 50 %,故称之为高频转导。其原因是因为供体菌为双重溶源菌,它同时有两种噬菌体整合在细菌的染色体上。例如,大肠杆菌 K12 株,其双重溶源菌为 E.coli K12( λ / λ dg), 即其前噬体体有λ和λ dg 为缺陷噬菌体,带有供体 gal + 基因,但丢失了部分噬菌体本身的 DNA ;而λ噬菌体为正常噬菌体,不带 gal 基因,但起辅助作用,称为辅助噬菌体,可弥补λ dg 的不足,使λ dg 也能成为“完整噬菌体”而释放。这样,一个细菌便可同时等量地释放出λ dg 和λ两种噬菌体,这时的裂解物称为 HFT 裂解物,当用低 m.o.i 的 HFT 裂解物去感染另一个 E.coligal - 受体菌,是可高频率的把它转化为能发酵乳糖的 E.coli gal + 转导子。这种方式称为高频转导。
当温和噬菌体感染其宿主而使之发生溶源化时,因噬菌体的基因整合到宿主的基因组,而使后者获得了除免疫以外的新性的现象,称为溶源转变。
( 三 ) 接合 (conjugation)
指供体菌和受体菌完整细胞间的直接接触,而实现大段的 DNA 传递现象。
Iederberg 和 Tatum 于 1946 年设计了一个有名的实验,才证明了原核生物的接合现象。他们筛选出了两种不同营养缺陷型的大肠杆菌 K12 突变株,其中 A 菌株是 met- 、 bio- , B 菌株是 thr- 、 Leu- ,将它们在完全培养基上混合培养后,再涂布于基本培养基上。结果发现,在基本培养基上出现了 met + 、 bi0 + 、 thr + 、 1eu + 的原养型菌落 ( 约为 10 -7 ) ,而分别涂布的两种亲本菌株对照组都不出现任何菌落。进一步的实验证实,上述遗传重组的形成,是两个亲本细胞接合以后发生基因重组的结果。在细菌中,接合现象发研究最清楚的是 E.coli ,研究发现 E.coli 是有性别分化的,决定性别的是一种质粒,即 F 因子。
(四)原生质体融合( protoplast fusion )
通过人为的方法,使遗传性状不同的两细胞的原生质体发生融合,并进而发生遗传重组以产生同时带有双亲性状的、遗传性稳定的融合子( fusant )的过程 . 能进行原生质体融合的细胞是极其广泛的,不仅包括原核生物,而且还包括各种真核细胞。