导航:首页 > 生物信息 > 高中生物哪些实验可以用到传感器

高中生物哪些实验可以用到传感器

发布时间:2023-05-15 19:34:31

㈠ 生物传感器可以用在哪些领域

生物传感器是利用生物活性物质与电化学或其他传感器相结合而形成的新型探测器件。生物传感器中最关键的部件是生物活性物,它可以是生物酸、抗体、生物膜或者活细胞等。这些活性物质与所要测定的物质相遇,便会发生化学变化、物理变化和生物化学变化。此类变化进一步通过化学过程或其他传感器的作用,转化为电信号或光信号,就可以被仪器记录下来,成为可掌握拦缓森的信息。

世界上第一台生物传感器是在60年代由美国开发成功的酶简亩传感器。他们利用酶的专一性,即能识别某种物质分子的独特功能,研究成生物传感器的最初构型——葡萄糖酶电极。用它可以很方便地测定出人体血液中和尿中的葡萄糖含量。这是检查糖尿病很有效的办法。

从那以后,开发生物传感器进入了一个飞速发展的时期。首先,生物传感器有极佳的检测本领,即使是含量极低的检测物也逃不过它的火眼金睛。第二,生物传感器的测定过程简便快速。一般检测一次仅需20秒钟,而以往检测方法一般需要2~20小时。第三,它可以直接在人体内进行检测,而不需在体外取样进行检测。

生物哪拆传感器已广泛应用于食品、卫生、医疗、环境等领域。

㈡ 生物传感器的应用领域

生物传感器是一门由生物、化学、物理、医学、电子技术等多种学科互相渗透成长起来的高新技术。因其具有选择性好、灵敏度高、分析速度快、成本低、在复杂的体系中进行在线连续监测,特别是它的高度自动化、微型化与集成化的特点,使其在近几十年获得蓬勃而迅速的发展。
在国民经济的各个部门如食品、制药、化工、临床检验、生物医学、环境监测等方面有广泛的应用前景。特别是分子生物学与微电子学、光电子学、微细加工技术及纳米技术等新学科、新技术结合,正改变着传统医学、环境科学动植物学的面貌。生物传感器的研究开发,已成为世界科技发展的新热点,形成21世纪新兴的高技术产业的重要组成部分,具有重要的战略意义。 生物传感器在食品分析中的应用包括食品成分、食品添加剂、有害毒物及食品鲜度等的测定分析。
⑴食品成分分析在食品工业中,葡萄糖的含量是衡量水果成熟度和贮藏寿命的一个重要指标。已开发的酶电极型生物传感器可用来分析白酒、苹果汁、果酱和蜂蜜中的葡萄糖。其它糖类,如果糖,啤酒、麦芽汁中的麦芽糖,也有成熟的测定传感器。
Niculescu等人研制出一种安培生物传感器,可用于检测饮料中的乙醇含量。这种生物传感器是将一种配蛋白醇脱氢酶埋在聚乙烯中,酶和聚合物的比例不同可以影响该生物传感器的性能。在目前进行的实验中,该生物传感器对乙醇的测量极限为1nmol/L。
⑵食品添加剂的分析
亚硫酸盐通常用作食品工业的漂白剂和防腐剂,采用亚硫酸盐氧化酶为敏感材料制成的电流型二氧化硫酶电极可用于测定食品中的亚硫酸盐含量,测定的线性范围为0~6的负四次方mol/L。又如饮料、布丁、醋等食品中的甜味素,Guibault等采用天冬氨酶结合氨电极测定,线性范围为2×10的负五次方~1×10的负三次方 mol/L。此外,也有用生物传感器测定色素和乳化剂的报道。
⑶农药残留量分析
人们对食品中的农药残留问题越来越重视,各国政府也不断加强对食品中的农药残留的检测工作。
Yamazaki等人发明了一种使用人造酶测定有机磷杀虫剂的电流式生物传感器,利用有机磷杀虫剂水解酶,对硝基酚和二乙基酚的测定极限为10的负七次方mol,在40℃下测定只要4min。Albareda等用戊二醛交联法将乙酞胆碱醋酶固定在铜丝碳糊电极表面,制成一种可检测浓度为10的负十次方mol/L的对氧磷和10的负十一次方mol/L的克百威的生物传感器,可用于直接检测自来水和果汁样品中两种农药的残留。
微生物和毒素的检验
食品中病原性微生物的存在会给消费者的健康带来极大的危害,食品中毒素不仅种类很多而且毒性大,大多有致癌、致畸、致突变作用,因此,加强对食品中的病原性微生物及毒素的检测至关重要。
食用牛肉很容易被大肠杆菌0157.H7.所感染,因此,需要快速灵敏的方法检测和防御大肠杆菌0157.H7一类的细菌。Kramerr等人研究的光纤生物传感器可以在几分钟内检测出食物中的病原体(如大肠杆菌0157.H7.),而传统的方法则需要几天。这种生物传感器从检测出病原体到从样品中重新获得病原体并使它在培养基上独立生长总共只需1天时间,而传统方法需要4天。
还有一种快速灵敏的免疫生物传感器可以用于测量牛奶中双氢除虫菌素的残余物,它是基于细胞质基因组的反应,通过光学系统传输信号。已达到的检测极限为16.2ng/mL。一天可以检测20个牛奶样品。
⑸食品鲜度的检测
食品工业中对食品鲜度尤其是鱼类、肉类的鲜度检测是评价食品质量的一个主要指标。Volpe等人以黄嗦吟氧化酶为生物敏感材料,结合过氧化氢电极,通过测定鱼降解过程中产生的一磷酸肌苷(IMP)、肌苷(HXR)和次黄嘌吟(HX)的浓度,从而评价鱼的鲜度,其线性范围为5x10的负10次方~2x10的负4次方mol/L。 环境污染问题日益严重,人们迫切希望拥有一种能对污染物进行连续、快速、在线监测的仪器,生物传感器满足了人们的要求。已有相当部分的生物传感器应用于环境监测中。
⑴水环境监测
生化需氧量(BOD)是一种广泛采用的表征有机污染程度的综合性指标。在水体监测和污水处理厂的运行控制中,生化需氧量也是最常用、最重要的指标之一。常规的BOD测定需要5d的培养期,而且操作复杂,重复性差,耗时耗力,干扰性大,不适合现场监测。SiyaWakin等人利用一种毛孢子菌(Trichosporoncutaneum)和芽孢杆菌(Bacilluslicheniformis)制作一种微生物BOD传感器。该BOD生物传感器能同时精确测量葡萄糖和谷氨酸的浓度。测量范围为0.5~40mg/L,灵敏度为5.84nA/mgL。该生物传感器稳定性好,在58次实验中,标准偏差仅为0.0362。所需反应时间为5~lOmin。
硝酸根离子是主要的水污染物之一,如果添加到食品中,对人体的健康极其有害。Zatsll等人提出了一种整体化酶功能场效应管装置检测硝酸根离子的方法。该装置对硝酸根离子的检测极限为7x10的负5次方mol,响应时间不到50s,系统操作时间约为85s。
此外,Han等人发明了一种新型微生物传感器,可用于测定三氯乙烯。该传感器将假单细胞菌JI104固定在聚四氟乙烯薄膜(直径:25 mm,孔径:0.45μm)上。再将薄膜固定在氯离子电极上。带有AgCl/Ag2S薄膜(7024L,DKK,日本)的氯离子电极和Ag/AgCI参比电极连接到离子计(IOL-50,DKK,日本)上,记录电压的变化,与标准曲线对照,测出三氯乙烯的浓度。该传感器线性浓度范围为0.1~ 4 mg/L,适于检测工业废水。在最优化条件下,其响应时间不到10min。
⑵大气环境监测
二氧化硫(S02)是酸雨酸雾形成的主要原因,传统的检测方法很复杂。Martyr等人将亚细胞类脂类(含亚硫酸盐氧化酶的肝微粒体)固定在醋酸纤维膜上,和氧电极制成安培型生物传感器,对S02形成的酸雨酸雾样品溶液进行检测,lOmin可以得到稳定的测试结果。
NOx不仅是造成酸雨酸雾的原因之一,同时也是光化学烟雾的罪魁祸首。Charles等人用多孔渗透膜、固定化硝化细菌和氧电极组成的微生物传感器来测定样品中亚硝酸盐含量,从而推知空气中NOx的浓度。其检测极限为0.01xl0负6次方mo1/L。 在各种生物传感器中,微生物传感器具有成本低、设备简单、不受发酵液混浊程度的限制、可能消除发酵过程中干扰物质的干扰等特点。因此,在发酵工业中广泛地采用微生物传感器作为一种有效的测量工具。
⑴原材料及代谢产物的测定
微生物传感器可用于测量发酵工业中的原材料(如糖蜜、乙酸等)和代谢产物(如头孢霉素、谷氨酸、甲酸、醇类、乳酸等)。测量的装置基本上都是由适合的微生物电极与氧电极组成,原理是利用微生物的同化作用耗氧,通过测量氧电极电流的变化量来测量氧气的减少量,从而达到测量底物浓度的目的。
2002年,Tkac等人将一种以铁氰化物为媒介的葡萄糖氧化酶细胞生物传感器用于测量发酵工业中的乙醇含量,13s内可以完成测量,测量灵敏度为3.5nA/mM。该微生物传感器的检测极限为0.85nM,测量范围为2~270nM,稳定性能很好。在连续8.5h的检测中,灵敏度没有任何降低。
⑵微生物细胞数目的测定
发酵液中细胞数的测定是重要的。细胞数(菌体浓度)即单位发酵液中的细胞数量。一般情况下,需取一定的发酵液样品,采用显微计数方法测定,这种测定方法耗时较多,不适于连续测定。在发酵控制方面迫切需要直接测定细胞数目的简单而连续的方法。人们发现:在阳极(Pt)表面上,菌体可以直接被氧化并产生电流。这种电化学系统可以应用于细胞数目的测定。测定结果与常规的细胞计数法测定的数值相近。利用这种电化学微生物细胞数传感器可以实现菌体浓度连续、在线的测定。 医学领域的生物传感器发挥着越来越大的作用。生物传感技术不仅为基础医学研究及临床诊断提供了一种快速简便的新型方法,而且因为其专一、灵敏、响应快等特点,在军事医学方面,也具有广的应用前景。
⑴临床医学
在临床医学中,酶电极是最早研制且应用最多的一种传感器,已成功地应用于血糖、乳酸、维生素C、尿酸、尿素、谷氨酸、转氨酶等物质的检测。其原理是:用固定化技术将酶装在生物敏感膜上,检测样品中若含有相应的酶底物,则可反应产生可接受的信息物质,指示电极发生响应可转换成电信号的变化,根据这一变化,就可测定某种物质的有无和多少。利用具有不同生物特性的微生物代替酶,可制成微生物传感器,在临床中应用的微生物传感器有葡萄糖、乙酸、胆固醇等传感器。若选择适宜的含某种酶较多的组织,来代替相应的酶制成的传感器称为生物电极传感器。如用猪肾、兔肝、牛肝、甜菜、南瓜和黄瓜叶制成的传感器,可分别用于检测谷酰胺、鸟嘌呤、过氧化氢、酪氨酸、维生素C和胱氨酸等。
DNA传感器是目前生物传感器中报道最多的一种,用于临床疾病诊断是DNA传感器的最大优势,它可以帮助医生从DNA,RNA、蛋白质及其相互作用层次上了解疾病的发生、发展过程,有助于对疾病的及时诊断和治疗。此外,进行药物检测也是DNA传感器的一大亮点。Brabec等人利用DNA传感器研究了常用铂类抗癌药物的作用机理并测定了血液中该类药物的浓度。
⑵军事医学
军事医学中,对生物毒素的及时快速检测是防御生物武器的有效措施。生物传感器已应用于监测多种细菌、病毒及其毒素,如炭疽芽孢杆菌、鼠疫耶尔森菌、埃博拉出血热病毒、肉毒杆菌类毒素等。
2000年,美军报道已研制出可检测葡萄球菌肠毒素B、蓖麻素、土拉弗氏菌和肉毒杆菌等4种生物战剂的免疫传感器。检测时间为3~lOmin,灵敏度分别为10,5Omg/L,5x10的5次方,和5x10的4次方cfu/ml。Song等人制成了检测霍乱病毒的生物传感器。该生物传感器能在30min内检测出低于1xlO的负5次方mol/L的霍乱毒素,而且有较高的敏感性和选择性,操作简单。该方法能够用于具有多个信号识别位点的蛋白质毒素和病原体的检测。
此外,在法医学中,生物传感器可用作DNA鉴定和亲子认证等。

㈢ 如何用压阻式传感器测定液体表面张力系数

用硅压阻力敏传感器测定液体表面张力系数
一.实验目的
1.了解液体表面张力的性质,掌握拉托法测定液体表面张力的原理。
2.学习硅压阻力敏传感器的物理原理,测定水等液体的表面张力系数。
二.实验仪器

图1 表面张力系数测氏兄定仪
WBM-1A型液体表面张力测定仪、游标卡尺
三.实验原理(缺两张图)
表面张力是分子力的一种表现,它发生在液体和气体接触的边界部分,是由表面层的液体分子处于特殊情况决定的。液体内部的分子和分子之间几乎是紧挨着的,分子间经常保持平衡距离,稍远一些就相吸,稍近一些就相斥,这就决定了液体分子不像气体分子那样可以无限扩散,而只能在平衡位置附近振动和旋转。在液体表面附近的分子,由于上层空间气相分子对它的吸引力小于内部液相分子对它的吸引力,所以该分子所受合力不等于零,其合力方向垂直指向液体内部,这种收缩力称为表面张力。表面层分子间的斥力随它们彼此间的距离增大而减小,在这个特殊层中分子间的引力作用占优势。如果在液体表面上任意划一条分界线MN把液面分成a、b两部分(如图2所示),f表示a部分表面层中的分子对b部分的吸引力,f´表示右部分表面层中的分子对a部分的吸引力,这两部分的力一定大小相等、方向相反。这种表歼陆袭面层中任何两部分间的相互牵引力,促使了液体表面层具有收缩的趋势。由于表面张力的作用,液体表面总是趋向于尽可能缩小,因此空气中的小液滴往往呈圆球形状。

图2 液体表面张力示意图
表面张力的方向和液面相切,并和两部分的分界线垂直,如果液面是平面,表面张力就在这个平面上。如果液面是曲面,表面张力就在这个曲面的切面上。表面张力是物质的特性,其大小与温度和界面的性质有关。表面张力f的大小跟分界线MN的长度L成正比,可写成
f = αL (1)
系数α叫做表面张力系数,它的单位是“N/m”。在数值上表面张力系数就等于液体表面相邻两部分间单位长度的相互牵引力,表面张力系数与液体的温度和纯度等有关,与液面大小无关。液体温度升高,α减小,纯净的液体混入微量杂质后,α明显减小。

图3 拉脱过程受力分析
普通物理实验中测量表面张力的常用方法有拉脱法、毛细管法和最大泡压法等。这里我们采用拉脱法,用硅压阻力敏传感器测量液体的表面张力。具体测量方法是把一个表面清洁的铝合金圆环吊挂在力敏传感器的拉钩上,升高升降台使铝合金圆环垂直浸入液体中,降低升降台,液面下降,当吊环底面与液面平齐或略高时,由于液体表面张力的作用,吊环的内、外壁会带起一部分液体,如图3所示。平衡时吊环重力mg、向上拉力F与液体表面张力f满足
F=mg+fcosφ (2)
吊环临界脱离液体时,φ=0,即cosφ=1,则平衡条件近似为
f=F-mg=α(D1+D2)π (3)
式中D1、D2分别为悉戚吊环的内径和外径,液体表面的张力系数为
α=(F-mg)/π(D1+D2) (4)
实验需测出F、mg及D1和D2。
利用力敏传感器测力,首先进行硅压阻力敏传感器定标,求得传感器灵敏度B (mV/N),再测出吊环在即将拉脱液面时(F=mg+f)电压表读数U1,记录拉脱后(F=mg)数字电压表的读数U2,代入式(3)得
α=(U1+U2)/Bπ(D1+D2)。 (5)
四.实验步骤
1. 实验准备
开机预热15分钟,清洗玻璃器皿和吊环;用游标卡尺分别测量吊环的内外直径D1和D2。
2.硅压阻力敏传感器定标
(1)将砝码盘挂在力敏传感器的钩上,选择“200 mV”档位对传感器调零定标。
(2)每次将1 g(1个)的砝码放入砝码盘内,分别记录下数字电压表的读数,直至加到7 g为止,将数据记录于表1中(待电压表输出基本稳定后再读数)。
3.测定表面张力
在玻璃器皿内放入待测的水并安放在升降台上,将金属吊环挂在力敏传感器的钩上,吊环应保持水平,顺时针缓慢转动升降台使液面上升,当吊环下沿部分全部浸入液体内时,改为逆时针缓慢转动升降台使液面下降,观察环浸入液体中及从液体中拉起时的物理过程和现象,特别注意吊环即将拉断液面前一瞬间的数字电压表读数U1和拉断后数字电压表读数U2,并记录下这两个数值,重复上述测量过程5次,应的U1和U2记录于表2中。
五.注意事项
(1)力敏传感器使用时用力不宜大于30 g,否则损坏传感器,砝码应轻拿轻放。
(2 器皿和吊环经过洁净处理后,不能再用手接触,亦不能用手触及液体。
(3)吊环保持水平,缓慢旋转升降台,避免水晃动,准确读取U1和U2。
(4)实验结束后擦干、包好吊环。
六.实验数据
表1 力敏传感器定标
砝码质量/g
1
2
3
4
5
6
7
输出电压/mV
根据定标公式U=B*mg,用最小二乘法确定仪器的灵敏度B, g=9.80 m/s2。
表2 测定水的表面张力系数
次数
U1/mV
U2/mV
Δ(U1-U2)/mV
α/(×10-3N/m)
1
2
3
4
5
内径D1/mm
外经D2/mm
七.思考题
(1)还可以采用哪些方法对力敏传感器灵敏度B的实验数据进行处理?
(2)分析吊环即将拉断液面前的一瞬间电压表读数值由大变小的原因?
(3)对实验的系统误差和随机误差进行分析,提出减小误差改进实验的方法措施?

㈣ 高中生物实验室配置标准

高中生物教学仪器配备要求编号名称规格功能单位数量配备要求必修选修1 选修2 选修3 0 通用 00 视听 00005 视频展示台≥ 85万像素,≥ 600TV 线台1* 00006 投影机光通量≥ 3000lm ,分辨率≥ 1024 × 768 台1* 00007 银幕幅1* 00008 彩色电视机 CRT 或背投或平板台1* 00010 影碟机台1* 00011 照相机数码型,≥ 800 万像素, 2G台1* 00013 摄像机数码型,≥ 200 万像素,硬盘或闪存存储台1* 01 计算机 01001 计算机多媒体台1~ 15* 01002 计算机数据采集处理系统开放式软件系统,智能接口,在线系统,或有离线系统,可配套专用实验仪器。温度传感器、湿度传感器、光强传感器、 pH值传感器、溶解氧等传感器等套1~ 13* 01004 扫描仪 A4幅面, USB2.0 ,不低于 2400 × 4800(dpi) 台1* 02 一般 02002 打孔器四件套5√ 02009 书写白板 900mm × 1800mm ,双面,带支架块1√ 02020 仪器车辆1~2√ 02040 生物显微镜≥ 640 倍台 25~ 50√ 02040 生物显微镜≥ 1000 倍,带光源、标尺台 25~ 50* 02040 生物显微镜≥ 1000 倍,双筒台3~5√ 02042 数码显微镜≥ 130 万像素, USB 接口,相关图像处理软件台1~ 14* 02044 双目立体显微镜 40倍台2√ 02051 放大镜手持式,有效通光孔径不小于 30mm ,5倍个9~ 25√ 02070 电动离心机 0r/min ~ 4000 r/min 10mL ×8,无刷电机,带电锁台1√ 02070 电动离心机 3000 r/min ~ 16000 r/min 1.5mL × 12+0.5mL × 12 无刷电机,带电锁台1√ 02073 磁力加热搅拌器容量: 20mL ~ 3000mL 转速:0 r/min ~ 1200 r/min ,无级调速台1√√ 02080 高压灭菌锅手提式, 18L台1√ 02080 高压灭菌锅 30L ~ 50L ,立式或卧式台1√ 02082 恒温水浴锅一列两孔或四孔台2~4√ 02084 烘干箱≥ 80L台1√√ 02086 电冰箱> 200L 台1√√ 02087 恒温培

㈤ 高中生物哪些实验可以用到传感器

光合作用,呼吸作用实验测空气中CO2的含量

㈥ 北京市第一七一中学的设施设备


动物、微生物实验室建于2008年,实验室现有实验仪器设备总价值为60万元。实验室面积为60平方米,可容纳30名学生同时实验。
实验室主要仪器有生物显微镜、自动控制发酵罐、台式恒温振荡器、生化培养箱、蒸汽消毒器、干燥箱、超净工作台、PCR仪、凝胶成像系统等分子生物学相关仪器。有专用无菌操作室和生物安全柜。
动物、微生物实验室可承担部分高中学生生物学的实验教学任务及同时,本实验室对全校学生开放,包括学生第二课堂活动、创新活动、学生创业实践活动等,为学生的创新项目的科学研究开展工作提供了良好的平台。
分子生物学实验。 简介
我校物理数字化实验室是以传感器为主要仪器的现代化实验室。该实验室的创建充分体现出学校“有层次,无淘汰”的教育理念。为不同层次、不同年龄的同学提供适合其学习和应用的数字化平台。实验室配备了威尼尔 (Vernier)系列传感器。其中有双范围力传感器,表面温度传感器,光传感器,电流传感器,相差电压传感器,光闸等。数字化实验室将帮助学生进行更精密的实验探究,协助教师打造出更加“精心,精细,精品”的物理课堂。下面对一些仪器进行简单介绍。
双范围力传感器
双范围力传感器是一个通用的测量力的仪器,它可以代替一般的手提弹簧计,安装在一个环形支架上。也可以安装在动力小车来研究碰撞。它能测量拉力和推力。很小的力如0.01牛顿至很大的力如50牛顿都可以测量。这个双范围力传感器可以在多个实验中使用,包括:探讨碰撞中力和冲量;探讨简谐运动;监测摩擦力;探讨胡克定律;监测模型火箭发动机的推力;测量动力小车的力同时监测加速度;测量简单机器拉起一个已知道重量的质量所需的力;测量液氮的气化热。
表面温度传感器
表面温度传感器:表面温度传感器只能在空气中使用。在苛刻环境中测量温度就需要一个耐久的探头,表面温度传感器的典型用途包括:皮肤温度测量;人类呼吸研究;特殊的热实验;热传递实验;摩擦力和能量研究。
光传感器
光传感器:光传感器可用于测量多种环境中的光强。包括一些反射光强实验的案例中。使用点光源进行倒平方光强实验;偏光滤光片研究;验证荧光灯和其他灯的闪烁;太阳能的研究;反射率的研究;研究房屋或学校不同区域的光强;测量光强作为研究植物生长的一个部分。
电流传感器
电流传感器:电流传感器设计用于研究电学的基本原理。此传感器能应用于低电压的直流和交流电状况下的电流测量。在 ±0.6A 的范围中,此系统非常适合应用于大多数的“电池与灯泡”电路。如果与电压传感器一起使用 (型号:DVP-BTA),可以研究欧姆定律、无功部分的相位关系等。多个传感器同时使用,可以研究并联和串联电路。它也可以应用于电化学实验。此传感器与威尼尔的电流和电压探测系统的基本特性相同。
相差电压传感器
相差电压传感器:相差电压传感器是用来探讨电学的基本原理而设计的。用相差电压传感器来测量低电压的交流和直流电路上的电流。它的±6.0伏特的范围最适合 “电池和灯泡” 的电路。配合电流传感器 (DCP-BTA) 来探讨欧姆定律、无功能部分的相关系和其它。这个传感器与随你的界面 (如LabPro) 附送的电压传感器不同在它的两个探针都没有与地连接。可以使用多个传感器来探讨串联和并联电路。这个传感器的特性与威尼尔以前的电流和电压探测系统的电压探测器一致。
光闸
光闸:这个通用光闸可以在多个物理实验上使用。一些例子包括:测量重力下的加速度;研究钟摆的摆动;测量滚动物体的速度;替一个转动的物体计周期的时间;测量碰撞物体的前后速度。 构成
北京市第171中学创新实验室包括生化测量实验室(Biology & Chemistry Basic Measurement Lab)、微生物实验室(Microbiology Lab)和数学、物理实验室即数字化物理实验室 (Micro-computer Based Physics Lab)。
生化测量实验室
生化测量实验室具有:气相色谱分析仪、COD测定仪、BOD测定仪、水质分析仪、精密电子天平、数字式测温仪、数字式pH计、导电仪、色差计、紫外光谱仪、浊度计等多种现代化、高性能的实验设备。生化测量实验室可以开展:用质谱法测定相对分子质量;用红外光谱、核磁共振氢谱等方法鉴定分子结构;用化学方法或红外光谱法检验卤代烷中的卤素;用中和滴定法或气相色谱法测定醋酸中醋酸的含量等多项实验,在此基础上还可进行水质测量、空气质量检测、食品安全检测等方面的创新实验研究。
微生物实验室
微生物实验室的主要设备有:发酵罐、生物安全柜、超净工作台、CO2培养箱、厌氧培养箱、PCR仪、核酸/蛋白质凝胶图像分析系统、数码显微镜、低温冰箱、全温振荡器、冷冻高速离心机、电泳仪等现代化高科技实验设备。实验室可以进行微生物的培养,微生物代谢产物的生产与分离,食品及饮用水微生物指标检测,动物细胞培养,植物组织培养,DNA的提取与鉴定,DNA分子杂交,PCR方法诊断疾病、转基因食品中外源基因的检测等。 数理实验室的基本系统结构为 “传感器 + 数据采集器 + 计算机”。配备了最新的传感器设备,以一系列传感器替代了传统的测量仪器,能够完成涵盖理科内容的多学科实验任务。例如力、热、声、光、电、位移、磁感强度、辐射等多种物理量数据的采集,传感器数据通过采集器处理后上传到计算机,由教学软件进行实时的处理与分析,以实现数据的实时采集,它的特点是科技含量高,实时采集数据,误差小,实验耗时短,利用软件可以对数据进行多种分析。数理实验室种类众多的传感器运用可以增强学生的实践体验,信息化的实验手段可以拓展学生探究日常生活的能力,从而能激发学生探究的欲望,强大的数据处理能力和开放的平台有利于学生通过努力发现问题寻找规律,有利于学生将所掌握的信息技术知识引入实验中,同时也为学生的科技创新活动提供创新实验平台。根据新课程选修模块的要求及我校开展研究性学习、学生创新实验的需要,组建了生化测量实验室,这些现代化实验仪器的使用,使实验操作省时省力,实验数据得到及时处理,实验结果形象直观,实验信息充分共享,使实验教学活动更具有研究性、更能联系实际,从而拓宽了化学实验的选材范围。组建微生物实验室的目的是使学生在中学时代就能接触到生物学研究最前沿的内容,使学校生物科技教育与现代科技发展接轨,培养学生对生物科学的兴趣,并使其成为教师开设选修课、指导生物实验、探究和研究性学习活动的基地。

㈦ 生物传感器常用的敏感元件都有哪些

生物敏感材料是生物传感器的核心,有人将敏感元件中的敏感物质称为分子探针。常用的生物 敏感元件有各种酶、微生物(病毒、细菌)、动植物组织、化学和生物发光物法、抗体和受体、DNA等生 物敏感组分。

敏感膜一般由膜基体、膜材料和生物敏感材料构成。膜基体是敏感膜的载体,它关系着有效地 发挥敏感材料的作用和膜的寿命,即生物传感器的使用寿命。常见的膜基体材料有:钼、金、钯等金 属;二氧化硅(石英、玻璃)、氮化硅、桂、锗、金属氧化物等无机或半导体;聚氯乙烯、硅橡胶、纤维素等 有机物。

㈧ 电化学生物传感器有哪些

电化学生物传感器
传感器与通信系统和计算机共同构成现代信息处理系统。传感器相当于人的感官,是计算机与自然界及社会的接口,是为计算机提供信息的工具。
传感器通常由敏感(识别)元件、转换元件、电子线路及相应结构附件组成。生物传感器是指用固定化的生物体成分(酶、抗原、抗体、激素等)或生物体本身(细胞、细胞器、组织等)作为感元件的传感器。电化学生物传感器则是指由生物材料作为敏感元件,电极(固体电极、离子选择性电极、气敏电极等)作为转换元件,以电势或电流为特征检测信号的传感器。图1是电化学生物传感器基本构成示意图。由于使用生物材料作为传感器的敏感元件,所以电化学生物传感器具有高度选择性,是快速、直接获取复杂体系组成信息的理想分析工具。一些研究成果已在生物技术、食品工业、临床检测、医药工业、生物医学、环境分析等领域获得实际应用。
根据作为敏感元件所用生物材料的不同,电化学生物传感器分为酶电极传感器、微生物电极传感器、电化学免疫传感器、组织电极与细胞器电极传感器、电化学DNA传感器等。
(1) 酶电极传感器
以葡萄糖氧化酶(GOD)电极为例简述其工作原理。在GOD的催化下,葡萄糖(C6H12O6)被氧氧化生成葡萄糖酸(C6H12O7)和过氧化氢:
根据上述反应,显然可通过氧电极(测氧的消耗)、过氧化氢电极(测H2O2的产生)和pH电极(测酸度变化)来间接测定葡萄糖的含量。因此只要将GOD固定在上述电极表面即可构成测葡萄糖的GOD传感器。这便是所谓的第一代酶电极传感器。这种传感器由于是间接测定法,故干扰因素较多。第二代酶电极传感器是采用氧化还原电子媒介体在酶的氧化还原活性中心与电极之间传递电子。第二代酶电极传感器可不受测定体系的限制,测量浓度线性范围较宽,干扰少。现在不少研究者又在努力发展第三代酶电极传感器,即酶的氧化还原活性中心直接和电极表面交换电子的酶电极传感器。 目前已有的商品酶电极传感器包括:GOD电极传感器、L 乳酸单氧化酶电极传感器、尿酸酶电极传感器等。在研究中的酶电极传感器则非常多。

㈨ 高中生物题

第一阶段在光下郑缓实验,CO2减少量/24min=净光合速率(每分钟积累量)。
第二阶段在暗处进行,CO2增加量/36min=呼吸速率(每分钟消耗量)
净光合速颂晌率+呼吸速率=真正喊樱模光合速率
本题在设计上有缺陷,就是不知道三角瓶的体积,这样只根据CO2浓度变化计算出来的数值严格地说不能算是光合作用速率,只能按题解题了,知道原理和方法就行。

阅读全文

与高中生物哪些实验可以用到传感器相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:703
乙酸乙酯化学式怎么算 浏览:1371
沈阳初中的数学是什么版本的 浏览:1316
华为手机家人共享如何查看地理位置 浏览:1009
一氧化碳还原氧化铝化学方程式怎么配平 浏览:846
数学c什么意思是什么意思是什么 浏览:1368
中考初中地理如何补 浏览:1259
360浏览器历史在哪里下载迅雷下载 浏览:670
数学奥数卡怎么办 浏览:1348
如何回答地理是什么 浏览:988
win7如何删除电脑文件浏览历史 浏览:1021
大学物理实验干什么用的到 浏览:1447
二年级上册数学框框怎么填 浏览:1658
西安瑞禧生物科技有限公司怎么样 浏览:824
武大的分析化学怎么样 浏览:1212
ige电化学发光偏高怎么办 浏览:1300
学而思初中英语和语文怎么样 浏览:1605
下列哪个水飞蓟素化学结构 浏览:1387
化学理学哪些专业好 浏览:1451
数学中的棱的意思是什么 浏览:1016