A. 生物技术有何应用
生物技术,是20世纪70年代初开始兴起的一门新兴的综合性应用学科,尽管起步晚,但是发展迅速,是解开生命之谜、创造新物种的钥匙。比尔盖茨在1996年说过:“生物科技将像电脑软件一样改变这个世界。”科学家预言,生物将取代物理。未来的时代不再是矿物时代而是生物时代,谁掌握了先进的生物技术,谁就将主宰未来。
一、生物工程技术的基础
生物技术包含一系列的技术,它可利用生物体或细胞生产我们所需要的生物,这些新技术包括基因重组、细胞融合和一些生物制造程序等等。其实人类利用生物体或细胞生产我们所需要生物的历史已经非常悠久,例如在1万年前开始耕种和畜牧以提供稳定的粮食来源,6000年前利用发酵技术酿酒和做面包,2000年前利用霉菌来治疗伤口,1797年开始使用天花疫苗,1928年发现抗生素盘尼西林等。既然人类使用生物科技的历史这么久,为什么近年来生物技术又突然吸引大家的注意呢。这是因为20世纪中期,人类对构成生物体最小单位,即细胞及控制细胞遗传特征的基因有了更深入的了解,20世纪70年代又发展出基因重组和细胞融合技术。由于这两项技术可以更有效、更快速地让细胞或生物体生产出我们所需要的新物质,且适合工业或农业量产,因此从20世纪80年代开始,造就了一个新兴的生物科技产业。
生物工程技术包括五大工程,即基因工程、细胞工程、发酵工程、酶工程和生物反应器工程。在这五大领域中,前两者作用是将常规菌(或动植物细胞株)作为特定遗传物质受体,使它们获得外来基因,成为新物种。后三者的作用则为新物种创造良好的生长与繁殖条件,进行大规模的培养,以充分发挥其内在潜力,为人们提供巨大的经济效益和社会效益。
1.基因工程
随着DNA的内部结构和遗传机制的秘密一点一点呈现在人们眼前,生物学家不再仅仅满足于探索、揭示生物遗传的秘密,而是开始跃跃欲试,设想在分子的水平上去干预生物的遗传特性,这种分子水平的干预是这样实现的:将一种生物的DNA中的某个遗传密码片断,连接到另外一种生物的DNA链上去,将DNA重新组织一下,设计出新的遗传物质并创造出新的生物类型。这与过去培育生物繁殖后代的传统做法完全不同,它很像技术科学的工程设计,即按照人类的需要把这种生物的这个“基因”与那种生物的那个“基因”重新“施工”,“组装”成新的基因组合,创造出新的生物。这种完全按照人的意愿,由重新组装基因到新生物产生的生物科学技术,就被称为“基因工程”,或者称之为“遗传工程”。
基因工程在20世纪取得了很大的进展,这至少有两个成功典范。一是转基因动植物,一是克隆技术。转基因动植物由于植入了新的基因,使得动植物具有了原先没有的全新的性状,这引起了一场农业革命。如今,转基因技术已经开始广泛应用,如抗虫西红柿、生长迅速的鲫鱼等。1997年世界十大科技突破之首是克隆羊的诞生。这只叫“多利”的母绵羊是第一只通过无性繁殖产生的哺乳动物,它完全秉承了给予它细胞核的那只母羊的遗传基因。“克隆”一时间成为人们注目的焦点。
2.细胞工程
指应用现代细胞生物学、发育生物学、遗传学和分子生物学的理论与方法,按照人们的需要和设计,在细胞水平上重组细胞的结构和内含物,以改变生物的结构和功能,快速繁殖和培养出人们所需要的新物种的生物工程技术。细胞工程的优势在于避免了分离、提纯、剪切、拼接等基因操作,只需将细胞遗传物质直接转移到受体细胞中就能够形成杂交细胞,因而能够提高基因的转移效率。通俗地讲,细胞工程是在细胞水平上动手术,也称细胞操作技术,包括细胞融合技术、细胞器移植、染色体工程和组织培养技术。通过细胞融合技术,可以培育出新物种,打破了传统的只有同种生物杂交的限制,实现物种间的杂交。这项技术不仅可以把不同种类或者不同来源的植物细胞或者动物细胞进行融合,还可以把动物细胞与植物细胞融合在一起。这对创造新的动植物和微生物品种具有前所未有的重大意义。
3.酶工程
酶工程又称生物转化反应,是利用生物学方法以酶为催化剂,使一种物质迅速转化为另一种物质的技术。它不需要传统的化学转化所必不可少的高温、高压、强酸、强碱等条件,节省能源,效率极高。酶工程最突出的成就是微生物发电。最原始的酶工程要追溯到人类的游牧时代。那时候的牧民已经会把牛奶制成奶酪,以便于贮存。他们从长期的实践中摸索出一套制奶酪的经验,其中关键的一点是要使用少量小牛犊的胃液。用现代的眼光看那就是在使用凝乳酶。此后,在开发使用酶的早期,人们使用的酶也多半来自动物的脏器和植物的器官。例如,从猪的胰脏中取得胰蛋白酶来软化皮革;从木瓜的汁液中取得木瓜蛋白酶来防止啤酒混浊;用大麦麦芽的多种酶来酿造啤酒;等等。然而,随着酶的开发应用的扩展,这些从动植物中取得的酶已经远远不能满足人们需要了。人们把眼光转向了微生物。
微生物是发酵工程的主力军。在发酵工程里(或者说在自然界也一样),微生物之所以有那么大的神通,能迅速地把一种物质转化为另一种物质,正是因为它们体内拥有神奇的酶,正是那些酶在大显神通。说到底,发酵作用也就是酶的作用。
微生物种类繁多,繁殖奇快。要发展酶工程,微生物自然应该是人们获取酶、生产酶的巨大宝库、巨大资源。事实上,目前酶工程中涉及的酶绝大部分来自于微生物。
酶工程,可以分为两部分。一部分是如何生产酶,一部分是如何应用酶。用微生物来生产酶,是酶工程的半壁江山。
4.发酵工程
指采用现代工程技术手段,利用微生物的某些特定功能,为人类生产有用的产品,或直接把微生物应用于工业生产过程的一种技术。发酵工程的内容包括菌种选育、灭菌、接种和产品的分离提纯(生物分离工程)等方面。
5.生物反应器工程
生物反应器是指为细胞增殖或生化反应提供适宜环境的设备,它是生物反应过程中的关键设备。生物反应器的结构、操作方式和操作条件的选定,对生物化工产品的质量、收率(转化率)和能耗有直接影响。生物反应器的设计、放大是生化反应工程的中心内容,也是生物化学工程的重要组成部分。从生物反应过程说,发酵过程用的生物反应器称为发酵罐;酶反应过程用的生物反应器则称为酶反应器。另一些专为动植物细胞大量培养用的生物反应器,专称为动植物细胞培养装置。顾名思义,生物反应器工程就是研制各种生物反应器的工程。
基因工程、细胞工程、酶工程和发酵工程不是孤立存在的,而是彼此互相关联、互相渗透。例如用基因重组技术和细胞融合技术可以创造出许多具有特殊功能和多功能的工程菌和超级菌,再通过微生物发酵来产生新的有用物质。再如酶工程和发酵工程相结合,可以改革发酵工艺,大大提高产量。
二、神秘的军事生物技术
在引发21世纪武器装备革命性变化的高新技术中,迅速兴起的生物技术发展势头正猛。未来的武器装备、后勤保障和军用医药等各个方面,都将离不开生物技术的支撑。有识之士认为,现代化生物武器是一支重要的威慑力量,在未来战场上,比原子弹更可怕。
以生命科学为基础的综合性技术——生物技术将成为军事高技术的制高点。
1.人称“种族武器”和“世界末日武器”的基因武器
基因武器就是在生物遗传工程技术的基础上,用人为的方法,按照军事上的需要,利用基因重组技术,复制大量致病微生物的遗传基因,并制成生物战剂放入施放装置内所构成的武器。它能改变非致病微生物的遗传物质,使其产生具有显着抗药性的致病菌,利用人种生化特征上的差异,使这种致病菌只对特定遗传特征的人们产生致病作用,从而有选择地消灭敌方有生力量。因此,科学家们也称这种“只对敌方具有残酷杀伤力,而对己方毫无影响”的新型生物武器为“种族武器”。按照美国国家人类基因组研究中心的报告,由多国联手开展的人类基因组计划,预计于2003年完成,届时将可排列出组成人类染色体的30亿个碱基对的DNA序列,揭开生命与疾病之谜。一旦不同种群的DNA被排列出来,就可以生产出针对不同人类种群的基因武器。
基因武器杀伤力极强,远非普通的生物战剂所能比拟。据估算,用5000万美元建造一个基因武器库,其杀伤效能远远超过50亿美元建造的核武器库。某国曾利用细胞中的脱氧核糖核酸的生物催化作用,把一种病毒的DNA分离出来,再与另一种病毒的DNA相结合,拼接成一种具有剧毒的“热毒素”基因战剂,用其万分之一毫克就能毒死100只猫;倘用其20g,就足以使全球55亿人死于一旦。正因为如此,国外有人将“基因武器”称为“世界末日武器”。科学家认为,不能排除随着基因操作等知识的日益普及,基因技术被用于制造基因武器的可能。甚至有人预测,基因武器将在5至10年内出现。
2.威力巨大的生物炸弹
利用生物技术制造炸药,生产过程简单,成本低,燃烧充分,爆炸力强,威力比常规炸药大3~6倍。用生物炸药制成的武器战斗可使武器的战术、技术性能提高一个数量级。
3.智能化的军用仿生导航系统
自然界中许多动物具有导航能力。研究发现,鸟体的导航系统只有几毫克,但精确度极高,探测误差小于0.03微瓦/平方米。目前已有一些国家在利用生物技术手段模拟动物的导航系统来简化军事导航系统,以提高精度,缩小体积,减轻重量,降低成本,增强在复杂条件下的导航能力。
4.敏锐的军用生物传感器
把生物活性物质,如受体、酶、细胞等与信号转换电子装置结合成生物传感器,不但能准确识别各种生化战剂,而且探测速度快、判断准确,与计算机配合可及时提出最佳的防护和治疗方案。美国国防部于1990年将生物传感器列入国防关键技术,2000年就制造出了机器人生物传感器。生物传感器还可通过测定炸药、火箭推进剂的降解情况来发现敌人库存的地雷、炮弹、炸弹、导弹等装备的数量和位置,它将成为实施战场侦察的有效手段。
5.取之不尽的军用生物能源
目前主战兵器的机动装备大都以汽油、柴油为燃料,跟踪补给任务重、要求高。生物技术可利用红极毛杆菌和淀粉制成氢,每消耗1克淀粉就可生产出1毫升氢。氢和少量燃料混合即可替代汽油、柴油。这样,机动装备只需要带少量的淀粉,就能进行长时间远距离的机动作战。日本、加拿大等国把细菌和真菌引入酵母,酶解纤维生产酒精,或用基因工程方法使大肠杆菌把葡萄糖转化为酒精,代替汽油或柴油,可随时为军队的机动装备提供大量的生物燃料。
6.奇异的军用生物装具
即利用生物技术就地取材提供高能量的作战军需品。如美国陆军研究发展和工程中心已经从织网蜘蛛中分离出合成蜘蛛丝的基因,从而能够生产蛛丝;还可将基因转移到细菌中生产可溶性丝蛋白,经浓缩后可纺成一种特殊的纤维,其强度超过钢,可用于生产防弹背心、防弹头盔、降落伞绳索和其他高强度轻型装备。
7.疗效快捷的军用生物医药
生物技术可以制造新的疫苗、药物和新的医疗方法。如利用生物技术生产血液代用品,已受到世界各国的重视,人造血液可望缓解战场上血浆的供需矛盾。利用生物技术生产的高效伤口愈合材料,有望进行大规模生产。科学家正研究用重组工程菌进一步提高壳多糖(有促进伤口愈合功能)的产量。美国一些公司与陆军医疗中心正在从事用生物技术合成“人造皮肤”的研制工作。
8.不可思议的军用仿生动力
人和动物的肌肉具有惊人的力量,人体全身的600余块肌肉朝一个方向收缩,其力量可达25吨!目前,军事仿生专家已用聚丙烯酸等聚合物制成了“人工肌肉”,把它放入碱或酸介质中,便能产生强烈的收缩或松弛,直接把化学能转变成机械能。为尽快制造出实用的肌肉发动机,专家们设想用胶原蛋白作材料。胶原蛋白分子呈螺旋状结构,类似弹簧。将其浸入溴化锂溶液后即迅速收缩,从而做功,用纯水洗去溴化锂,胶原蛋白就恢复到原来长度。这种“肌肉发动机”没有齿轮、活塞和杠杆,故体积小、重量轻、无噪音、操作简便,还省去了体大笨重易燃易爆的油箱,用来制造兵器,可大大提高机动力和生存力。
9.怪异的军用动物武器
训练动物参战,自古有之。但人们运用生物工程技术,创造一些“智商”高、体力强、动作敏捷和繁殖速度快、饲养简单的动物,去充当“战斗动物兵”并非遥远。1992年,世界上第一头带有人类遗传特征的短吻、小眼睛、大耳朵、被称为“阿斯特里德”的猪,在伦敦降生了。到第二年,英国就有37头猪带上了人类基因。科学家的目的是为了实现跨物种器官移植,以解决目前移植手术中器官来源不足的难题。但由此不难想象,随着基因技术的发展,用这一技术“杂交”出一些怪物,甚至“人造人”,完全是有可能的。
此外,生物加工处理技术在军事领域也有广泛的应用。目前正在研究的课题有:生化战剂的洗消、危险废物的生物降解、生物除雷、生物防核污染等。已经初步研制出了无腐蚀、低成本、高速度、便于携带的清洗生化战剂的生物酶,清除残余地雷、水雷,降解TNT炸药的生物体和能除去铀、镭、砷等有毒有害元素的微生物。
B. 水、醇、酶综合提取生物技术是什么
一般这种技术就是提取桥此生物的大分子比凳消贺如DNA,用这些提取的特点式不会破坏生物大分子的结构和活性,只是利用物理的溶解,比如DNA在醇中的溶解度很大可以用醇把DNA先提取出来枣派,再用其他溶解使DNA沉淀,但是这种提取的方法纯度不能保证,实验的差异性也很大
C. 什么是生物技术,它如何改变人类的生活方式
什么是生物技术,它如何改变人类的生活方式?两年后,黄令仪学成返校,在华中工学院创建了半导体专业,并亲自讲授半导体器件与材料课。她带领一批年轻的教工和学生,风风火火地创建了国内首个半导体实验室。他一遍一遍和需要帮助的人分享着经验。“第一面怎么和孩子对话,怎么保护好数雀孩子薯坦早,孩子能不能回到原家庭,很多家长没有经验。我就信空想着怎么帮这件事办好,人家的孩子也一样。”申军良说。
D. 生物技术的细胞工程
关于细胞工程的定义和范围还没有一个统一的说法,一般认为,细胞工程是根据细胞生物学和分子生物学原理,采用细胞培养技术,在细胞水平进行的遗传操作。细胞工程大体可分染色体工程、细胞质工程和细胞融合工程。
1、细胞培养技术
细胞培养技术是细胞工程的基础技术。所谓细胞培养,就是将生物有机体的某一部分组织取出一小块,进行培养,使之生长、分裂的技术。细胞培养又叫组织培养。近二十年来细胞生物学的一些重要理论研究的进展,例如细胞全能性的揭示,细胞周期及其调控,癌变机理与细胞衰老的研究,基因表达与调控等,都是与细胞培养技术分不开的。
体外细胞培养中,供给离开整体的动植物细胞所需营养的是培养基,培养基中除了含有丰富的营养物质外,一般还含有刺激细胞生长和发育的一些微量物质。培养基一般有固态和液态两种,它必须经灭菌处理后才可使用。此外,温度、光照、振荡频率等也都是影响培养的重要条件。
植物细胞与组织培养的基本过程包括如下几个步骤:
第一步,从健康植株的特定部位或组织,如根、茎、叶、花、果实、花粉等,选择用于培养的起始材料(外植体)。
第二步,用一定的漏好化学药剂(最常用的有次氯酸钠、升汞和酒精等)对外植体表面消毒,建立无菌培养体系。
第三步,形成愈伤组织和器官,由愈伤组织再分化出芽并可进一步诱导形成小植株。
动物细胞培养有两种方式。一种叫非贴壁培养:也就是细胞在培养过程中不贴壁, 条件较为复杂, 难度也大一些,但是容易同时获得大量的培养细胞。这种方法一般用于淋巴细胞、肿瘤细胞和一些转化好含细胞的培养。另一种培养方式是贴壁培养:也称为细胞贴壁,贴壁后的细胞呈单层生长,所以此法又叫单层细胞培养。大多数哺乳动物细胞的培养必须采用这种方法。
动物细胞不能采用离体培养,以人的皮肤细胞培养为例,动物细胞培养的主要步骤如下:
第一步,在无菌条件下,从健康动物体内取出适量组织,剪切成小薄片。
第二步,加入适宜浓度的酶与辅助物质进行消化作用使细胞分散。
第三步,将分散的细胞进行洗涤并纯化后,以适宜的浓度加在培养基中,37℃下培养,并适时进行传代。
在细胞培养中,我们经常使用一个词——克隆。克隆一词是由英文clone音译而来,指无性繁殖以及由无性繁殖而得到的细胞群体或生物群体。细胞克隆是指细胞的一个无性繁殖系。自然界早已存在天然的克隆,例如,同卵双胞胎实际上就是一种克隆。
基因工程中,还有称为分子克隆(molecular cloning)的,是科恩等在 1973年提出的。分子克隆发生在DNA分子水平上,是指从一种细胞中把某种基因提取出来作为外源基因,在体外与载体连接,再将其引入另一受体细胞自主复制而得到的DNA分子无性系。
2、细胞核移植技术
由于克隆是无性繁殖,所以同一克隆内所有成员的遗传构成是完全相同的,这样有利于忠实地保持原有品种的优良特性。人们开始探索用人工的方法来进行高等动物克隆。哺乳动物克隆的方法主要有胚胎分割和细胞核移植两种。其中,细胞核移植是发展较晚但富有潜力的一门新技术。
细胞核移植技术属于细胞质工程。所谓细胞核移植技术,是指用机械的办法把一个被称为“供体细胞”的细胞核(含遗传物质)移入另一个除去了细胞核被称为“受体”的细胞中,然后这一重组细胞进一步发育、分化。核移植的原理是基于动物细胞的细胞核的全能性。
采用细胞核移植技术克隆动物的设想,最初由一位德国胚胎学家在1938年提出。从1952年起,科学家们首先采用两栖类动物开展细胞核移植克隆实验,先后获得了蝌蚪和成体蛙。1963年,我国童第周教授领导的科研组,以金鱼等为材料,研究了鱼类胚胎细胞核移植技术,获得成功。到1995年为止,在主要的哺乳动物中,胚胎细胞核移植都获得成功,但成体动物已分化细胞的核移植一直未能取得成功。
1996年,英国爱丁堡罗斯林研究所,伊恩?维尔穆特研究小组成功地利用细胞核移植的方法培养出一只克隆羊——多利,这是世界上首次利用成年哺乳动物的体细胞进行细胞核移植而培养出的克隆动物。。
在核移植中,并不是所有的细胞都可以作为核供体。作为供体的细胞有两种:一种是胚胎细胞,一种是某些体细胞。
研究表明,卵细胞、卵母细胞和受精卵细胞都是合适的返袜铅受体细胞。
2000年6月,我国西北农林科技大学利用成年山羊体细胞克隆出两只“克隆羊”,这表明我国科学家也掌握了哺乳动物体细胞核移植的尖端技术。
核移植的研究,不仅在探明动物细胞核的全能性、细胞核与细胞质关系等重要理论问题方面具有重要的科学价值,而且在畜牧业生产中有着非常重要的经济价值和应用前景。
3、细胞融合技术
细胞融合技术属于细胞融合工程。细胞融合技术是一种新的获得杂交细胞以改变细胞性能的技术,它是指在离体条件下,利用融合诱导剂,把同种或不同物种的体细胞人为地融合,形成杂合细胞的过程。细胞融合术是细胞遗传学、细胞免疫学、病毒学、肿瘤学等研究的一种重要手段
动物细胞融合的主要步骤是:
第一步,获取亲本细胞。将取样的组织用胰蛋白酶或机械方法分离细胞,分别进行贴壁培养或悬浮培养。
第二步,诱导融合。把两种亲本细胞置于同一培养液中,进行细胞融合。动物细胞的融合过程一般是:两个细胞紧密接触→细胞膜合并→细胞间出现通道或细胞桥→细胞桥数增加扩大通道面积→两细胞融合为一体。
植物细胞融合的主要步骤是:
第一步,制备亲本原生质体。
第二步,诱导融合。
微生物细胞的融合步骤与植物细胞融合基本相同。
从20世纪70年代开始,已经有许多种细胞融合成功,有植物间、动物间、动植物间甚至人体细胞与动植物间的成功融合的新的杂交植物,如 “西红柿马铃薯”、“拟南芥油菜”和“蘑菇白菜”等。(图4-36是利用细胞融合培育杂交植物)从目前的技术水平来看,人们还不能把许多远缘的细胞融合后培养成杂种个体,尤其是动物细胞难度更大。
酶工程、发酵工程与蛋白质工程
1、酶工程酶工程是指利用酶、细胞或细胞器等具有的特异催化功能,借助生物反应装置和通过一定的工艺手段生产出人类所需要的产品。它是酶学理论与化工技术相结合而形成的一种新技术。
酶工程,可以分为两部分。一部分是如何生产酶,一部分是如何应用酶。
酶的生产大致经历了四个发展阶段。最初从动物内脏中提取酶,随着酶工程的进展,人们利用大量培养微生物来获取酶,基因基因工程诞生后,通过基因重组来改造产酶的微生物,近些年来,酶工程又出现了一个新的热门课题,那就是人工合成新酶,也就是人工酶。
酶在使用中也存在着一些缺点。如遇到高温、强酸、强碱时就会失去活性,成本高,价钱贵。实际应用中酶只能使用一次等。利用酶的固定化可以解决这些问题,它被称为是酶工程的中心。
60年代初,科学家发现,许多酶经过固定化以后,活性丝毫未减,稳定性反而有了提高。这一发现是酶的推广应用的转折点,也是酶工程发展的转折点。如今,酶的固定化技术日新月异。它表现在两方面:
一是固定的方法。目前固定的方法有四大类:吸附法、共价键合法、交联法和包埋法。
二是被固定下来的酶,具有多种酶,能催化一系列的反应。
与自然酶相比,固定化酶和固定化细胞具有明显的优点:
1、可以做成各种形状,如颗粒状、管状、膜状,装在反应槽中,便于取出,便于连续、反复使用;
2、稳定性提高,不易失去活性,使用寿命延长;
3、便于自动化操作,实现用电脑控制的连续生产。
如今已有数十个国家采用固定化酶和固定化细胞进行工业生产,产品包括酒精、啤酒、各种氨基酸、各种有机酸以及药品等等。
2、发酵工程
现代的发酵工程。又叫微生物工程,指采用现代生物工程技术手段,利用微生物的某些特定的功能,为人类生产有用的产品,或直接把微生物应用于工业生产过程。
发酵是微生物特有的作用,几千年前就已被人类认识并且用来制造酒、面包等食品。20世纪20年代主要是以酒精发酵、甘油发酵和丙醇发酵等为主。20世纪40年代中期美国抗菌素工业兴起,大规模生产青霉素以及日本谷氨酸盐(味精)发酵成功,大大推动了发酵工业的发展。
20世纪70年代,基因重组技术、细胞融合等生物工程技术的飞速发展,发酵工业进入现代发酵工程的阶段。不但生产酒精类饮料、醋酸和面包,而且生产胰岛素、干扰素、生长激素、抗生素和疫苗等多种医疗保健药物,生产天然杀虫剂、细菌肥料和微生物除草剂等农用生产资料,在化学工业上生产氨基酸、香料、生物高分子、酶、维生素和单细胞蛋白等。
从广义上讲,发酵工程由三部分组成:上游工程,发酵工程和下游工程。其中上游工程包括优良种株的选育,最适发酵条件(pH、温度、溶解氧和营养组成)的确定,营养物的准备等。发酵工程主要指在最适发酵条件下,发酵罐中大量培养细胞和生产代谢产物的工艺技术。下游工程指从发酵液中分离和纯化产品的技术。
发酵工程的步骤一般包括:
第一步,菌种的选育。
第二步,培养基的制备和灭菌。
第三步,扩大培养和接种。
第四步,发酵过程。
第五步,分离提纯。
发酵工程在医药工业、食品工业、农业、冶金工业、环境保护等许多领域得到广泛应用。
3、蛋白质工程
在现代生物技术中,蛋白质工程是在20世纪80年代初期出现的。蛋白质工程是指在深入了解蛋白质空间结构以及结构与功能的关系,并在掌握基因操作技术的基础上,用人工合成生产自然界原来没有的、具有新的结构与功能的、对人类生活有用的蛋白质分子。
蛋白质工程的类型主要有两种:
一是从头设计,即完全按照人的意志设计合成蛋白质。从头设计是蛋白质工程中最有意义也是最困难的操作类型,目前技术尚不成熟,已经合成的蛋白质只是一些很小的短肽。
二是定位突变与局部修饰,即在已有的蛋白质基础上,只进行局部的修饰。这种通过造成一个或几个碱基定位突变,以达到修饰蛋白质分子结构目的的技术,称为基因定位突变技术。
蛋白质工程的基本程序是:首先要测定蛋白质中氨基酸的顺序,测定和预测蛋白质的空间结构,建立蛋白质的空间结构模型,然后提出对蛋白质的加工和改造的设想,通过基因定位突变和其它方法获得需要的新蛋白质的基因,进而进行蛋白质合成。(图4-37)
由于蛋白质工程是在基因工程的基础上发展起来的,在技术方面有很多同基因工程技术相似的地方,因此蛋白质工程也被称为第二代基因工程。
蛋白质工程为改造蛋白质的结构和功能找到了新途径,而且还预示人类能设计和创造自然界不存在的优良蛋白质的可能性,从而具有潜在的巨大社会效益和经济效益。
E. 生物制药是什么意思
分类: 理工学科
问题描述:
如题..请用白话文解释
解析:
是医学上通过生物技术生产出大量廉价的防治人类疾病的药物,如入胰岛素、干扰素、生长激素、乙型肝炎疫苗等。生物工程在食品、轻工中的应用面也很广。1983年美国用生物工程生产的用于制作饮料的高果糖浆的年产量达600万吨,从而使蔗糖的消耗量减少一半。采用生物慎腔此工程技术,使育种工作发生了很大变化,如把抗病基因转移到烟草中去,已培育宽迅出防止害虫的烟草新品种;圆颤把低等生物根瘤菌的固氮基因转移到高等作物的细胞中,使之能自己制造氮肥,也取得了一定成果。目前世界各国对生物工程十分重视,我国也把生物工程列为重点发展的科研项目之一。生物工程学的研究将对人类的生产方式和生活方式产生巨大的影响。
F. 什么是生物技术
生物技术是以生命科学的理论和技术为基础,结合各种现代工程技术,充分运用分子生物学的最新成就,按人类需要提供商品和社会服务的综合性科学技术体系,主要包括基因工程、细胞工程、酶工程、发酵工程和蛋白质工程5个分支领域。
生物技术按发展历史可分为传统生物技术和现代生物技术两部分。传统生物技术是指传统的制造酱、醋、酒、面包、奶酪、酸奶、泡菜及其他食品的传统工艺;现代生物技晌虚术是指20世宴春燃纪70年代末发展起来的以现代生物学研究成果为基础,以基因工程,特别是DNA重组为核心的新兴学科森胡。目前所称的生物技术,基本上是指现代生物技术。
生物技术根据是否使用基因工程技术可分为基因工程技术和非基因工程技术两大类。基因工程包括基因分析、基因图谱、基因指纹、基因提取、基因重组、转基因改造及基因库建立等。非基因工程技术包括菌种筛选和诱变、高密度发酵工程技术、太空育种、细胞冷冻和休眠、细胞体外培养、细胞杂交、胚胎移植、体外受精等。
生物技术按行业分为医药生物技术、工业生物技术、农业生物技术和海洋生物技术等。在每个行业生物技术又细分为更专业的生物技术,如农业生物技术又可分为饲料生物技术、食品生物技术、兽医生物技术、植物生物技术、动物生物技术等。
G. 各种酶的生产方法是什么简要概括。
酶工程(Enzyme Engineering))又称为酶技术。随着酶学研究的迅速发展,特别是酶应用的推广,使酶学基本原理与化学工程相结合,从而形成了酶工程.酶工程是酶制剂的大批量生产和应用的技术。它从应用的目的出发,将酶学理论与化学工程相结合研究酶,并在一定的反应装置中利用酶的催化特性,将原料转化为产物的一门新技术,就酶工程本身的发展来说,包括下列主要内容:
2.1酶的产生
酶制剂的来源,有微生物、动物和植物,但是,主要的来源是微生物。由于微生物比动植物具有更多的优点,因此, —般选用优良的产酶菌株,通过发酵来产生酶。为了提高发酵液中的酶浓度,选育优良菌株、研制基因工程菌、优化发酵条件。工业生产需要特殊性能的新型酶,如耐高温的α—淀粉酶、耐碱性的蛋白酶和脂肪酶等,因此,需要研究、开发生产特殊性能新型酶的菌株。
2. 2 酶的制备
酶的分离提纯技术是当前生物技术“后处理工艺”的核心。采用各种分离提纯技术,从微生物细胞及其发酵液,或动、植物细胞及其培养液中分离提纯酶,制成高活性的不同纯度的酶制剂,为了使酶制剂更广泛地应用于国民经济各个方面,必须提高酶制剂的活性、纯度和收率,需要研究新的分离提纯技术。
2. 3 酶和细胞固定化
酶和细胞固定化研究是酶工程的中心任务。为了提高酶的稳定性,重复使用酶制剂,扩大酶制剂的应用范围,采用各种固定化方法对酶进行固定化,制备了固定化酶,如固定化葡萄糖异构酶、固定化氨基酰化酶等,测定固定化酶的各种性
质,并对固定化酶作各方面的应用与开发研究。目前固定化酶仍具有强大的生命力。它受到生物化学、化学工程、微生物、高分子、医学等各领域的高度重视。
固定化细胞是在固定化酶的基础发发展起来的。用各种固定化方法对微生物细胞、动物细胞和植物细胞进行固定化,制成各种固定化生物细胞.研究固定化细胞的酶学性质,特别是动力学性质,研究与开发固定化细胞在各方面的应用,是当今酶工程的一个热门课题。
固定化技术是酶技术现代化的一个重要里程碑,是克服天然酶在工业应用方面的不足之处,而又发挥酶反应特点的突破性技术。可以说没有固定化技术的开发,就没有现代的酶技术。
2.4.酶分子改造
又称为酶分子修饰。为了提高酶的稳定性,降低抗原性,延长药用菌在机体内的半衰期,采用各种修饰方法对酶分子结构进行改造,以便创造出天然酶所不具备的某些优良特性(如较高的稳定性、无抗原性、抗蛋白酶水解等),甚至于创造出新的酶活性,扩大酶的应用,从而提高酶的应用价值,达到较大的经济效益和社会效益。
酶分子改造可以从两个方面进行:
(1)用蛋白质工程技术对酶分子结构基因进行改造,期望获得一级结构和空间结构较为合理的具有优良特性、高活性的新酶(突变酶)。
(2)用化学法或酶法改造酶蛋白的一级结构,或者用化学修饰法对酶分子中侧链基团进行化学修饰.以便改变酶学性质。这类酶在酶学基础研究上和医药上特别有用。
H. 技术用白话怎么说
技-------gei6,读第六声。同音字孝谈:妓。
术乱告-------seot6,读第六声。同音字:述、秫、术。
给你一个《哗慎明粤语在线发声字典》,你自己找一下:
http://arts.cuhk.e.hk/Lexis/lexi-can/
I. 生物技术的利与弊
我们所说的生物技术的利和弊主要指的是克隆,其利和弊是
利:1) 克隆技术可解除那些不能成为母亲的女性的痛苦。
2) 克隆实验的实施促进了遗传学的发展,为“制造”能移植于人体的动物器官开辟了前景。
3) 克隆技术也可用于检测胎儿的遗传缺陷。将受精卵克隆用于检测各种遗传疾病,克隆的胚胎与子宫中发育的胎儿遗传特征完全相同。
4) 克隆技术可用于治疗神经系统的损伤。成年人的神经组织没有再生能力,但干细胞可以修复神经系统损伤。
5) 在体外受精手术中,医生常常需要将多个受精卵植入子宫,以从中筛选一个进入妊娠阶段。但许多女性只能提供一个卵子用于受精。通过克隆可以很好地解决这一问题。这个卵细胞可以克隆成为多个用于受精,从而大大提高妊娠成功率。
弊:1) 克隆将减少遗传变异,通过克隆产生的个体具有同样的遗传基因,同样的疾病敏感性,一种疾病就可以毁灭整个由克隆产生的群体。 可以设想,如果一个国家的牛群都是同一个克隆产物,一种并不严重的病毒就可能毁灭全国的畜牧业。
2) 克隆技术的使用将使人们倾向于大量繁殖现有种群中最有利用价值的个体,而不是按自然规律促进整个种群的优胜劣汰。从这个意义上说,克隆技术干扰了自然进化过程.
3) 克隆技术是一种昂贵的技术,需要大量的金钱和生物专业人士的参与,失败率非常高。多莉就是277次实验唯一的成果。虽然现在发展出了更先进的技术,成功率也只能达到2-3%。
4) 转基因动物提高了疾病传染的风险。例如,如果一头生产药物牛奶的牛感染了病毒,这种病毒就可能通过牛奶感染病人
5) 克隆技术应用于人体将导致对后代遗传性状的人工控制。克隆技术引起争论的核心就是能否允许对发育初期的人类胚胎进行遗传操作。这是很多伦理学家所不能接受的。
6) 克隆技术也可用来创造“超人”,或拥有健壮的体格却智力低下的人。而且,如果克隆技术能够在人类中有效运用,男性也就失去了遗传上的意义。
7) 克隆技术对家庭关系带来的影响也将是巨大的。一个由父亲的DNA克隆生成的孩子可以看作父亲的双胞胎兄弟,只不过延迟了几十年出生而已。很难设想,当一个人发现自己只不过是另外一个人的完全复制品,他(或她)会有什么感受?
所以说,科学技术有时就是一把双刃剑,有利也有没弊,没有标准答案!就看人们这样利用了!
J. 生物药物分离提取技术的特点与原理以及生化药物的特点请知道的大侠说一下,先多谢了。
90、稳态:神经系统、体液和免疫系统调节下,内环境的相对稳定
温度、pH、渗透压,水、无机盐、血糖等化学物质含量
血浆 7.35—7.45 缓冲对 NaHCO3/H2CO3 Na2HPO4/NaH2PO4
2/3细胞内液 组织液
91、65%体液 1/3细胞外液 血浆 淋巴
(内环境) 不是血液 血液>血浆>血清
食物 排尿
92、体内水来源 饮水 水排出途径 出汗 皮肤
代谢水(有氧呼吸)面虫、骆驼 呼气 肺
(氨基酸脱水缩合) 排遗 消化道
93、K不吃也排 不经过出汗排
肾上腺分泌醛固酮(固醇) 保Na排K
高温工作、重体力劳动、呕吐、腹泻→→应特别注意补充足够的水、Na(食盐)
细胞外液渗透压下降,出现四肢发冷、血压下降、心率加快
K对细胞内液细胞渗透压起决定作用,维持心肌紧张、心肌正常兴奋性 K心
94、血糖三来源(食物、分解、转化) 三去向
糖的主要功能:供能
胰岛素 唯一降血糖激素;增加糖的去路,减少糖的来源 胰高血糖素、 肾上腺素 升血糖
胰高血糖素促进胰岛素分泌,胰岛素却抑制胰高血糖素分泌
血 糖 升 高
↓ ↑ ↑
下丘脑某区域→胰岛B细胞 胰高血糖素↑ 肾上腺素↑
↓ ↑ ↑
胰岛素↑ 胰岛A细胞 肾上腺髓质
↓ ↑ ↑ 下丘脑另一区域
血 糖 降 低
<50-60 低早 <45 低晚 >130高 >160-180糖尿
一次性摄糖过多,暂时尿糖 持续糖尿不一定糖尿病,如肾炎重吸收不行
糖尿病 血糖高且有糖尿 验尿验血 三多一少症状?
不吃少吃多吃含膳食纤维多的粗粮和蔬菜
95、营养物质:
蛋白质不足:婴幼儿、儿童、少年生长发育迟缓、体重过轻 成年人浮肿
提供能量
营养物质功能 提供构建和修复机体组织的物质
提供调节机体生理功能的物质
维生素:维持机体新陈代谢、某些特殊生理功能
VA:夜盲症
维生素 VB:脚气病
VC:坏血病
VD:佝偻病、骨软化病、骨质疏松症
96、温度感受器分为冷觉感受器和温觉感受器(分布皮肤、粘膜、内脏器官)
体温来自代谢释放热量(不是ATP提供),体温恒定是产热量,散热量动态平衡结果
寒冷 炎热
↓ ↓
皮肤冷觉感受器 温觉感受器 血管
↓传入神经 ↓ 立毛肌
下丘脑体温调节中枢 下丘脑 骨骼肌
传出神经 ↓ 汗
皮肤血管收缩 骨骼肌战粟(产能特多) 血管舒张
皮肤立毛肌收缩 皮肤立毛肌收缩 汗液分泌增多
↓鸡皮疙瘩 肾上腺素↑
缩小汗毛孔 甲状泉激素↑
减少散热 增加产热 散热量增加 不能减少产热
调节水分、血糖、体温
97、下丘脑 分泌激素:促激素释放激素 抗利尿激素
感受刺激:下丘脑渗透压感受器
传导兴奋:产生渴觉
第一道防线:皮肤、粘膜等
非特异性免疫(先天免疫)第二道防线:体液中杀菌物质、吞噬细胞
98、免疫 特异性免疫(获得性免疫) 第三道防线:体液免疫和细胞免疫
在特异性免疫中发挥免疫作用的主要是淋巴细胞
淋巴细胞的起源和分化:胸腺—T 骨髓—B
免疫细胞:B、T
免疫系统的物质基础 免疫器官:扁桃体、淋巴结、脾
免疫物质:抗体、淋巴因子(白介素、干扰素)
99、抗原特点:①一般异物性 但也有例外:如癌细胞、损伤或衰老的细胞
②大分子性
③特异性 抗原决定簇(病毒的衣壳)
100、体液免疫: 记忆细胞
↓ ↓再次受相同抗原刺激
抗原→→吞噬细胞→→T细胞→→B细胞→→→效应B细胞→→→抗体
↑ (摄取处理) (呈递) (识别)
感应阶段 反应阶段 效应阶段
效应B细胞产生:抗体(免疫球蛋白)、抗毒素、凝集素
效应T细胞产生:淋巴因子、干扰素、白细胞介素
识别抗原:B细胞、效应T细胞、记忆B/T
效应B细胞获得有三途径(直接、间接、记忆)
记忆细胞受相同抗原再次刺激后引起的二次免疫反应:更迅速、更强
再次接受过敏原(概念)
过敏反应 抗体分布 细胞表面
组织胺:体液调节
101、免疫失调引起的疾病 自身免疫疾病:风湿…类风湿…系统性红斑狼疮
先天性:先天性胸腺发育不全
免疫缺陷病 获得性:艾滋病、肺炎、气管炎
(人类免疫缺陷病毒) HIV↓攻击T细胞
(AIDS) 获得性免疫缺陷综合症
102、色素吸收、传递、转换光能 色素不能储存光能
蛋白质、氨基酸也不能储存
少数特殊状态叶绿素a 最终电子供体:水
高能量、易失电子 光能→ 电能 最终电子受体:NADP+
103、C4植物:玉米、高梁、甘庶、苋菜
既C3又C4 CO2固定能力强 先CO2+C3→C4
C3、C4叶肉细胞都含正常叶绿体
选修 C3维管束鞘细胞无叶绿体
图 C4维管束鞘细胞含无基粒的叶绿体 不进行光反应
(P29) C4植物花环型结构 里圈:维管束鞘细胞 外圈:部分叶肉细胞
降低呼吸消耗 增加净光合量
104、提高产量 延长光合作用时间 光:光质、强度、长短
提高农作物对 增大光合作用面积 温度:影响酶的活性
光能利用率 提高光合作用效率 水
矿质元素 N、P、K、Mg
CO2 农家肥、CO2发生器
105、生物固氮:N2 → NH3
根瘤菌的特异性:蚕豆根瘤菌侵入蚕豆、菜豆、豇豆;大豆根瘤菌侵入大豆。
N素
根瘤菌 有机物 豆科植物 异养需氧
共生固氮菌 根瘤 薄壁细胞 愈伤组织
固氮菌 自生≠自养 根瘤菌拌种 豆科植物绿肥
自生固氮菌:圆褐固氮菌(固氮+激素)
生物固氮(主:根瘤菌) 工业固氮 高能固氮
106、N循环 硝化、反硝化、氨化作用
反硝化:氧气不足NO3-→N2
自生固氮菌的分离原理:无氮培养基对固氮菌的选择生长
物质基础:线粒体、叶绿体中的DNA(质基因)
…线粒体
107、细胞质遗传 典型代表 …叶绿体 花斑植株→三种
特点 母系遗传(受精卵中的细胞质几乎全来自卵细胞)
后代性状不出现一定分离比
(形成配子时,质基因不均等分配)
编码区:编码蛋白质 连续的
原核细胞 非编码区 编码区上游:RNA聚合酶结合位点
基因结构 调控 编码区下游
108、基因的结构 真核细胞 非编码区
基因结构 编码区 内含子:非编码序列
外显子:能编码蛋白质内含子>外显子
原核基因无外显子内含子之说
主要分布于微生物
剪刀:限制性内切酶 特异性(专一性)
(200多种) 获得粘性末端
109、基因的操作工具 针线:DNA连接酶:扶手(磷酸二脂键)不是踏板(氢键)
条件①复制保存②多切点③标记基因
种类:质粒、病毒
运输工具:运载体 ①染色体外小型环状DNA
②存在于细菌、酵母菌
质粒特点 ③质粒是常用的运载体
④最常用:大肠杆菌
⑤对宿主细胞的生存无
基因工程 (基因拼接技术、DNA重组技术、转基因技术) 决定性作用
直接分离 常用鸟枪法
提取目的基因 人工合成(反转录法、根据已知AA序列合成DNA)
目的基因与运载体结合 同一种限制酶
110、基因操作步骤 将目的基因导入受体细胞→细菌、酵母菌、动植物
CaCl2处理细胞壁 ( 受精卵好 繁殖速度快)
目的基因的检测和表达:标记基因、目的基因是否表达?
逆转录 碱基互补配对
mRNA 单链DNA 双链DNA
推测 推测 合成
氨基酸序列 mRNA序列 DNA碱基序列 目的基因
药(胰岛素、干扰素、白细胞介素、乙肝疫苗)
111、基因工程的成果 治病:基因诊断与基因治疗(基因替换)
新品种(转基因) 食品工业(食物)
环境监测(DNA分子杂交 探针)
生物固氮、基因诊断、基因治疗、单细胞蛋白(微生物菌体本身)、
单克隆抗体、生物导弹(单抗+抗癌药物)
112、 间接联系 核心 核膜
高尔基体 内质网 细胞膜
线粒体膜
间接(具膜小泡) (内吞外排说明双向)
分泌蛋白:抗体、蛋白质类激素、胞外酶(消化酶)等分泌到细胞外
粗面内质网上的核糖体 内质网运输加工 高尔基体加工 成熟蛋白质 胞外
113、生物膜系统(不等于生物膜):细胞膜、核膜及由膜围绕而成的细胞器
离体→营养物质+激素 适宜温度+无菌
植物组织培养 离体→愈伤组织→根芽(胚状体)→植物体
选无病毒 尖(生长点) 紫草素
114、植物细胞工程 两种不同→杂种细胞→新植物体
植物体细胞 去掉细胞壁→原生质体→杂种细胞→新植物体
杂交 种间存在生殖隔离 不能有性杂交
好处:克服远源杂交不亲和障碍 培育新品种
是其它动物细胞工程技术的基础
动物细胞培养 液体培养基:动物血清
115、 动 取自动物胚胎或出生不久的幼龄动物的器官或组织
物 用胰蛋白酶处理
细 原代培养→传代培养(细胞株→细胞系 遗传物质发生改变)
胞 灭活的病毒做诱导剂+物理、化学方法
工 动物细胞融合 最重要用途:制备单克隆抗体
程 理论基础:细胞膜的流动性
单克隆抗体→指单个B淋巴细胞经克隆形成的细胞群产生的化学性质单一、特异性强的抗体(优点:特异性强、灵敏度高)。每一个B淋巴细胞只分泌一种特异性抗体(共百万种) *杂交瘤细胞 *生物导弹
116、微生物包含了除植物界和动物界以外的所有生物
质粒(小型环状DNA)控制抗药性、固氮、抗生素生成
核区(大型环状DNA)控制主要遗传性状 有的细菌有荚膜、芽孢、鞭毛
碳源:无机/有机碳源 自养/异养
117、 微生物生长 氮源:加不加额外的氮源
所需的营养物质 生长因子:(维生素、氨基酸、碱基→构成酶和核酸)
水:
无机盐:
固体培养基:分离、鉴定、计数
物理性质 半固体培养基:运动、保藏菌种
液体培养基:工业生产
118、培养基 天然培养基:工业生产
化学性质 合成培养基:分类鉴定
选择培养基 青霉素→选出酵母菌、霉菌等真菌
用途 NaCl:金黄色葡萄球菌
鉴定培养基:伊红美蓝→大肠杆菌→深紫色和金属光泽
自己设计实验:把混合在一起的圆褐固氮菌、硝化细菌、大肠杆菌区分开,并筛选纯种。
酶合成的调节 诱导酶:基因和诱导物控制
119、微生物代谢调节 酶活性的调节 结构改变 可逆 快速 准确
必需物质,一直产生 氨基酸、核苷酸、维生素
初级代谢产物 无种的特异性 多糖、脂类
120、代谢产物 非必需物质,一定阶段 抗生素、毒素
次级代谢产物 有种的特异性 四素 色素、激素
121、微生物群体生长曲线: 3
2 4
1
(1)调整期:代谢活跃,开始合成诱导酶 初级代谢产物收获的最佳时期
(2)对数期:形态和生理特性稳定,代谢旺盛;科研用菌种,接种最佳时期
(3)稳定期:次级代谢产物收获最佳时期,芽孢生成(种内斗争最剧烈)
及时补充营养物质,可以延长稳定期
(4)衰亡期:多种形态,出现畸形,释放次级代谢产物 生存环境恶劣
与无机环境斗争最激烈的是4衰亡期。
营养物质消耗有害代谢产物积累PH不适宜导致3.4时期的出现。
注意:前三个时期类似“S”型增长曲线,但是多了衰亡期
122、影响微生物生活的环境因素
PH值:影响酶的活性、细胞膜的稳定性,从而影响微生物对营养物质的吸收
温度:影响酶和蛋白质的活性
O2浓度:产甲烷杆菌
123、高压蒸汽灭菌法:1/5、1/2、2/3、75% 由里向外、细密、不重复
溶化后分装前必须要 调节pH
细菌培养的过程:培养基的配制→灭菌→搁置斜面→接种→培养观察
实例:谷氨酸发酵(黄色短杆菌、谷氨酸棒状杆菌)
概念:
菌种选育:诱变育种、基因工程、细胞工程
培养基的配制:成分、比例,pH适宜
124、发酵工程 内容 灭菌:去除杂菌
扩大培养和接种:菌种多次培养达到一定数量
发酵过程:(中心阶段)控制各种条件,生产发酵产品
分离提纯 菌体:过滤、沉淀(单细胞蛋白即微生物菌体本身)
代谢产物:蒸馏、萃取、离子交换
应用 医药工业:生产药品和基因工程药品
食品工业:传统发酵产品、食品添加剂、单细胞蛋白等
125、 C/N=4/1 菌体大量繁殖但产生的谷氨酸少(P79)
记住 C/N=3/1 菌体繁殖受抑制,但谷氨酸的合成量大增
溶氧不足: 产生乳酸或琥珀酸
pH呈酸性: 产生乙酰谷氨酰胺(P95)