① 神经节是什么
神经节指的是周围神经系统的某些特定部位存在的神经元胞体组成的团块。
神经节是由具有相同功能的神经元组成的结节状结构,聚集在中枢神经系统外的周围部分。表面覆盖着一层结缔组织膜,其中包含血管段厅、神经和脂肪细胞。毛囊与周围神经外膜和神经束膜相连,深入神经节,在神经节内形成网状支架。神经节中神经细胞的纤维分布到身体的相关部位,称为节后纤维。根据生理和形态的不同,神经节可分为脊神经节和植物神经节。脑脊液神经节在功能上属于感觉神经元,在形态上属于假单极或双极神经元。植物神经节包括交感神经节和副交感神经节。交感神经节位于脊柱两侧。副交感神经节位于受神经支配的器官附近或器官壁内。在神经节中,节前神巧余经元和节后神经元的轴突形成突触。神经节通过神经纤维与大脑和脊髓相连。神经节可分为脑脊液神经节和植物神经节。脑脊液神经节位于脊神经后根和部分脑神经干上,植物神经节包括交感神经节和副交感神经节。交感神经节位于脊柱两侧和前方,而副交感神经节位于器握宽隐官附近或内部。神经节一般呈卵圆形,与周围神经相连,周围有结缔组织囊。神经节中的神经细胞称为神经节细胞,细胞体被一层扁平的卫星细胞包裹,卫星细胞外有基膜。除神经节细胞外,神经节内还有大量神经纤维和少量结缔组织及血管。此外,传入神经的细胞体,带有轴突和树突,树突连接受体的神经末梢,轴突充当传入神经中心,也被称为神经节。
② 什么是组织生物中的
生物学中组织的概念
在多细胞生物体内,由一群形态和机能相同的细胞,加上细胞间质组成的基本结构。生物体的进化程度越高,组织分化就越明显。种子植物有分生组织和永久组织;高等动物有上皮组织、结缔组织、肌肉组织和神经组织。
③ 组织有哪些分类
管理学中组织的定义
(一)概念: 组织是指为了实现既定的目标,按一定规则和程序而设置的多层次岗位及其有相应人员隶属关系的权责角色结构。 定义包含的特点:1、有明确的目标; 2、是实现特定目标的工具; 3、有不同层次的分工合作; 4. 是一个有机的系统整体 (二)类型(P103) 1、按人数分为小型、中型和大型组织 2、按组织对成员的控制方式分为强制(监狱)、规范(军队)和实用组织(工厂) 3、按组织产生的依据分为正式组织与非正式组织: 比较项目 正式组织 非正式组织
存在形态 正式(官方) 非正式(民间)
形成机制 自觉组建 自发形成
运作基础 制度与规范 共同兴趣与情感上的一致
领导权力来源 由管理当局授予 由群体授予
组织结构 相对稳定 不稳定
目标 利润或服务社会 成员满意
影响力的基础 职位 个性
控制机制 解雇或降级的威胁 物质或社会方面的制裁
沟通 正式渠道 小道消息
生物学中组织的概念(细胞的分化)
由形态相似、功能相同的一群细胞和细胞间质组合起来,称为组织。人体的组织分为上皮组织、结缔组织、神经组织和肌肉组织四种。 组织是构成器官的基本成分,上述四种组织排序结合起来,组成具有一定形态并完成一定生理功能的结构,称为器官,例如胃、肠等。 许多器官联系起来,成为能完成一系列连续性生理机能体系,称为系统。如由口腔、咽、食管、胃、小肠、大肠、肛门以及肝、胆、胰等一系列器官联系起来,共同完成食物的消化和吸收,组成了消化系统。此外,还有运动、呼吸、泌尿、生殖、循环、神经、感觉和内分泌8个系统。 1.细胞分化产生了组织
组织的含义
细胞分化产生了不同的细胞群,每个细胞群都是由许多形态相同,结构、功能相似的细胞和细胞间质联合在一起构成的,这样的细胞群称做组织。
人有四大基本组织
上皮组织、结缔组织、肌肉组织、神经组织。
④ 什么是神经生物学 啥是神经生物学
1、神经生物学是生物学中研究神经系统的解剖,生理,病理方面内容的一个分支。
2、作为生命科学的一个分支学科,神经生物学是比盯和较特殊的。首先,它的研究离不开生命科学的一些基本研究材料与方法。神经生物学的材料与生物学的其它学科一样,是动物,从低等的果蝇到伏握高等的小鼠、人。神经生物学的研究方法同样离不开核酸的分析与蛋白质的分析,分子生物学的PCR、免疫组化、western blot也是神经生物学的主要研究方法。
3、由于神经生物学的研究对象——大脑,是异常复杂、异常精贵的,神经生物学虽然没有方法上的缺则庆突破带来的重大研究成果,但还是吸引了全世界最优秀的科学工作者的目光。
⑤ 生物中组织的定义
组织
(生物学术语)
组织(英语:Tissue)是界于细胞,及器官之间的细胞架构,由许多形态相似的细胞及细胞间质所组成。因此它又被称为生物组织。
多细胞生物的细胞分化产生了不同的细胞群,每个细胞群都是由许多形态相似,结构、功能相同的细胞和细胞间质联合在一起构成的,这样的细胞群称做组织。植物和动物的组织不同。
它跟器官不同的地方,是它不一定具备某种特定的功能。
由形态相似、功能相同的一群细胞和细胞间质组合起来,称为组织。
多细胞动物是由不同形态和不同机能的组织构成的。组织(tissue)是由一些形态相同或类似、机能相同的细胞群构成的。在组织内不仅有细胞,也有非细胞形态的物质称为细胞间质(如基质、纤维等)。每种组织各完成一定的机能。在高等动物体(或人体)具有很多不同形态和不同机能的组织。通常把这些组织归纳起来分为四大类基本组织,即上皮组织、结缔组织、肌肉组织和神经组织。
⑥ 初一生物中的上皮组织,结缔组织,肌肉组织,神经组织各有那些
1、上皮组织,如:口腔上皮 ,也叫做上皮,它是衬贴或覆盖在其它组织上的一种重要结构。由密集的上皮细胞和少量细胞间质构成。结构特点是细胞结合紧密,细胞间质少。通常具有保护、吸收、分泌、排泄的功能。上皮组织可分成被覆上皮和腺上皮两大类。简单来说就是人体最表面的那层皮肤。
2、肌肉组织,如:胸肌 ,是由特殊分化的肌细胞构成的动物的基本组织。肌细胞间有少量结缔粗则组织,并有毛细血管和神经纤维等。肌细胞外形细长因此又称肌纤维。肌细胞的细胞膜叫做肌膜,其细胞质叫肌浆。肌浆中含有肌丝,它是肌细胞收缩的物质基础。根据肌细胞的形态与分布的不同可将肌肉组织分为3类:即骨骼肌、心肌与平滑肌。
骨骼肌纤维一般为长圆柱形,长约1~40毫米,直径10~100 微米。每条肌纤维周围均有一薄层结缔组织称为肌内膜。由数条至数十条肌纤维集合成肌束,肌束外有较厚的结缔组织称为肌束膜,由许多肌束组成一块肌肉,其表面的结缔组织称肌外膜,即深筋膜。各结缔组织中均有丰富的血管,肌内膜中有毛细血管网包绕于肌纤维周围。肌肉的袜凳慧结缔组织中有传入、传出神经纤维,均为有髓神经纤维。分布于肌肉内血管壁上的神经为自主性神经是无髓神经纤维。
平滑肌纤维一般为梭形,长约20~300 微米,直径约6微米,妊娠期子宫的平滑肌长可达500微米,核为长椭圆形位于肌纤维的中央基膜附于肌膜之外。平滑肌常排列成束或排列成层。按其神经末梢分布方式可分为两类 :一类为少数,肌细胞的表面有神经末梢分布,其末梢呈念珠状膨大,而其他多数平滑肌细胞没有神经末梢,这些细胞则通过平滑肌细胞的缝管连接传递信息,使神经冲动扩散,机体内多数平滑肌如分布于消化管、子宫壁的平滑肌均属此类。另一类是多数,每个肌细胞表面都有神经末梢分布,各细胞直接受神经的控制,如眼的瞳孔括约肌与开大肌属于此类。此外,还有中间型的。平滑肌除具有收缩功能外,还有产生细胞间质的功能。
心肌纤维呈圆柱形,直径约为15~20微米。心肌纤维有分支,互相连接成网,因此心肌可同时收缩 。心肌的生理特点是能够自动地有节律地收缩。
3、神经组织,如:大脑、脊髓,人和高等动物的基本组织之一。是神经系统的主要构成成分。神经组织是由神经元(即神经细胞)和神经胶质所组成。神经元是神经组织中的主要成份,具有接受刺激和传导兴奋的功能,也是神经活动的基本功能单位。神经胶质在神经组织中起着支持、保护和营养作用。
4、结缔组织,如:软骨 ,由细胞和大量细胞间质构成,结缔组织的细胞间质包括基质、细丝状的纤维和不断告答循环更新的组织液,具有重要功能意义。细胞散居于细胞间质内,分布无极性。广义的结缔组织,包括液状的血液、松软的固有结缔组织和较坚固的软骨与骨;一般所说的结缔组织仅指固有结缔组织而言。结缔组织在体内广泛分布,具有连接、支持、营养、保护等多种功能。
⑦ 科学作业人体结构
1. 科学小知识人体结构(人体结构知识)
科学小知识人体结构(人体结构知识) 1.人体结构知识
人体结构的基本单位是细胞。细胞之间存在着非细胞结构的物质,称为细胞间质。
细胞可分为三部分:细胞膜、细胞质和细胞核。细胞膜主要由蛋白质、脂类和糖类构成,有保护细胞,维持细胞内部的稳定性,控制细胞内外的物质交换的作用。细胞质是细胞新陈代谢的中心,主要由水、蛋白质、核糖核酸、酶、电解质等组成。细胞质中还悬浮有各种细胞器。主要的细胞器有线粒体、内质网、溶酶体、中心体等。细胞核由核膜围成,其内有核仁和染色质。染色质含有核酸和蛋白质。核酸是控制生物遗传的物质。
神经组织由神经元和神经胶质细胞构成,具有高度的感应性和传导性。神经元由细胞体、树突和轴突构成。树突较短,像树枝一样分支,其功能是将冲动传向细胞体;轴突较长,其末端为神经末梢,其功能是将冲动由胞体向外传出
肌组织由肌细胞构成。肌细胞有收缩的功能。肌组织按形态和功能可分为骨骼肌、平滑肌和心肌三类
结缔组织由细胞、细胞间质和纤维构成。其特点是细胞分布松散,细胞间质较多。结缔组织主要包括:疏松结缔组织、致密结缔组织,脂肪组织、软骨、骨、血液和淋巴等等。它们分别具有支持、联结、营养、防卫、修复等功能。
比利时医生维萨留斯发表《人体结构》一书,对盖伦的“三位一体”学说提出挑战。西班牙医生塞尔维特发现血液的小循环系统,证明血液从右心室流向肺部,通过曲折路线到达左心室。英国解剖学家哈维通过大量的动物解剖实验,发表《心血运动论》等论着,系统阐释了血液运动的规律和心脏的工作原理。他指出,心脏是血液运动的中心和动力的来源。这一重大发现使他成为近代生理学的鼻祖。
[编辑本段]八大系统
消化系统,神经系统,运动系统,免疫系统,内分泌系统,泌尿生殖系统,循环系统,呼吸系统
[编辑本段]人体的化学组成
水占了人体重量的65%。一个体重70公斤的成年人,脱水后只剩25公斤,其中碳水化合物3公斤,脂肪7公斤,蛋白质12公斤,矿盐3公斤。
[编辑握世本段]血 液
人体总血量约为体重的8%。若一次失血超过人体内血量的20%,生命活动便受阻。健康的人,一次失血不超过10%时,一般可以迅速恢复。一滴血液在人体内循环一周为22秒。
[编辑本段]肌 肉
人体全身的肌肉共约639块。约由60亿条肌纤维组成,其中最长的肌纤维达60厘米,最短的仅有1毫米左右。大块肌肉有2000克重,小块的肌肉仅有几克。一般人的肌肉占体重的35%-40%。肌肉内毛细血管的总长度可达10万公里,可绕地球两圈半。
[编辑本段]大 脑
大脑由约140亿个细胞构成,重约1400克,大脑皮层厚度约为2-3毫米,总面积约为2200平方厘米,据估计脑细胞每天要死亡1000至10万个(越不用脑,脑细胞死亡越多)。一个人的脑储存信息的容量相当于一万个藏书为1000万册的图书馆,最善于用脑的人,一生中也仅使用掉脑能力的10%。人脑中的主要成分是水,占80%。它虽只占人体体重的2%,但耗氧量达全身耗氧量的25%,血流量占心脏输出血量的15%,一天内流经大脑的血液为2000升。大脑消耗的能量若用电功率表示大约相当于25瓦。
2.中班科学介绍人体结构的教案
教学目标
1、让幼儿认识身体的各个部位,并了解它们的作用。
2、学会用肢体来表现动作。
活动准备
1、玩具娃娃。2挂图。
活动过程
1、出示玩具娃娃,引导幼儿观察它的身体构成。
如:亲爱的小朋友,我想问一下,你们认识自己的身体吗?知道你们的身体都有哪些作用吗?我这里有一个玩具娃娃,咱们一边观察,一边说一说身体的各个部分好吗?
2、教师小结:哦,原来我们的身体有那么多部分组成,我们的手可以用来拿东西,我的腿可以用来走路,我们的眼睛可以看做皮碰到东西,我们的鼻子可以闻到东西的味道,我们的耳朵可以用来听,我们的嘴巴可以用来吃或说话,我们的身体是不是很有趣呢?
3、通过游戏,引导幼儿用肢体动作来表现。
如:其实我们的身体纯谈可以游戏,可以运动,还可以说话呢?小朋友们请看老师用自己的身体讲话,我要做挥动手臂的动作,这表示“你好!”做拍手,表示“欢迎”
4、鼓励幼儿一起做,并请个别幼儿大胆尝试肢体讲话。
3.人体结构和功能
人体结构与功能总论: 细胞、基本组织、运动系统、消化系统、呼吸系统、血液、脉管系统、沁尿系统、生殖系统、感觉器官、神经系统、内分沁系统、能量代谢与体温、胚胎发育。
一.人体结构的基本单位是细胞: 细胞之间存在着非细胞结构的物质,称为细胞间质。 细胞可分为三部分:细胞膜、细胞质和细胞核。
细胞膜主要由蛋白质、脂类和糖类构成,有保护细胞,维持细胞内部的稳定性,控制细胞内外的物质交换的作用。细胞质是细胞新陈代谢的中心,主要由水、蛋白质、核糖核酸、酶、电解质等组成。
细胞质中还悬浮有各种细胞器。 主要的细胞器有线粒体、内质网、溶酶体、中心体等。
细胞核由核膜围成,其内有核仁和染色质。染色质含有核酸和蛋白质。
核酸是控制生物遗传的物质: 细胞和细胞间质组成的基本结构叫组织。 人体的组织有四大类: 1.上皮组织:包括表皮、黏膜上皮、血管内皮、胸膜及腹膜等,具有保护和分泌等功能。
2.结缔组织:种类繁多,结构多样,功能也很复杂,有的为流动的液体,如血液、淋巴等,主要起营养的作用;有的起连接和支架的作用,如骨、韧带等。 3.肌肉组织:根据形态、功能和位置的不同可将其分为三种:骨骼肌、平滑肌、心肌。
4.神经组织:是构成神经系统的主要成分,由神经细胞和神经胶质细胞构成。 神经细胞又叫神经元,能感受体内、外环境的 *** 和传导兴奋,是神经系统结构和功能的基本单位。
经胶质细胞对神经元起支持、保护、营养等作用。 由多种组织构成的能行使一定功能的结构单位叫做器官。
器官的组织结构特点跟它的功能相适应。 我们一般都比较容易注意到一些组织集中的直观的器官。
比如:眼、耳、鼻、舌等感觉器官。 再如:内脏器官心、肝、肺、胃、肾等。
不少器官都容易被人们忽略而不认为是器官。比如任何一块骨骼肌,皮肤等。
维生器官是人体内维持生命的器宫。如果身体内的维生器官不能完全运行正常的话,一个人便可以很快死亡。
主要的维生器官有: 脑部,负责控制和协调呼吸、心跳、荷尔蒙生产、感觉接收、肌肉运动等 心脏,将含有充分氧气及养分的血液送至全身,供应各组织器官 肺部,负责呼吸及使血液带氧 肝脏,将血液内的废物移除带到膀胱之内 其他负责消化和排泄的器官则对于长期维生有必要性。 虽然如些,有很多人有缺少肾脏、脾脏和肠脏等器官的情况下依然生存,不过当然需要机器的帮助。
由各个器官按照一定的顺序排列在一起,完成一项或多项生理活动的结构叫系统。 人体共有八大系统:运动系统、神经系统、内分泌系统、循环系统、呼吸系统、消化系统、泌尿系统、生殖系统。
这些系统协调配合,使人体内各种复杂的生命活动能够正常进行。八大系统的作用: 一、运动系统:运动系统由骨、软骨、关节和骨骼肌等构成。
起支架、保护和运动的作用。 二、神经系统:神经系统由神经元组成,是由中枢神经系统和遍布全身的周围神经系统而组成。
在体内起主导作用;一方面它控制和调节个器官、系统的活动;另一方面通过神经系统的分析与综合,使人体对环境变化的 *** 作出相应的反应,达到人体环境的统一。 三、内分泌系统:内分泌系统由多种腺体组成。
通过分泌不同的激素(雄性、雌性激素、胰岛素、肾上腺素)对整个人体的生长、发育、新陈代谢和生殖起到调节作用。 四、循环系统:循环系统由心脏、血管和淋巴管组成。
它将消化系统的吸收的营养物质和肺吸收的氧送到全身器官的组织和细胞,同时将他们的代谢产物及CO2运送到肾、肺、皮肤排出体外。以保证人体的新陈代谢不断。
五、呼吸系统:由呼吸道和肺组成。吸入新鲜空气,通过肺泡内的气体交换,使血液得到氧并排除Co2。
六、消化系统:有口腔、咽、食管、小肠、大肠等组成。是食物的消化和吸收的功能。
供人体所需要的书屋和能量。 七、泌尿系统:由肾脏、输尿管、膀胱、尿道等组成。
排出体内多余的水分及代谢产物或毒素。 八、生殖系统:产生生殖细胞,繁殖后代。
4.我现在急需小学四年级科学教案身体的结构(教科版)
1、身体的结构一、教学目标:科学概念:1、人体根据外观特征可以分为头、颈、躯干、四肢四部分,如果根据做事情的不同人体还会有不同的结构划分。
2、人体的外部特点可以直接观察到,内部的特点可以借助一些工具观察到。过程与方法:1、能够应用触摸、手捏、听等观察方法并结合体验活动,了解身体内部的结构。
2、能够根据观察目的的不同,选择与之相适应的观察方法。情感态度与价值观:1、能够在对人体的观察活动中,将想象与实际的观察区分开,保证观察活动的真实性。
2、对探究自己的身体感兴趣,感受人体构造的精巧与和谐之美。二、教学重点:身体由哪些部分组成,以及认识人体的左右对称的特点。
三、教学难点:观察身体内部器官。四、教学准备:空白纸、放大镜、尺子、人体基本结构图等。
五、活动过程:(一)引入:动物的本领和它们的身体特点有关。1、提出问题:人人知道青蛙是捕虫能手,青蛙为什么善于捕虫?老鹰为什么能抓住机灵的老鼠?啄木鸟为什么能吃到树干中的害虫?2、放映录像带:青蛙的眼睛、后腿、舌头具有善于捕虫的特点,肤色用伪装来保护自己;老鹰有坚硬而带弯钩的喙,以及尖利的爪子,适于捕捉老鼠;啄木鸟的嘴尖尖的适合啄食隐藏在树干中的虫子,爪子两趾在前两趾在后,适于抓住树干。
3、小结:动物的本领和它们身体的特点有关系。4、引出课题:人有哪些本领?人为什么这样有本领?今天我们来观察自己的身体。
(二)观察人的身体。1、观察身体的外形。
我们的身体由哪几部分组成?(让学生观察到人体可以分成头、颈、躯干、四肢几个大的部分外,还可以让学生进一步把这些大的部分再划分为小的部分。如躯干部还可以可以分成胸部、腹部、肩部、腰部、臀部、背部等)2、人体是左右对称的。
(1)教师提出问题:如果从头顶开始,通过鼻尖画一条线,把人的身体分为左右两部分,发现了什么?(学生回答人体是对称的。这里要求学生具体说出怎样对称。
通过讨论,学生明确:人体的左边和右边的眼、耳、鼻、上肢、下肢等各部分不仅大小、长短、粗细、颜色、形状而且位置都是一样的,即一一对应的)(2)让学生亲自体验身体左右对称这种结构的好处。活动:①体验用两只眼睛看,比用一只眼睛看到的范围广;活动:②让学生体会两只眼睛比用一只眼睛看得准确;活动:③让学生先用两只手系红领巾,接着用一只手系红领巾,让学生体会两只手比一只手做事方便灵活;活动:④让学生体会如果两只脚不一样长,弯腰、上台阶、转向都会很不方便,身体也不易保持平衡。
(这些活动生动有趣,又使学生体会到我们身体器官左右对称的优越性。当然从人体外部来看,结构上还有不少特点,但对小学生来说观察起来都有一定的难度,不便观察,所以也就把重点放在身体的左右对称这个特点上。
从教学的情况来看,选择这个观察点,不仅符合学生的水平,而且选择的体验活动,方便易行,人人都能参与,学生很有兴趣,也使课堂气氛很活跃。)3、观察身体的内部。
(1)教师用解暗箱的游戏引入(突破难点)。教师准备一个牛皮纸袋,里面有一个塑料瓶,瓶里装半瓶水,另外还有其它的如夹钳、钟表等物品。
教师让学生想办法推测里面的物品,并说出自己这样猜测的理由。学生通过用手摸、捏、摇、听等方法最后终于猜出了里面的物品。
接着教师出示一幅画,上面画有一个人体外表的轮廓,告诉学生人体好比刚才那个纸袋子,外面由皮肤包裹着,看不见里面,让学生想办法推测内部有什么。这时学生的思路打开了,想出了许多好办法:①有的说,用耳朵可以听到心脏的跳动,从而可以知道心脏的位置;②有的说,手臂曲起,可以摸到鼓起的肌肉;③有的说,说话时有手摸喉部,可以摸到正在振动的声带;跑步后胸部一起一伏,可以知道那里是肺部;④有的说,吃饱饭后,胀起来的地方是胃;⑤有的说,饿的时候,肚子咕咕叫,这里可能是肠子;⑥有的说,用力往下捏,可以摸到硬的,那是骨头;……最后让学生根据大家用看、摸、听等方法所得到的信息,综合想象一下人体的内部是什么模样?(皮肤下面是什么、肌肉下面是什么、骨胳包着的是什么,血管和神经怎样分布……)4.身体怎样工作:利用学生熟悉的身体活动,让学生在对活动的体验中,利用泡泡图的方式把活动中多个身体部分共同参与的情况表现出来。
思考:如果按照人体工作的类型划分,我们更深夜静可以怎么看待人体的组成呢?(三)课的延伸。问题:直立行走是人区别于其它动物的重要特征之一,请查阅资料了解人体具备什么样的结构特点,使其能直立行走?(四)作业附板书设计:观察我们的身体头颈躯干四肢。
5.人体由哪些器官组成
人体的结构是非常复杂的,人类至今还没法对它的结构做出详细的解读。传统医学只能从五脏六腑这些大的器官解释器官的组成,对更复杂的细胞的器官,就不能做出完整地说明了。生物学自进入分子水平以来,发展大有一日千里之势,给予生命科学不可 *** 的活力和前景,逐渐揭开关于生命奥秘的面纱,生命的本质问题有可能能从原子和分子的水平,从物理和化学的规律中得到解释和说明。
对一般人来讲,我们不可能撑握这门学科的全部知识,但我们有必要了解它的基本知识,以便更新我们的观念,强化我们的保健意识。
分子生物学研究的特点是将分子水平和细胞水平、整体水平甚至群体水平结合起来,为解读生命现象提供了最重要的知识,认定细胞是生命基本单位的理论,为生命科学确立了“一切生物学关键问题必须在细胞中找寻”的新观念。我们仅从细胞的结构看,就能看出人体器官的复杂程度。
我们知道:生物体都是由"细胞"构成的,近年来,人类对细胞的认知有了许多突破性进展,为破译生命奥秘,延长寿命提供了极其重要的科学依据,使对人的一生从细胞学的角度上有了崭新的认识: *** 和卵子一旦结合,就开始了细胞分裂,它们一分为二,二分为四,四分为八——一直分裂到3万亿个细胞时,新的生命就会平安地来到世上;婴儿出生以后众多的细胞还要继续分裂,这就是生命的成长过程,一直分裂到在约60万亿个细胞时,人体就发育成熟了;人的一生中细胞要代谢50多次,也就是说,每天要新合成6000万个细胞,才能满足人体的新陈代谢的需要。
细胞由细胞膜、细胞质、细胞核等器宙组成,细胞核内有23对共46条染色体,里面包含了3、5万个左右的基因,主宰着人类30亿个遗传信息单位,这些信息与人的相貌、特征、性格、体能、智力、遗传病、胖瘦、病理等都有着密切的关系。
我们现在知道,细胞虽小,但其结构非常精细,现在人们可以应用电子显微镜对细胞的结构和各种器官进行观察,例如,肝细胞是由胞膜、胞质(含基质和许多细胞器)和胞核组成。而细胞器由线粒体、内质网(粗面、光面)、溶酶体、高尔基体、微粒体、包涵体及饮液泡等组成。其中,线粒体:形状为圆、椭圆和杵棒状的双膜结构,常度为1.0微米~5.0微米,厚度为0.25微米~0.7微米。每个肝细胞可有1000~2000个线粒体,其中储有70种以上的酶和辅酶,如丙氨酸氨基转移酶(ALT、曾用谷丙转氨酶即GPT,简称转氨酶)、细胞呼吸酶及三磷酸腺苷等。人体摄入的糖、脂肪、蛋白质三大营养素的代谢都是在线粒体内进行的,并可产生人体所需的大量能量,所以被称为供能“发电站”。当肝炎或全身缺氧时,线粒体是最早、最敏感的受害者,其结果引起转氨酶升高等生化功能紊乱。
这是一般常识,供你参考!
6.人体的结构有什么组成
人体是由什么组成a的呢?
首先,是肉体。每一个人都有一个躯体,平时我们常说的四肢五官,五脏六腑其实就是人的肉体的形象化的描述。人的肉体是由一定的物质元素按照一定的百分比组成的。肉体是人赖以生存的基础。没有了肉体,人体自然就不存在了。
其次,每个人都有思维力,也就是思维能力。有了思维能力,人才能认识世界,获取知识,丰富生活。思维能力是人的言行举止的指挥官。
再次是人人都有的生命力。生命力可以看成是人体内部各种生理功能的综合能力,如消化功能、吸收功能、造血功能、血液循环功能、神经功能等等。每一种功能既自成一体又与其它功能息息相关。
平时,我们在说话写作时经常用到“灵与肉”这样的表述,其实,“灵与肉”里的“灵”应该包括思维力和生命力两部分。这样来理解“灵”的话,灵的内涵就比较实在,就可以消除它的封建迷信色彩。
人的肉体其实还可以从另一个角度分为内外两个系统。凡接触外部世界的感知器官都可定义为外系统,如眼、耳、鼻、手、脚。内系统则包括五脏六腑、神经系统、淋巴系统、血液循环系统等
那么思维力和生命力各有什么特点呢?
思维力的作用,是主外为主,调内为辅。它主持着人体对外界事物的反映和对策,指挥着四肢五官的对外行为。是以意识行为为主,超意识行为为辅。意识行为就是服从于人的思想意识支配的行为,说得具体些,就是想与做的行为。例如,一个人的行路行为,首先是想行,跟着是支配双脚去行。一个人的外系统的行为是服从于思想意识支配的。每个人一天的所想所作所为也基本上都是受意识行为支配的。如果一个人的思维力出了故障,就算他有正常的肉体,思维力也不能正常工作,他就不能算是一个正常的人了,比如:痴呆、傻子、各类精神病等。
生命力的作用与思维力正好相反,是主内为主,调外为辅。它主持着人体内各种器官、各种系统的运作,主宰着物质在人体内的新陈代谢。是以超意识行为(或称无意识行为)为主,意识行为为辅。当人把食物吃到肚子里去了以后,就再也不想它了。没有人会和胃或者肠子说话,告诉它们应该怎样消化,怎样吸收。完全不用!食物在体内的消化吸收完全是无意识的或者说是超意识的。有点生理知识的人知道,心脏是供血器官,骨髓是造血器官,但是没有一个人给心脏或骨髓下指令,让它们如何供血,如何造血。它们是在超意识地运作,在默默地为人作贡献。就拿指甲的生长来说,可能组成指甲的物质成分并不复杂,但是谁知道,究竟通过体内多少器官、多少功能,把食物里众多的物质元素消化、吸收、归类、分化与输送到手指头,变成指甲均匀地生长出来呢?
如果我们这样来理解的话,就可以解释其它一些常见的现象。比如:几乎每个人都有伤风感冒而引起鼻塞的时候,他觉得很不舒服,恨不得用个通条通一通。但是,并不是你一天到晚想着让鼻子通它就会通的,因为“想”只是你的意识行为,而伤风感冒是上呼吸道感染,是呼吸系统的功能暂时出了问题,也就是生命力的一部分出现了问题,而生命力是基本不受制于人的意识的,所以,靠“想”是想不好的。再比如,早搏的心脏病人,心脏会间隙性地停跳,病人是多么想让心脏不要停,可是由于同样的原因,心脏并不会理会病人的“想”,照停不误。
如果我们能这样来理解人体的结构的话,我们就可以进一步来说明气功和现代医学的殊途同归的问题了。
7.科学小常识
1、加碘食盐的使用。碘是人体必需的营养元素,长期缺碘可导致碘缺乏症,食用加碘食盐是消除碘缺乏症的最简便、经济、有效的方法。加碘食盐中含有氯化钠和碘酸钾,人体中需要的碘就是碘酸钾提供的,而碘酸钾受热、光照时不稳定易分解,从而影响人体对碘的摄入,所以炒菜时要注意:加盐应等快出锅时,且勿长时间炖炒。
2、豆腐不可与菠菜一起煮。草酸钙是人体内不能吸收的沉淀物。菠菜、洋葱、竹笋中含有丰富的草酸、草酸钠 ,豆腐中含有较多的钙盐,如硫酸钙等成分。上述物质可以发生复分解反应,生成草酸钙沉淀等物质。从医学的观点看:菠菜、洋葱、竹笋等不要和豆腐同时混合食用,会生成草酸钙的沉淀,是产生结石的诱因 ;从营养学的观点看,混合食用会破坏他们的营养成分。
3、铝对人体健康的危害。铝一直被人们认为是无毒元素,因而铝制饮具、含铝蓬松剂发酵粉、净水剂等被大量使用。但近几年的研究表明,铝可扰乱人体的代谢作用,长期缓慢的对人体健康造成危害,其引起的毒性缓慢且不易觉察,然而,一旦发生代谢紊乱的毒性反应则后果严重。防铝中毒,生活中应注意(1)减少铝的入口途径,如少吃油条,治疗胃的药物尽量避免氢氧化铝的药剂。(2)、少食铝制品包装的食品。(3)、有节制使用铝制品,避免食物或饮用水与铝制品之间的长时间接触。
4、水果为什么可以解酒,这是因为,水果里含有机酸,例如,苹果里含有苹果酸,柑橘里含有柠檬酸,葡萄里含有酒石酸等,而酒里的主要成分是乙醇,有机酸能与乙醇相互作用而形成酯类物质从而达到解酒的目的。同样道理,食醋也能解酒是因为食醋里含有3--5%的乙酸,乙酸能跟乙醇发生酯化反应生成乙酸乙酯。
5、炒菜时不宜把油烧得冒烟,油在高温时,容易生成一种多环化合物,一般植物油含的不饱和脂肪酸多,更容易形成多环化合物,实验证明,多环化合物易于诱发动物得膀胱癌。一般将油烧至沸腾就行了,油的“生气”便可以除去。
6、海水中为何出现“赤潮”。近年来,我国渤海湾等近海海域中,曾出现大面积的红色潮水,人们称这种现象为“赤潮”。赤潮不是潮汐现象,也不像“黑潮”那样是海流运动,而是海洋中一种红色的浮游生物在特定条件下过度繁殖的生物现象。为什么浮游生物能过度繁殖呢?原来大量涌进海洋中的废水、废渣以及经大气交换进入海洋的物质中,有些含有氮、磷等元素,属于植物生长必需的营养素。因此浮游生物大量急剧繁殖,就使大海穿上了“红装”。为了预防海洋赤潮现象,应该控制含氮、磷等废物,例如含磷洗衣粉的废水等向海洋中排放,以保持海洋中的生态平衡。
7、食物的酸碱性。研究发现,多吃碱性食物可保持血液呈弱碱性,使得血液中乳酸、尿素等酸性物质减少,并能防止其在血管壁上沉积,因而有软化血管的作用,故有人称碱性食物为"血液和血管的清洁剂"。一般地说,大米、面粉、肉类、鱼类、蛋类等食物几乎都是酸性食物,而蔬菜、水果、牛奶、山芋、薯仔、豆制品及水产品等则都是碱性食物。注意科学饮食,改进食结构,加强体育锻炼,并养成良好的生活习惯,血管硬化可望得到延缓和逆转。人体体液的酸碱度与智商水平有密切关系。在体液酸碱度允许的范围内,酸性偏高者智商较低,碱性偏高则智商较高。科学家测试了数十名6至13岁的男孩,结果表明,大脑皮层中的体液PH值大于7.0的孩子,比小于7.0的孩子的智商高出1倍之多。某些学习成绩欠佳、智力发育水平较低的孩子,往往多属酸性体质。
⑧ 神经是什么 人有多少神经组织拜托了各位 谢谢
神经系统由中枢神经系统和周围神经系统构成 你所说的三个,我想应该指的是:脑、脊髓、周围神经吧。按照组成神经的形态来说,神经系统又主要是由神经元和神经胶质组成的。 1.脑 脑(英:brain,拉:encephalon)中枢神经系统的主要部分,位于颅腔内.低等脊椎动物的脑较简单.人和哺乳动物的脑特别发达,可分为大脑,小脑和脑干三部分. (1)大脑:为神经系统最高级部分,由左,右两个大脑半球组成,两半球间有横行的神经纤维相联系.每个半球包括: ①大脑皮层(大脑皮质):是表面的一层灰质(神经细胞的细胞体集中部分).人的大脑表面有很多往下凹的沟(裂),沟(裂)之间有隆起的回,因而大大增加了大脑皮层的面积.人的大脑皮层最为发达,是思维的器官,主导机体内一切活动过程,并调节机体与周围环境的平衡,所以大脑皮层是高级神经活动的物质基础. ②髓质:又称"白质",位于大脑皮层内部,由神经纤维所组成. ③基底神经节:在半球底部的白质中,由神经细胞集中而成. (2)小脑:在大脑的后下方,分为中间的蚓部和两侧膨大的小脑半球,表层的灰质即小脑皮层,被许多横行的沟分成许多小雀肆叶.小脑的内部由白质顷余轿和灰色的神经核所组成,白质称髓质,内含有与大脑和脊髓相联系的神经纤维.小脑主要的功能是协调骨胳肌的运动,维持和调节肌肉的紧张,保持身体的平衡. (3)脑干:包括间脑,中脑,脑桥和延髓,分布着很多由神经细胞集中而成的神经核或*神经中枢,并有大毁皮量上,下行的神经纤维束通过,连接大脑,小脑和脊髓,在形态上和机能上把中枢神经各部分联系为一个整体.脑各部内的腔隙称*脑室,充满脑脊液.在人体,脑通常分为大脑,小脑,间脑和脑干(包括中脑,脑桥和延髓)四部分. 2.脊髓 脊髓中枢神经系统的低级部位.位于椎管内,呈扁平柱形,上端平枕骨大孔和脑相续,下端呈圆锥形.成人的圆椎末端在第一腰椎下缘,全长约45厘米,平均重30克,在颈部与腰部有两个膨大,与四肢功能有关.从横切面上看,中央为蝴蝶形灰质,周围由白质组成.灰质中央有中央管.灰质向后外突出的部分为后角,与脊神经的后根相连,内含中间神经元;向前方突出的部分为前角,内含运动神经元,其纤维构成脊神经前根;侧角内含植物性神经元.白质由神经纤维组成,按位置可分前索,侧索和后索.分别把脑和脊髓及脊髓内各段联系起来.脊髓的功能有两个方面:一是传导功能,来自大部分器官的神经冲动,先经后根入脊髓,后经上行传导束到脑,脑发出的大部分冲动,通过下行传导束传到脊髓,再经前根传至全身大部分器官.二是反射功能,脊髓灰质中有许多低级的神经中枢,可完成某些基本的反射活动,如排便,排尿等内脏反射和膝跳反射,跖反射等躯体反射.正常情况下,脊髓的反射活动都是在高级中枢控制下进行的.当脊髓突然横断,与高级中枢失去联系后,会产生暂时性的脊休克.脊髓损伤可中断某一水平的生理功能.目前由于医学进步,许多脊髓损伤病人已有可能恢复其生理 3.中枢神经系统 中枢神经系统是神经组织最集中的部位.人的中枢神经系统包括脑和脊髓.脑有大脑,小脑,间脑,中脑,脑桥,延髓.人体的反射活动表现在中枢神经系统.把不同空间和时间的传入冲动进行整合,神经元之间在机能上发生突触联系,使中枢神经系统的活动表现为兴奋的扩散,抑制和反馈.突触在结构和机能上的特性,决定了兴奋传递的单向性,从而使机体对内外界刺激的反应更加协调准确.特别是大脑皮层的高度发展,成为神经系统最重要最高级的部分. 4.周围神经系统 周围神经系统是中枢神经系统以外的神经组织的总称.包括各种神经,神经丛和神经节.周围神经系统的一端同中枢神经系统的脑和脊髓相连,另一端通过各种末梢装置与身体其它器官和系统相联系.周围神经包括12对脑神经,31对脊神经和植物性神经.植物性神经又可分为交感神经和副交感神经.在周围神经系统,神经元集中的部位称神经节.周围神经又可根据功能的不同,分为传入神经,传出神经和混合神经. 5.神经中枢 神经中枢又称反射中枢.中枢神经系统内对某一特定生理机能具有调节作用的细胞群或感受某一种刺激的细胞群.分别分布在中枢神经系统的各个部位,在反射活动中起重要作用.每种反射的中枢结构,称为该反射的中枢.一些简单的反射,只需通过神经系统的低级部位就能完成.如膝跳反射中枢位于腰部脊髓.复杂反射的中枢,在中枢神经系统内分布较广,分布在几个不同的部位.但其中有一最基本部位,如呼吸中枢存在于延髓,脑桥以至大脑皮质,但延髓呼吸中枢是最基本的,其余各级中枢通过影响延髓呼吸中枢来调节呼吸运动,在同一中枢内,神经元之间的联系也是错综复杂的. 什么是神经元呢?它就是神经细胞。神经细胞的形态是多种多样的,在细胞表面有许多突起。所以,科学家们把神经细胞分成胞体和突起两部分来观察和描述。胞体部分和身体其他部位的细胞差不多,也包括细胞膜、细胞浆和细胞核等。较特殊的是神经细胞的胞浆内含有带色素的斑块,称为尼氏小体或虎斑。突起部分有两种,一种突起短而分支多,称为树状突;另一种突起往往较长且只有一个,称为轴突。不论是树状还是轴突均有传导兴奋冲动的作用,就像电线传导电流一样。轴突的结构比较复杂,外面包了一层叫髓鞘的东西,就像电线外面包了一层塑料皮似的。神经胶质也具有非常重要的作用,它对神经细胞具有支持、营养和形成髓鞘的功能。 轴突和轴突,树状突和树状突,轴突、树状突和细胞体之间都可以通过一个叫突触的结构发生联系。突触之间有两层膜,膜间有个极小的空隙,只有在电子显微镜下才能看到。兴奋冲动从一条神经的轴突传送过来时,在突触前面的那层膜里可产生一些化学物质,如乙酷胆碱、去甲肾上腺素等,这些化学物质再释放到两层膜的空隙内,然后作用于后面的那层膜,这样便可使神经冲动沿着后面那条神经传下去。这种神经传导速度是非常快的,每秒钟可以传送1~100米远。一旦人体受到外界的刺激时,神经冲动就会迅速地从一个神经细胞,通过突触这一途径,一传十、十传百……迅速传到大脑,由大脑皮层进行分析综合,再通过另外一套神经通路,把命令发送到全身,以对外界的刺激做出及时而恰当的反应。 神经衰弱时,大脑内抑制过程减弱,神经细胞的兴奋性相对增高,这样对外界的刺激可产生强而迅速的反应,从而使神经细胞的能量大量消耗。因此,神经衰弱患者常表现为既容易兴奋,又易于疲劳。另一方面,大脑皮层功能弱化,其调节和控制皮层下植物神经系统功能也减弱,从而出现植物神经功能亢进的一些症状。
⑨ 生物学上组织的定义是什么 生物学上组织的定义是啥
1、组织是界于细胞,及器官之间的细胞架构,由许多形态相似的细胞及细胞间质所组成。因此它又被称为生物组织。
2、它跟器官不同的地方,是它不一定具备某种特定的功能。
3、由形态相似春码型、功能相同的一群细胞和细胞间质组合起来,称为组织。人体的组织分模哪为上皮组织、结缔组织、神经组织和肌肉组织四种。
4、组织是构成器官的基本成分,上述四种组织排序结合起来,组成具有扒猜一定形态并完成一定生理功能的结构,称为器官。
⑩ 上皮组织 结缔组织 神经组织 肌肉组织 的分别
上皮组织
上皮组织也叫做上皮,它是衬贴或覆盖在其它组织上的一种重要结构。由密集的上皮细胞和少量细胞间质构成。结构特点是细誉旦胞结合紧密,细胞间质少。通常具有保护、吸收、分泌、排泄的功能。上皮组织可分成被覆上皮和腺上皮两大类。
被覆上皮分布在身体表面和体内各种管腔壁的表面。又分成单层上皮和复层上皮。前者包括单层扁平(鳞状)上皮、单层立方上皮、单层柱状上皮(有的有纤毛)、假复层柱状上皮(有的有纤毛);后者包括复层扁平(鳞状)上皮、移行上皮。被覆上皮有保护、吸收、分泌、排泄作用,可以防止外物损伤和病菌侵入。
单层上皮由单层细胞组成,常见于物质容易通过的地方。眼睛视网膜的色素层是单层立方上皮。分布在鼻腔、喉、气管、支气管等内腔表面的是假复层上皮。看起来像复层,实际是由不同高度的单层细胞所组成。较低的是杯状细胞,它可以分泌黏液;较高的是纤毛细胞,它可以扫除被黏液层黏附的吸入的尘粒。
皮肤的表皮,口腔、咽食管、肛门和阴道的表面,还有眼睛的角膜是复层上皮。复层上皮由多层细胞组成,更有利于保护作用。
腺上皮更具有分泌功能。以腺上皮为主要组成成分的器官为腺体。腺体分为外分泌腺和内分泌腺。
外分泌腺有胃腺、肠腺、汗腺等。它们是由腺上皮围成的腺泡,分泌物流入其中央腔内,再由导管排到管腔或体表。
内分泌腺有肾上腺、垂体、甲状腺、性腺等。腺细胞常排列成团状、索状或泡状,没有导管,激素分泌后立即进入毛细血管和淋巴管。
上皮组织再生能力很强,复层上皮的表浅细胞不时脱落,深部细胞不断分裂增生,使上皮保持动态平衡。
结缔组织
结缔组织(connective tissue)由细胞和大量细胞间质构成,结缔组织的细胞间质包括基质、细丝状的纤维和不断循环更新的组织液,具有重要功能意义。细胞散居于细胞间质内,分布无极性。广义的结缔组织,包括液状的血液、松软的固有结缔组织和较坚固的软骨与骨;一般所说的结缔组织仅指固有结缔组织而言。结缔组织在体内广泛分布,具有连接、支持、营养、保护等多种功能。
结缔组织均起源于胚胎时期的间充质(mesenchyme)。间充质由间充质细胞和大量稀薄的无定形基质构成。间充质细胞呈星状,细胞间以突起相互连接成网,核大,核仁明显,胞质弱嗜碱性(图3-1)。间充质细胞分化程度低,在胚胎时期能分化成各种结缔细胞、内皮细胞、平滑肌细胞等。成体结缔组织内仍保留少量未分化的间质细胞。
图3-1 间充质
本章讲述固有结缔组织(connective tissue proper),按其结构和功能的不同分为疏松结缔组织、致密结缔组织、脂肪组织和网状组织。
一、疏松结缔组织
疏松结缔组织(loose connective tissue)又称蜂窝组织(areolar tissue),其特点是细胞种类较多,纤维较少,排列稀疏。疏松结缔组织在体内广泛分布,位于器官之间、组织之间以首纳至细胞之间,起连接、支持、营养、防御、保护和修复等功能。
(一)细胞
疏松结缔的细胞种类较多,其中包括成纤维细胞、巨噬细胞、浆细胞、肥大细胞、脂肪细胞、未分化的间充质细胞。此外,血液中的白细胞,如嗜酸性粒细胞、淋巴细胞等在炎症反应时也可游走到结缔组织内。各类细胞的数量和分布随疏松结缔组织存在的部位和功能状态而不同。
1.成纤维细胞 成纤维细胞(fibroblast)是疏松结缔组织的主要细胞成分。细胞扁平,多突起,呈星状,胞质较丰富呈弱嗜碱性。胞核较大,扁卵圆形,染色质疏松着色浅,核仁明显(图3-2)。在电镜下,胞质内富于粗面内质网、游者虚没离核糖体和发达的高尔基复合体,表明细胞合成蛋白质功能旺盛(图3-3,3-4)。成纤维细胞既合成和分泌胶原蛋白,弹性蛋白,生成胶原纤维、网状纤维和弹性纤维,也合成和分泌糖胺多糖和糖蛋白等基质成分。
成纤维细胞处于功能静止状态时,称为纤维细胞(fibrocyte)(图3-3)。细胞变小,呈长梭形,胞核小,着色深,胞质内粗面内质网少、高尔基复合体不发达。在一定条件下,如创伤修复,结缔再生时,纤维细胞又能再转变为成纤维细胞。同时,成纤维细胞也能分裂增生。
成纤维细胞常通过基质糖蛋白的介导附着在胶原纤维上。在趋化因子(如淋巴因子、补体等)的吸引下,成纤维细胞能缓慢地向一定方向移动。
2.巨噬细胞 巨噬细胞(macrophage)是体内广泛存在的具有强大吞噬功能的细胞。在疏松结缔组织内的巨噬细胞又称为组织细胞(histiocyte),常沿纤维散在分布,在炎症和异物等刺激下活化成游走的巨噬细胞。巨噬细胞形态多样,随功能状态而改变,通常有钝圆形突起,功能活跃者,常伸出较长的伪足而形态不规则。胞核较小,卵圆形或肾形,多为偏心位,着色深,核仁不明显,胞质丰富,多呈嗜酸性,含空泡和异物颗粒,电镜下,细胞表面有许多皱褶、小泡和微绒毛,胞质内含大量初级溶酶体、次级溶酶体、吞噬体、吞饮小泡和残余体。细胞膜附近有较多的微丝和微管(图3-5,3-6)。
巨噬细胞是由血液内单核细胞穿出血管后分化而成。此时,细胞变大,线粒体及溶酶体增多,粘附和吞噬能力增强。在不同组织器官内的巨噬细胞存活时间不同,一般为2个月或更长。
巨噬细胞有重要的防御功能,它具有趋化性定向运动、吞噬和清除异物及衰老伤亡的细胞、分泌多种生物活性物质以及参与和调节人体免疫应答等功能。
(1)趋化性定向运动:巨噬细胞可沿某些化学物质的浓度梯度进行定向移动,聚集到产生和释放这些化学物质的病变部位,这种特性称为趋化性(chemotaxis)。这类化学物质称为趋化因子(chemotactic factor),如补体C5a、细菌的产物、炎症组织的变性蛋白等。
(2)吞噬作用:巨噬细胞具有强大的吞噬能力,包括非特异性吞噬作用和特异性吞噬作用。巨噬细胞经趋化性定向运动抵达病变部位时,即伸出伪足并粘附和包围细菌、异物、衰老伤亡的细胞等,进而摄入胞质内形成吞噬体或吞饮小泡。吞噬体、吞饮小泡与初级溶酶体融合,形成次级溶酶体,异物颗粒被溶酶体酶消化分解后,成为残余体。
在非特异性吞噬过程中,巨噬细胞直接识别和粘附被吞噬物,如碳粒、粉尘、衰老的细胞和某些细菌。巨噬细胞表面有多种受体,有的能与抗体结合(Fc受体);有的能与补体结合(C3受体);有的能与纤维粘连蛋白结合(纤维粘连蛋白受体),在特异性吞噬过程中,抗体,补体、纤维粘连蛋白作为识别因子先将细菌、病毒、异体细胞、受损伤的细胞等包裹起来,通过它们与巨噬细胞表面相应的受体结合,才能被巨噬细胞识别和粘附,启动巨噬细胞的吞噬过程,并显着增强吞噬作用(图3-7)。这种免疫吞噬作用是巨噬细胞重要的功能特征。
(3)分泌作用 :巨噬细胞有活跃的分泌功能,能合成和分泌数十种生物活性物质,如溶菌酶(lysozyme)、干扰素(interferon)、补体(complement)等参与机体的防御功能。还能分泌血管生成因子、造血细胞集落刺激因子、血小板活化因子等激活和调节有关细胞功能活动的多种物质。
(4)参与和调节免疫应答:巨噬细胞能捕捉、加工处理和呈递抗原。被巨噬细胞捕捉的抗原经加工处理后,与主要组织相容性复合体(MHC)的Ⅱ类基因产物结合,形成抗原-MHCⅡ类分子复合物贮存在巨噬细胞表面、并呈递给淋巴细胞,启动淋巴细胞发生免疫应答。其次,巨噬细胞本身也是免疫效应细胞,活化的巨噬细胞能杀伤病原体和肿瘤细胞。此外,巨噬细胞分泌的某些生物活性物质如白细胞介素Ⅰ(interleukinⅠ,IL-Ⅰ)、干扰素等也参与调节免疫应答。
3.浆细胞 浆细胞(plasma cell)通常在疏松结缔组织内较少,而在病原菌或异性蛋白易于入侵的部位如消化道、呼吸道固有层结缔组织内及慢性炎症部位较多。细胞卵圆形或圆形,核圆形,多偏居细胞一侧,染色质成粗块状沿核膜内面呈辐射状排列。胞质丰富,嗜碱性,核旁有一浅染区(图3-2)。电镜下,胞质内含有大量平行排列的粗面内质网和游离的多核糖体。发达的高尔基复合体和中心体位于核旁浅染区内(图3-8,3-9)。
浆细胞具有合成、贮存与分泌抗体(antibody)即免疫球蛋白(immunoglobulin,Ig)的功能,参与体液免疫应答。浆细胞来源于B淋巴细胞。在抗原的反复刺激下,B淋巴细胞增殖、分化,转变为浆细胞,产生抗体。抗体能特异性地中和、消除抗原。
4.肥大细胞 肥大细胞(mast cell)较大,呈圆形或卵圆形,胞核小而圆,多位于中央。胞质内充满异染性颗粒,颗粒易溶于水(图3-2)。电镜下,颗粒大小不一,圆形或卵圆形,表面有单位膜包裹,内部结构常呈多样性,在深染的基质内含螺状或网格状晶体,或含细粒状物质(图3-10)。肥大细胞分布很广,常沿小血管和小淋巴管分布。
肥大细胞与变态反应有密切关系。肥大细胞合成和分泌多种活性介质,包括组胺(histamine)、嗜酸性粒细胞趋化因子(ECF-A)、白三烯(leukotriene)和肝素(heparin)等。组胺、白三烯能使细支气管平滑肌收缩,使微静脉及毛细血管扩张,通透性增加。嗜酸性粒细胞趋化因子能吸引嗜酸性粒细胞到变态反应的部位,肝素则有抗凝血作用。组胺、嗜酸性粒细胞趋化因子和肝素等合成后贮存于颗粒内并能迅速释放。释放时颗粒合并,形成脱粒管道,开口于细胞表面;白三烯则不在颗粒内贮存,其释放较组胺等迟缓(图3-11)。
肥大细胞脱颗粒、释放介质是一种特异性反应。机体受过敏原(如花粉、某些药物等)的刺激后,浆细胞产生亲细胞性抗体IgE。肥大细胞膜表面有IgE受体,当IgE与肥大细胞的IgE受体结合后,机体即对该过每原呈致敏状态。当机体再次接触相同的过敏原时,少量的过敏原便可与肥大细胞上的IgE结合,启动肥大细胞脱颗粒,释放介质,引起过敏反应(图3-11),如在皮肤引起荨麻疹,在呼吸道引起支气管哮喘等。
一般认为,肥大细胞的祖细胞来源于骨髓,经血流迁移到结缔组织内,发育为肥大细胞。组织内的肥大细胞可分裂增殖,其寿命数天至数月。
5.脂肪细胞 脂肪细胞(fat cell)常沿血管分布,单个或成群存在。细胞体积大,常呈圆球形或相互挤压成多边形。胞质被一个大脂滴推挤到细胞周缘,包绕脂滴。核被挤压成扁圆形,连同部分胞质呈新月形,位于细胞一侧。在HE标本中,脂滴被溶解,细胞呈空泡状(图3-2)。脂肪细胞有合成和贮存脂肪、参与脂质代谢的功能。
6.未分化的间充质细胞 未分化的间充质细胞(undifferentiated mesenchymal cell)是保留在成体结缔组织内的一些较原始的细胞,它们保持着间充质细胞的分化潜能,在炎症与创伤时可增殖分化为成纤维细胞、脂肪细胞。间充质细胞常分布在小血管尤其是毛细血管周围,并能分化为血管壁的平滑肌和内皮细胞。
7.白细胞 血液内的白细胞,受趋化因子的吸引,常穿出毛细血管和微静脉,游走到疏松结缔组织内,行使其功能,参与免疫应答和炎症反应。疏松结缔组织内以嗜酸性粒细胞、淋巴细胞、中性粒细胞多见。游走出的单核细胞将分化为巨噬细胞。
(二)纤维
1.胶原纤维 胶原纤维(collagenous fiber)数量最多,新鲜时呈白色,有光泽,又名白纤维。HE 染色切片中呈嗜酸性,着浅红色。纤维粗细不等,直径1-20μm,呈波浪形,并互相交织。胶原原纤维由直径20~200nm的胶原原纤维粘合而成(图3-2)。电镜下,胶原原纤维显明暗交替的周期性横纹,横纹周期约64nm(图3-12)。胶原纤维的韧性大,抗拉力强。胶原纤维的化学成分为Ⅰ型和Ⅱ型胶原蛋白。胶原蛋白(简称胶原,collagen)主要由成纤维细胞分泌。分泌到细胞外的胶原再聚合成胶原原纤维,进而集合成胶原纤维。
胶原纤维形成的基本过程如下(图3-13):
(1)细胞内合成前胶原蛋白分子:成纤维细胞摄取合成蛋白质所需的氨基酸,包括脯氨酸、赖氨酸和甘氨酸,在粗面内质网的核糖体上按照特定的胶原mRNA的碱基序列,合成前α-多肽链。后者边合成边进入粗面内质网腔内,并在羟化酶的作用下,将肽链中的脯氨酸和赖氨酸羟化。经羟化后,三条前α-多肽链互相缠绕成绳索状的前胶原蛋白分子(procollagen molecule)。溶解状态的前胶原蛋白分子,两端未缠绕,呈球状构型,在粗面内质网腔内或转移到高尔基复合体内加入糖基后,分泌到细胞外。
(2)原胶原蛋白分子的细胞外聚合:细胞外的前胶原蛋白分子,在肽内切酶的作用下,切去分子两端球状构形部分,形成原胶原蛋白分子(tropocol-lagen)粗约1.5nm,长约300nm。原胶原蛋白分子平行排列聚合成胶原原纤维。聚合时,相互平行的相邻分子错开1/4分子长度,同一排的分子,首尾相对并保持一定距离,聚合成束,于是形成具有64nm周期横纹的胶原原纤维。聚合时,分子内、分子间的化学基因进行缩合、交联,增加原纤维的稳固性。若干胶原原纤维经糖蛋白粘合成粗细不等的胶原纤维。
胶原纤维的一菜成受多方面的影响和调控。如细胞内脯氨酸的含量直接影响前α-多肽链的合成。缺氧或缺乏维生素C或Fe2+等辅助因子,导致前α-多肽链的羟化受到抑制,造成前胶原蛋白合成障碍,影响创伤的愈合。聚合时,如胶原蛋白分子内和分子间的交联障碍(常因赖氨酰氧化酶不足所致)将影响胶原纤维的稳固性。除成纤维细胞外,成骨细胞、软骨细胞、某些平滑肌细胞等起源于间充质的细胞以及多种上皮细胞也能产生胶原蛋白。
不同组织的胶原蛋白其分子类型不同,已证实α-多肽链按其一级结构分为α1,α2,α3,三类,各类又分为10型,如α1(Ⅰ)、α1(Ⅱ)、α1(Ⅲ)、α1(Ⅲ)……α1(X)。
根据构成胶原蛋白三股肽链的不同,现已发现有11种不同类型的胶原。现将主要几种类型的组成、分布和特点列举于表(表3-1)。
表3-1 胶原蛋白的类型、分布和特点
类型 前胶原蛋白的三股肽链 分布 主要特点
Ⅰ [α1(Ⅰ)]2α2(Ⅰ) 真皮、筋膜、巩膜、被膜、腱、纤维软骨、骨、牙本质 构成致密并有横纹的粗纤维束,抗拉力强
Ⅱ [α1(Ⅱ)]3 透明软骨和弹性软骨 构成有横纹的细原纤维,抗压力较强
Ⅲ [α1(Ⅲ)]3
[α1(Ⅳ)]2α2(Ⅳ)
网状纤维、平滑肌、神经内膜、动脉、肝、脾、肾、肺、子宫 构成有横纹的细原纤维,维持器官的形态结构
Ⅳ [α1(Ⅳ)]3
[α2(Ⅳ)]3
[α1(Ⅴ)]2α2(Ⅴ)
基膜基板、晶 状体囊 不形成原纤维,为均质状膜,支持和滤过作用
Ⅴ [α1(Ⅴ)]3
α1(Ⅴ)α2(Ⅴ)α3(Ⅴ)
胎膜、肌、腱鞘 构成细的无横纹原纤维
2.弹性纤维 弹性纤维(elastic fiber)新鲜状态下呈黄色,又名黄纤维。在HE标本中,着色轻微,不易与胶原纤维区分。但醛复红(aldehyde-fuchsin)或地衣红(orcein)能将弹性纤维染成紫色或棕褐色。弹性纤维较细,直行,分支交织,粗细不等(0.2-1.0μm),表面光滑,断端常卷曲(图3-2)。电镜下,弹性纤维的核心部分电子密度低,由均质的弹性蛋白(elastin)组成,核心外周覆盖微原纤维(microfibril),直径约10nm。弹性蛋白分子能任意卷曲,分子间藉共价键交联成网。在外力牵拉下,卷曲的弹性蛋白分子伸展拉长;除去外力后,弹性蛋白分子又回复为卷曲状态(图3-14)。
弹性纤维富于弹性而韧性差,与胶原纤维交织在一起,使疏松结缔组织既有弹性又有韧性,有利于器官和组织保持形态位置的相对恒定,又具有一定的可变性。
3.网状纤维 网状纤维(reticular fiber)较细,分支多,交织成网。网状纤维由Ⅲ型胶原蛋白构成,也具有64nm周期性横纹。纤维表面被覆蛋白多糖和糖蛋白,故PAS反应阳性,并具嗜银性。用银染法,网状纤维呈黑色,故又称嗜银纤维(argyrophil fiber)。网状纤维多分布在结缔组织与其它组织交界处,如基膜的网板、肾小管周围、毛细血管周围。在造血器官和内分泌腺,有较多的网状纤维,构成它们的支架。
(三)基质
基质(ground substance)是一种由生物大分子构成的胶状物质,具有一定粘性。构成基质的大分子物质包括蛋白多糖和糖蛋白。
蛋白多糖(proteoglycan)是由蛋白质与大量多糖结合成的大分子复合物,是基质的主要成分。其中多糖主要是透明质酸(hyaluronic acid),其次是硫酸软骨素A 、C(chondroitin sulfate A、C)、硫酸角质素A、C(keratin sulfate)硫酸乙酰肝素(heparan sulfate)等。它们都是以含有氨基已糖的双糖为基本单位聚合成的长链化合物,总称为糖胺多糖(glycosaminoglycan,GAG)。由于糖胺多糖分子存在大量阴离子,故能结合大量水(结合水)。透明质酸是一种曲折盘绕的长链 大分子,拉直可达2.5μm,由它构成蛋白多糖复合物的主干,其它糖胺多糖则以蛋白质为核心构成蛋白多糖亚单位,后者再通过连接蛋白结合在透明质酸长链分子上(图3-15)。蛋白多糖复合物的立体构型形成有许多微孔隙的分子筛,小于孔隙的水和溶于水的营养物、代谢产物、激素、气体分子等可以通过,便于血液与细胞之间进行物质交换。大于孔隙的大分子物质,如细菌等不能通过,使基质成为限制细菌扩散的防御屏障。溶血性链球菌和癌细胞等能产生透明质酸酶,破坏基质的防御屏障,致使感染和肿瘤浸润扩散。
图3-15 蛋白多糖分子结构模型
糖蛋白(glycoprotein)是基质内另一类重要的生物大分子,与蛋白多糖相反,其主要成分是蛋白质。从基质内已经分离出多种糖蛋白,主要的有纤维粘连蛋白(fibronectin FN)层粘连蛋白(laminin)和软骨粘连蛋白(chondronectin)等。这类基质大分子不仅参与基质分子筛的构成,同时通过它们的连接和介导作用也影响细胞的附着和移动以及参与调节细胞的生长和分化。
纤维粘连蛋白是基质中一种重要的糖蛋白,存在于胶原纤维和许多结缔组织细胞周围。在电镜下,纤维粘连蛋白呈原纤维状,由两条多肽链组成,两条肽链的一端由若干二硫键连接。每一肽链上均有若干特定的功能区,能分别与细胞、胶原、肝素和纤维素等结合。于是,纤维粘连蛋白作为一种中介蛋白,能将细胞连接到胶原、肝素等细胞外基质上。
组织液(tissue fluid)是从毛细血管动脉端渗入基质内的液体,经毛细血管静脉端和毛细淋巴管回流入血液或淋巴,组织液不断更新,有利于血液与细胞进行物质交换,成为组织和细胞赖以生存的内环境。当组织液的渗出、回流或机体水盐、蛋白质代谢发生障碍时,基质中的组织液含量可增多或减少,导致组织水肿或脱水。
神经组织
人和高等动物的基本组织之一。是神经系统的主要构成成分。神经组织是由神经元(即神经细胞)和神经胶质所组成。神经元是神经组织中的主要成份,具有接受刺激和传导兴奋的功能,也是神经活动的基本功能单位。神经胶质在神经组织中起着支持、保护和营养作用。
肌肉组织
由特殊分化的肌细胞构成的动物的基本组织。肌细胞间有少量结缔组织,并有毛细血管和神经纤维等。肌细胞外形细长因此又称肌纤维。肌细胞的细胞膜叫做肌膜,其细胞质叫肌浆。肌浆中含有肌丝,它是肌细胞收缩的物质基础。根据肌细胞的形态与分布的不同可将肌肉组织分为3类:即骨骼肌、心肌与平滑肌。骨骼肌一般通过腱附于骨骼上,但也有例外,如食管上部的肌层及面部表情肌并不附于骨骼上 。心肌分布于心脏,构成心房、心室壁上的心肌层,也见于靠近心脏的大血管壁上。平滑肌分布于内脏和血管壁。骨骼肌与心肌的肌纤维均有横纹,又称横纹肌。平滑肌纤维无横纹。肌肉组织具有收缩特性,是躯体和四肢运动,以及体内消化、呼吸、循环和排泄等生理过程的动力来源。骨骼肌的收缩受意志支配属于随意肌。心肌与平滑肌受自主性神经支配属于不随意肌。
骨骼肌纤维一般为长圆柱形,长约1~40毫米,直径10~100 微米。每条肌纤维周围均有一薄层结缔组织称为肌内膜。由数条至数十条肌纤维集合成肌束,肌束外有较厚的结缔组织称为肌束膜,由许多肌束组成一块肌肉,其表面的结缔组织称肌外膜,即深筋膜。各结缔组织中均有丰富的血管,肌内膜中有毛细血管网包绕于肌纤维周围。肌肉的结缔组织中有传入、传出神经纤维,均为有髓神经纤维。分布于肌肉内血管壁上的神经为自主性神经是无髓神经纤维。
平滑肌纤维一般为梭形,长约20~300 微米,直径约6微米,妊娠期子宫的平滑肌长可达500微米,核为长椭圆形位于肌纤维的中央基膜附于肌膜之外。平滑肌常排列成束或排列成层。按其神经末梢分布方式可分为两类 :一类为少数,肌细胞的表面有神经末梢分布,其末梢呈念珠状膨大,而其他多数平滑肌细胞没有神经末梢,这些细胞则通过平滑肌细胞的缝管连接传递信息,使神经冲动扩散,机体内多数平滑肌如分布于消化管、子宫壁的平滑肌均属此类。另一类是多数,每个肌细胞表面都有神经末梢分布,各细胞直接受神经的控制,如眼的瞳孔括约肌与开大肌属于此类。此外,还有中间型的。平滑肌除具有收缩功能外,还有产生细胞间质的功能。
心肌纤维呈圆柱形,直径约为15~20微米。心肌纤维有分支,互相连接成网,因此心肌可同时收缩 。心肌的生理特点是能够自动地有节律地收缩。
编辑词条
开放分类: