导航:首页 > 生物信息 > 如何利用化学性分子识别和生物学特异性

如何利用化学性分子识别和生物学特异性

发布时间:2023-05-19 03:49:37

A. 具有识别作用的分子在生活中有哪些应用

分子识别空悔作为超分子结构化学的一个重要的领域,主要的应用也在超分子的方面,然而分子识别在其他方面也有广泛的应用。下面仅就分子识别在生物化学、光化学、材料化学以
及信息化学领域的应用做一个简单的介绍。
1、很多设计合成超分子化学的灵感和起源都来自于生物体内发现的化学现象。毫无疑问,
自然界能进化出如此高度专一的、具有选择性和协同性的生命化学体系,时而不可思议的复
杂,时而又是绝妙的简单,分子识别在其中起到了多么大的,甚至是决定性的作用。事实上,
生物体系就是一个很好的超分子体系。金属阳离子的运输、O2的传输、抗原的生成、酶催化的有机化学反应等绝大部分生物过程其实就是分子识别过程。
2、超分子化学一个重要应用领域在于发展选择性化学传感器,用来分析介质、环境以及整体或部分有机体的化学成分。底物一定要被吸引到传感器的受体部分。这是一个简单的分子识别在其他潜在客体分子存在下,络合必须是对目标分子具有选择性的。同时,受体也必须与号传输单元(对客体络合相应)相关联。把信号传输单元和受体单元连接在一起的间隔基一要保证它们之间的相互联通。结合过程是结合复合物内在性质发生改变(与自由客体或受体比)的触发因素,导致信号产生。 发展有效的、宽范围的传感方法,将在环控制、质量检验及诸如药物诊断中描述有机物特性等方面发挥重要应用。
3、分子识别引导的自发过程可以看作是表述分子信息处理过程。
4、超分子在材料化学中的切入,使得材料的结构及特性更加丰富多彩。 由识别引导的缔合、自组装和自组织的罩禅发展开辟了材料化学新的研究领域:分子信息决定材料特性的超分子材料。同时,运用分子识别特征并通过温和的反应,能对合成结构确定的无机超分子材料和合材料进行控制,因而开辟了“软”无机材料化学的途径。这些材料的纳米结构可能使其具有某种新颖的特性。 本质上,结晶等同于大的无边界分子物种的自组装。为获得具有特定结构及物理特性的固体材料,对结晶的控制也具有重要意义。超分子效应在这一控制中起着关键作用。材料的定向增长可由模版诱导产生,这一过程包含有分子识别的作用。 分子识别引导的过程开启了通向超分子固态化学和晶体工程的大门。用识别单元修饰,可形成延伸的外受体,使其在微观层次上具有选择性表面键合作用,从而实现宏观水平上的识别控制粘合显示了超分子效应在粘合科学中的应用潜力。
5、分子识别理论,自1984年由Blalock等提出以,已经在不同的实验室应用不同的实验体系加以明。分子识别的理论基础在于:一对互补DNA或NA编码的氨基酸多肽具有“水合互补性”,而亲水和疏水作用是蛋白质多肽分子之间相互作用的重要因素。实验证明:DNA有意义链(sense DNA)或RNA编码的天然肽其互补的DNA反义链(antisense DNA)或RNA编码反义肽之间可以彼此选择性识别。在此基础上,子识别理论推断:蛋白质激素和相应的受体之间, 免疫网络中的独特型和抗独特型抗体之间相互作用分子基础可能正是这种天然肽和反义肽之间的识别作用。于是,从理论上讲,分子识别理论可以用于类激素和相应受体的作用位点的预测;应用反义与天然肽之间的选择性识别,可分离和提取天然分子蛋白质;并可利用反义肽在生物体内诱导产抗独特型抗体(Id-Ab),通过免疫网络进行免疫节。
6、分子识别是超分子化学的核心研究内容之一,包括离子客体和中性分子的识别。由于荧光检测的高灵敏度和可实时及远程检测等优越性,在分子识别与传感中的应用得到蓬勃发展,设计合成高灵敏、高选择性的荧光化学传感器近斗闷正年来备受关注。具有分子内电荷转移和激发态质子转移性质的荧光体,发射大Stokes位移的荧光,可消除基质本底荧光和散射光对化学传感和分子识别的潜在不利影响。
7、生物分子识别响应性水凝胶是模拟生命活动过程中的分子识别现象,能识别特定生物分子而产生刺激响应性的智能高分子材料.用它构筑的智能系统类似于具有反馈和平衡功能的生物系统,在生物工程和生物医学领域有非常诱人的应用前景.对能识别特定生物分子,如葡萄糖、酶、抗原、核酸等,产生刺激响应的智能水凝胶的制备及其在智能给药系统中的应用研究情况进行了详细介绍.这些内容有助于更好地理解生物分子识别响应性水凝胶的结构和功能,另外也为发展新型智能给药系统提供了很好的思路。

B. 生物特异分子识别在医学有什么应用

生物特异分子识别包含2方面的含义,一是DNA即基因方面的识别,而是蛋白质方面的识别。在医学检验方面的应用主要有:

1. 分子生物传感器在医学检验中的应用

分子生物传感器是利用一定的生物或化学的固定技术,将生物识别元件(酶、抗体、抗原、蛋白、核酸、受体、细胞、微生物、动植物组织等)固定在换能器上,当待测物与生物识别元件发生特异性反应后,通过换能器将所产生的反应结果转变为可以输出、检测的电信号和光信号等,以此对待测物质进行定性和定量分析,从而达到检测分析的目的。

分子生物传感器可以广泛地应用衫郑于对体液中的微量蛋白、小分子有机物、核酸等多种物质的检测。在现代医学检验中,这些项目是临床诊断和病情分析的重要依据。能够在体内实时监控的生物传感器对于手术中和重症监护的病人很有帮助。

Skladal等用经过寡核苷酸探针修饰的压电传感器检测血清中的丙型肝炎病毒(HCV)并实时监测其DNA的结构转录和聚合酶链式反应(PCR)扩增过程,完成整个监测过程仅需10 min且装置可重复使用。

Petricoin等用压电传感器研究了破骨细胞生成抑制因子(OPG)和几种相应抗体的相互作用,研发出可快速检验血清中OPG的压电免疫传感器。

Dro-sten等报道了检测神经递质的酶电报,将电极放置在神经肌肉接点附近可实时测定并记录邻近的神经元去极化后所释放的递质谷氨酸。

2.分子生物芯片技术在医学检验中的应用

随着分子生物学的发展及人们对疾病过程的认识加深,传统的医学检验技术已不能完全适应微量、快速、准确、全面的要求。

所谓的生物芯片是指将大量探针分子固定于支持物上(通常支持物上的一个点代表一种分子探针),并与标记的样品杂交或反应,通过自动化仪器检测杂交或反应信号的罩森强度而判断样品中靶分子的数量。

在检测病原菌方面,由于大部分细菌、病毒的基因组测序已完成,将许多代表每种微生物的特殊基因制成1张芯片。通过反转录可检测标本中的有无病原体基因的表达及表达的情况,以判断病人感染病原及感染的进程、宿主的反应。由于P53抑癌基因在多数肿瘤中均发生突变,因此其是重要的肿瘤诊断靶基因。

Nam等人将硅基质上合成的寡核苷酸芯片用于血清样品中的丙型肝炎病毒分型。

2.分子生物纳米技术在医学检验中的应用生物活性物质的检测有很多种方法,其中,以抗体为基础的技术尤其重要。免疫分析加上磁性修饰已成功地用于各种生物活性物质和异生质(如药物、致癌物等)的检测。将特异性抗体或抗原固定到纳米磁球表面,并以酶、放射性同位素、荧光染料或化学发光物质为基础所产生的检测与传统微量滴定板技术相比具有简单、快速和灵敏的特点。

Van Helden等将抗体连接的纳米磁性微球与高效率、快速的化学发光免疫测定技术相结合的自动检测系统,则成功地用于血清中人免疫缺陷病毒1型和2型(HIV-1和HIV-2)抗体的检测。另外,用于人胰岛素检测的全自动夹心法免疫测定技术也已建立,其中亦用到抗体、蛋白纳米磁性微粒复合物和碱性磷酸酶标记二抗。

4.分子蛋白组学在医学检验中的应用

当前有关分子蛋白质组学的大量研究成果喜人,但一大部分结论是众说纷纭、甚至是互相矛盾。一些经典的肿瘤标志物却无法在当前以表面增强激光解析离子化-飞行时间质谱(SELDI-TOF-MS)技术为代表的蛋白质组学技术中体现出来。可能存在以下几方面的问题。一方面是SELDI-TOF-MS技术自身的限制性,包括敏感性、重复性以及使用当前设备对每个峰值蛋白确认的局限性;另一方面是实验设计及对照组选择是否恰当,某个蛋白组模式反映的是肿瘤的特异性,还是炎症反应,或是代谢紊乱等无法定论;另一方面是不同实验室结果可比性、标本处理过程的差异无法探究。只有这些问题得到解决, SELDI-TOF-MS技术在检验医学中才能发挥革命性作用。

5.分子生物学技术在医学检验发展中的趋势

检验医学中的分子生物学技术发展趋势有二:一是定量PCR;二是PCR的全自动化,如应用扩增与检测于一体的一次性试验卡,可较好地解决PCR污染问题。除PCR以外的体外基因扩增技术如连接酶反应(LCR),或闷颂链置换扩增系统(SDA),转录扩增系统(TAS),自限序列扩增系统(3SR),QB复制酶扩增系统等技术也将由科研进入临床。分子生物学技术的标准化和质量控制引起了广泛关注,特别是卫生部颁发的PCR实验室管理办法对PCR技术应用的健康发展起到了关键作用。为解决PCR交叉污染问题,从标本制备到检测的全封闭系统及相应的自动化仪器已在国内逐步普及。

C. 从免疫学和分子生物学讨论现代生物技术在食品检测中的应用

生物技术检测方法具有特异的生物识别功能、极高的选择性,它可与现代的物理化学方法相结合,产生一些简单、结果精确、灵敏、专一、微量和快速、成本低廉的检测方法,因此其在食品检验中占有越来越重要的地位。
在食品检验中应用的几种生物检测技术
1 免疫法
免疫法是最灵敏的生物检测方法,具有高特异性和高灵敏性(灵敏度可达1ppb,1ppm)、操作简便、再现性好,应用前景看好。用免疫法可进行蛋白质检测,由于不同蛋白质的物理、化学性质差别极小,只能通过各种免疫方法或标记探针法加以区别。
(1) 荧光抗体法
将荧光抗体溶液滴加于固定的标本上,一定时间后用缓冲液冲洗,若有相应抗原存在,即与荧光抗体结合,在荧光显微镜下即可看到发荧光的抗体复合物。荧光抗体法在微生物污染鉴定中经常使用,最常用于沙门氏菌的检测。
(2) 放射免疫法
灵敏度高,但操作相对复杂,放射免疫法同位素半衰期短,保存及操作不便。目前应用情况受到限制。
(3) 酶联免疫吸附法
是一种基本的酶免疫检测方法,其选择性好、灵敏度高、快速、易操作、结果判断客观准确、实用性强。酶免疫法和其他免疫法一样,都是以抗体和抗原的特异性结合为基础的。以酶或辅酶为标记物,标记抗原或抗体,用酶促反应的放大作用来显示初级免疫学反应。
酶联免疫吸附法除可检测食品中的毒素、残留农药及微生物外还可用于营养素的测定。
(4) 凝集反应法
当有电解质存在时,颗粒状的抗原与其特异性的抗体结合并生成可见凝集块的反应称为凝集反应,有直接反应和间接反应法。利用凝集反应可测定抗体的效价,也可用于细菌、病毒等的分类。
(5) 沉淀反应法
沉淀反应法常见的是一种琼脂扩散试验。单向扩散是利用不同抗原抗体在琼脂中不同的扩散速度而会在琼脂中出现几条相互分离的沉淀带。双向扩散则是利用抗原抗体都向中间层―――琼脂扩散而形成沉淀带,根据分离沉淀带的数量可确定抗原抗体种类。
(6) 免疫扩散法
利用蛋白质在半固体基质上的扩散作用,使抗原和抗体在浓度比例合适的部位产生沉淀带或沉淀环,从而检测蛋白质。如血清中IgG、IgA、IgM含量的测定。
(7) 免疫电泳法
免疫电泳法是将电泳和琼脂扩散沉淀反应相结合的一种方法,即先将血清或蛋白质抗原在琼脂凝胶中进行电泳。带电的蛋白质抗原向负极移动,加入抗血清后,不同区点的抗原再与抗体进行沉淀,当相应抗原抗体接触,在适当比例下形成弧形沉淀带,根据沉淀带的位置对蛋白质的各组分进行检测。如免疫球蛋白含量的测定。
2 酶检测法
酶检测法就是用酶来测定某些用一般化学方法难于检测的食品成分的含量或测定食品中某些特殊酶的活性或含量。其最大特点就是特异性强。所以常用于分析结构和物理化学性质比较相近的同类物质的分别鉴定。如测定食品中残存有机农药的含量、微生物污染或了解食品的制备、保存情况。
酶检测法的样品一般不需要进行很复杂的预处理,由于酶的催化效率很高,反应条件温和,酶检测法的检测速度也比较快。常用的有以下方法:
(1) 终点测定法
在以待测物质为底物的酶反应中,如果使底物能够接近完全地转化为产物,而且底物或产物又具有某种特征性质,通过直接测定转化前后底物的减少量、产物的增加量或辅酶的变化等就可以定量待测物质。
(2) 动力学测定法
在反应体系中精确加入一定数量的酶,测定反应物或产物变化的速度。测定的参数可以是吸光度、荧光度、pH值等。
(3) 多酶偶联测定法
当被测定的底物或反应产物没有易于检测的物理化学手段时,可采用两种或两种以上的酶进行连续式或平行式的偶联反应,使底物通过两步或多步反应,转化为易于检测的产物,从而测定待测物质的含量。例如葡萄糖的定量测定。
(4) 利用辅酶作用或抑制剂作用测定法
如果待测物质可作为某种酶专一的辅酶或抑制剂,则这种物质的浓度和将其作为辅酶或抑制剂的酶的反应速度之间有一定关联,因此通过测定该酶的反应速度就能进行这种物质的定量。嘌呤、核甙酸、维生素、辅酶及食品中农药、杀虫剂的检验可用此法。
(5) 通过酶反应循环系统的高灵敏度测定法
对于极微量的物质进行酶法检测时,由于灵敏度的原因,在很多情况下不能应用通常的终点测定法,可设计一个酶反应循环系统来提高检测灵敏度。
(6) 酶标免疫检测法
抗体与相应的抗原具有选择和结合的双重功能。若要测定样品中抗原的含量,就将酶与待测定抗原的对应抗体结合在一起,制成酶标抗体。然后将酶标抗体与样品液中待测抗原,通过免疫反应结合在一起,形成酶―抗体―抗原复合物,通过测定复合物中酶的含量就可得出待测抗原的含量。此法可用于食品的污染检测,尤其适用于毒素的快速检测。
(7) 放射性同位素测定法
酶的活性可以采用同位素标记的底物进行测量。经酶解后随时间所生成的放射性产物含量与酶的浓度成正比。也可用放射性同位素的底物在酶的作用下得到的产物,分离测定产物的同位素含量。此法可用于需要进行极微量的分析或因新发现的酶还未找到适当的分析法时的测定。
3 核酸探针技术
核酸探针技术又名基因探针技术或核酸分子杂交技术,具有敏感性高(可检出10-9―10-12的核酸)和特异性强等优点。两条不同来源的核酸链如果具有互补的碱基序列,就能够特异性的结合而成为分子杂交链。据此,可在已知的DNA或RNA片段上加上可识别的标记(如同位素标记、生物素标记等),使之成为探针,用以检测未知样品中是否具有与其相同的序列,并进一步判定其与已知序列的同源程度。
核酸探针技术已被广泛应用于进出口动植物及其产品的检验。用于检验食品中一些常见的致病菌及产毒素菌,如大肠杆菌、沙门氏菌等多种病原体的检验。近年来,放射性同位素标记的核酸探针正越来越多地用于产肠毒素性大肠杆菌的快速检测。
4 多聚酶链反应技术
多聚酶链反应技术是一种极敏感的分子生物学方法,是一项DNA体外扩增技术,在体外对特定的双链DNA片段进行高效扩增,故又称基因体外扩增法。
多聚酶链反应技术快速、特异、敏感,在食品中致病菌的检测方面具有很大的应用潜力。如可用于单核细胞增多症李氏杆菌、金黄色葡萄球菌、顽固性梭状芽胞杆菌、沙门氏菌等的检测。
5 基因芯片技术
基因芯片技术能同时将大量探针固定于支持物上,可以一次性对样品大量序列进行检测和分析,从而解决了传统核酸印迹杂交技术的操作繁杂、自动化程度低、操作序列数量少、检测效率低等不足,是一种在生物技术产品检测中极有发展前景和应用价值的技术,也是近年来国内外研究的热点,基因芯片检测技术完全可能成为21世纪最具活力的检测技术之一。
基因芯片检测技术可以判断该植物是否含有外来的基因序列,而鉴定该植物是否为生物技术作物。
6 免疫传感器
免疫传感器是根据生物体内抗原-抗体特异性结合并导致化学变化而设计的生物传感器,其主要由感受器、转换器和放大器组成。免疫传感器是多学科边缘交叉的产物,其研究涉及到电化学、物理、生物、免疫学和计算机等领域的相关知识。
免疫传感器主要有:酶免疫传感器、电化学免疫传感器(电位型、电流型、电导型、电容型)、光学免疫传感器(标记型、非标记型)、压电晶体免疫传感器、表面等离子共振型免疫传感器和免疫芯片等。
基于抗原-抗体特异性结合的工作原理,免役传感器在食品检测中的应用主要体现在对生物性危害的检测。如可用于致病菌、生物毒素、农药、兽药等的检测。

D. 什么是生物分子间的特异性结合

异性结合是指生物体内发生特异性免疫时
,相应的抗原和抗体得结合叫做特异性结合,效应T细胞和靶细胞结和,催化该底物进行化学反应。例如、配基-受体之间的相互辨别和选择性结合反应,即酶与底物接近基岩时诱导酶蛋白变构,表现出酶对其底物具有严格的选择性。这种现象可用诱导楔合学说来解释,并与其中构象最合适的一种底物结合:抗体和抗原接合产生沉淀。首锋丛
生物特异性结合;有特异性的(抗体等者樱)和相应的病毒或细胞结合,从立体结构角度上说就是相应的反应物之间构象的对应性。酶的特异性是指一种酶能在两种或多种不同底物之间作出辨别。通过X射线衍射分析证明,生物酶-底物,在此基础上酶与底物互补楔合进行反应、抗原-抗体,酶与底物结合时有显着的构象变化

E. 什么叫生物化学研究对象包括哪些主要内容

生物化学(biochemistry)是一门研究生物体的化学组成及其变化规律,从分子水平上揭示生命现象本质的一门生命科学,又称生命的化学。

生物化学的研究对象:蛋白质、核酸、酶。

生物化学的主要内容:

1、人体的物质组成;

2、生物分子的结构与功能;

3、物质代谢及调控;

4、基因信息传递与表达及调控;

5、器官生化。

(5)如何利用化学性分子识别和生物学特异性扩展阅读

生物化学若以不同的生物为对象,可分为动物生化、植物生化、微生物生化、昆虫生化等。若以生物体的不同组织或过程为研究对象,则可分为肌肉生化、神经生化、免疫生化、生物力能学等。因研究的物质不同,又可分为蛋白质化学、核酸化学、酶学等分支。

生物化学对其他各门生物学科的深刻影响首先反映在与其关系比较密切的细胞学、微生物学、遗传学、生理学等领域。

通过对生物高分子结构与功能进行的深入研究,揭示了生物体物质代谢、能量转换、遗传信息传递、光合作用、神经传导、肌肉收缩、激素作用、免疫和细胞间通讯等许多奥秘,使人们对生命本质的认识跃进到一个崭新的阶段。

F. 生物大分子的特异性指的是什么举个例子

在生物学上,某种生物现象由两个或两个以上的因素互相作用所引起时,这种现象的发生和性质多依存于各因素的生物学来源和化学性质。这种因素间的相互选择棚散性或因素与现象的对立性,称为特异性。根据形成特异性的基础,有可链核氏能产生种的特异性、器官特异性、组织特异性、基质特异性、抗原特异性等。一般地,抗原特异性较为显着,这可以认为是生物学反应的特点之一。主要由于蛋白质、核酸、多糖等生物大分子的微小且动态的构氏桐造上的特殊差异所致。

G. 如何利用分子生物学进行品种鉴定

如何利用分子生物大液学进行品种鉴定
利用基颤基因测序技术就可以.品茄仿谨种之间的基因保守性序列差异很小,但是特异性序列之间差异很大,可以利用保守性序列设计引物进行PCR扩增,将得到的带进行核酸序列测定即可区分.

H. ●生物化学的研究内容以及与分子生物学关系。10分

第一章 绪 论

一生物化学研究的内容
1生物化学:生物化学(biochemistry)是研究生物机体(微生物、植物、动物)的化学组成和生命现象中的化学变化规律的一门科学,即研究生命活动化学本质的学科。所以生物化学可以认为就是生命的化学。
生物化学利用化学的原理与方法去探讨生命,是生命科学的基础。它是介于化学、生物学及物理学之间的一门边缘学科。2 生物化学研究的主要方面:(1)生物体的物质组成 高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质,如维生素、激素、氨基酸、多肽、核苷酸及一些分解产物
(2)物质代谢生物体与其外环境之间的物质交换过程就称为物质代谢或新陈代谢。物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。其中,中间代谢过程是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质物质代谢调控,能量代谢几方面的内容。(3)生物分子的结构与功能 根据现代生物化学及分子生物学研究还原论的观点 ,要想了解细胞及亚细胞的结构和功能,必先了解构成细胞及亚细胞的生物分子的结构和功能。因此,研究生物分子的结构和功能之间的关系,代表了现代生物化学与分子生物学发展的方向。

二生物学的发展
(-)静态生物化学阶段
大约从十八世纪中叶到二十世纪初,主要完成了各种生物体化学组成的分析研究,发现了生物体主要由糖、脂、蛋白质和核酸四大类有机物质组成 。
(二)动态生物化学阶段
大约从二十世纪初到二十世纪五十年代。此阶段对各种化学物质的代谢途径有了一定的了解。
其中主要的有: 1932年,英国科学家Krebs 建立了尿素合成的鸟氨酸循环;1937年,Krebs又提出了各种化学物质的中心环节——三羧酸循环的基本代谢途径; 1940年,德国科学家Embden和Meyerhof提出了糖酵解代谢途径。
(三、)分子生物学阶段
从1953年至今。以1953年,Watson和Crick提出DNA的双螺旋结构模型为标志,生物化学的发展进入分子生物学阶段。这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。

三 生物化学与其他学科的关系
生物化学是介乎生物学与化学的一门边缘科学,它与生物科学的许多分支学科均有密切关系。
首先,它与生理学是特别密切的姊妹学科。例如植物生理学,它是研究植物生命活动原理的一门科学。植物的生命活动包括许多方面,其中有机物代谢是重要的方面,这本身也属于生物化学的内容。因此,在植物生理学的教科书中也包括部分生物化学内容。
生物化学与遗传学也有密切关系,现已知核酸是一切生物遗传信息载体,而遗传信息的表达,则是通过核酸所携带的遗传信息翻译为蛋白质以实现的。因此,核酸和蛋白质的结构、代谢与功能,同时是生物化学与遗传学的内容。
生物化学也与微生物学有关,目前所积累的生物化学知识,有相当部分是用微生物为研究材料获得的,如大肠杆菌是被生物化学广泛应用的材料。
生物化学与分类学也有关系,由于蛋白质在进化上是较少变化的,因此,近代利用某些蛋白质结构的研究,可以作为分类的依据。此外,农业科学、生物技术、食品科学、医药卫生及生态环境等科学,都需要生物化学的基础。

四 生物化学的应用与发展
二十一世纪是以信息科学和生命科学为前沿科学的时代。生物化学在生命科学中居于基础地位,也是医学、畜牧、兽医、农学、林学和食品科学等专业必修的基础课。生物化学在生产生活中的应用主要体现在医疗、农业和食品行业等方面。在医学上,人们根据疾病的发病机理以及病原体与人体在代谢和调控上的差异,设计或筛选出各种高效低毒的药物。比如最早的抗生素——璜胺类药物就是竞争性抑制使细菌不能合成叶酸从而死亡。依据免疫学知识人们设计研制出各种疫苗,使人类从传染病中得以幸免。艾滋病疫苗的研制工作也在不断取得进步民以食为天,这说明了农业生产在人类生活中的基础地位。我国是一个人口大国,且人均耕地少,如果不是通过生物技术改良农作物提高产量和质量,那么不要说实现小康,可能连社会稳定都无从谈起。大家可能对转基因这个概念比较陌生,但在当今社会,没有跟转基因产
品打过交道的人可2002年,我国本土生产大豆1541万吨,从美国和阿根廷等国家共进口了1397万吨大豆,进口大豆占我国大豆总消费量50%左右。其中美国占573万吨,剩下是阿根廷和巴西。美国100%转基因,阿根廷98%,巴西至少10%。这说明市面上流通的豆类制品,近50%是转基因作物制造。而这一信息知道的人并不多,但随着认证的进行,这一状况会逐步好转。
现代生命科学技术可以大大加快人类的进化历程并改变某些物种,从而影响到整个自然界的发展历程。科技的每一小步前进都会带来社会的深刻变化。正如网络的出现促成了虚拟社区的形成,而这虚拟的世界却又实实在在地影响着人们的现实生活。总的来说科技的进步给人类带来的更多是利益,生命科学领域中的工作者们正在努力实现使生命更完美的目标。没有疾病的困扰,胎儿在发育之前已对其缺陷基因进行了彻底的修复;不必杀生,人工合成的蛋白质取代了动物肉类;200岁被定为青年,衰老的器官被人工合成的新器官所移植。。。我想这就是生命科学的未来,她将营造出一个健康、繁荣和幸福的生命世界!

第二章 生物体内的糖类

糖是自然界中存在的一大类具有广谱化学结构和生物功能的有机化合物。它主要是由绿色植物经光合作用形成的。这类物质主要是由碳、氢、氧所组成,是含多羟基的醛类或酮类化合物。根据水解后产生单糖残基的多少可将糖作如下分类:
单糖:这是一类最简单的多羟基醛或多羟基酮,它不能再进行水解。根据其所含的碳原子数,单糖又可分为丙糖、丁糖、戊糖、己糖、庚糖等。依其带有的基团,又可分为醛糖和酮糖。
寡糖:是由2~10个单糖分子聚合而成的糖,如二糖、三糖、四糖、……、九糖等。
多糖:由多分子单糖及其衍生物所组成,依其组成又可分为两类:(1)同聚多糖:由相同单糖结合而成,如戊聚糖、淀粉、纤维素等。(2)杂聚多糖:由一种以上单糖或其衍生物所组成,如半纤维素、粘多糖等。

第一节 单糖及其衍生物

任何单糖的构型都是由甘油醛及二羟丙酮派生的,形成醛糖和酮糖。由于糖的构型有D-构型与L-构型,即凡分子中靠近伯醇(—CH2OH)的仲醇基(—CHOH)中的羟基如在分子的右方者称为D-糖,在左方者称为L-糖,因此又有D-醛糖和L-醛糖、D-酮糖和L-酮糖之分。它们的关系如图1-1、图1-2。
植物体内最重要的单糖有戊糖、己糖和庚糖,现在分别举例说明如下:

一、 戊糖(pentose)

高等植物中有三种重要的戊糖,即D-核糖、D木糖及L-阿拉伯糖。其环状结构式为:

β-D-核糖 L-阿拉伯糖 D-木糖
D-核糖(D-ribose)是所有生活细胞的普遍成分之一,在细胞质中含量最多。核糖是构成遗传物质——核糖核酸(RNA)的主要成分。如果D-核糖在C2上被还原,则形成2脱氧-D-核糖。脱氧核糖是另一类遗传物质——脱氧核糖核酸(DNA)的主要成分。
L-阿拉伯糖(L-arabinose)在植物中分布很广,是粘质、树胶、果胶质与半纤维素的组成成分,在植物体内以结合态存在。
D-木糖(D-xylose)是植物粘质、树胶及半纤维素的组成成分,也以结合态存在于植物体内。

图1-1 D-醛糖的关系图

图1-2 D-酮糖的关系图

二、 己糖(hexose)

高等植物中重要的己醛糖有D-葡萄糖、D-甘露糖、 D-半乳糖;重要的己酮糖有D-果糖和D-山梨糖。
葡萄糖(glucose)是植物界分布最广、数量最多的一种单糖,多以D-式存在。葡萄糖在植物的种子、果实中以游离状态存在,它也是许多多糖的组成成分,如蔗糖是由D-葡萄糖与D-果糖结合而成的,淀粉及纤维素都是由D-葡萄糖聚合而成的。

-D-吡喃葡萄糖 -D-吡喃葡萄糖
果糖(fructose)也是自然界中广泛存在的一种单糖。存在于植物的蜜腺、水果及蜂蜜中,是单糖中最甜的糖类。在游离状态时,果糖为-D-吡喃果糖,结合态时为-D-呋喃果糖。

甘露糖(mannose)在植物体内以聚合态存在,如甘露聚糖。它是植物粘质与半纤维的组成成分。花生皮、椰子皮、树胶中含有较多的甘露糖。甘露糖的还原产物——甘露糖醇是柿霜的主要成分。

半乳糖(galactose)在植物体内仅以结合状态存在。乳糖、蜜二糖、棉籽糖、琼脂、树胶、果胶类及粘质等都含有半乳糖。
山梨糖(sorbose)又称清凉茶糖,存在于细菌发酵过的山梨汁中,是合成维生素C的中间产物,在制造维生素C的工艺中占有重要的地位。桃、李、苹果、樱桃等果实中含有山梨糖的还原产物——山梨糖醇。

三、 庚糖(heptose)

庚糖虽然在自然界分布较少,但在高等植物中存在。最重要的有D-景天庚酮糖及D-甘露庚酮糖。前者存在于景天科及其他肉质植物的叶子中,故名景天庚酮糖。它以游离状态存在。该糖是光合作用的中间产物,在碳循环中占有重要地位。D-甘露庚酮糖存在于樟梨果实中,也以游离状态存在。它们的线状结构如下:

四、糖的重要衍生物

由于电子显微镜的应用及近代细胞壁化学的研究,自然界中又发现有两种其他的脱氧糖类,它们是细胞壁的成分。一种是L-鼠李糖(L-rhamnose),另一种是6-脱氧-L-甘露糖。
糖醛酸(uronic acid)由单糖的伯醇基氧化而得。其中最常见的是葡萄糖醛酸(glucouronic acid)它是脏内的一种解毒剂。半乳糖醛酸存在于果胶中。
糖胺(glycosamine)又称氨基糖, 即糖分子中的一个羟基为氨基所代替。自然界中存在的糖胺都是己糖胺。常见的是D-葡萄糖胺(D-glucosamine),为甲壳质(几丁质)的主要成分。甲壳质是组成昆虫及甲壳类结构的多糖。 D-半乳糖胺则为软骨组成成分软骨酸的水解产物。

第二节 寡 糖

寡糖的概念是1930年提出的,是指由2~10个单糖分子聚合而成的糖。自然界中存在着大量的寡聚糖,早在1962年就已经发现了584种之多。寡聚糖在植物体内具有贮藏、运输、适应环境变化、抗寒、抗冻、调节酶活性等功能。寡糖中以双糖分布最为普遍,意义也较大。

一、 双糖(disaccharides)

双糖是由两个相同的或不同的单糖分子缩合而成的。双糖可以认为是一种糖苷,其中的配基是另外一个单糖分子。在自然界中,仅有三种双糖(蔗糖、乳糖和麦芽糖)以游离状态存在,其他多以结合形式存在(如纤维二糖)。蔗糖在碳水化合物中是最重要的双糖,而麦芽糖和纤维二糖在植物中也很重要,它们是两个重要的多糖——淀粉和纤维素的基本结构单位。
1. 蔗糖(sucrose)
蔗糖在植物界分布最广泛,并且在植物的生理功能上也最重要。蔗糖不仅是主要的光合作用产物,而且也是碳水化合物储藏和积累的一种主要形式。在植物体中碳水化合物也以蔗糖形式进行运输。此外,我们日常食用的糖也是蔗糖。它可以大量地由甘蔗或甜菜中得到,在各种水果中也含有较多。
蔗糖是-D-吡喃葡萄糖-D-呋喃果糖苷。它不是还原糖,因为2个还原性的基团都包括在糖苷键中。蔗糖有一个特殊性质,就是极易被酸水解,其水解速度比麦芽糖或乳糖大1 000倍。蔗糖水解后产生等量的D-葡萄糖及D-果糖,这个混合物称为转化糖。在高等植物和低等植物中有一种转化酶(invertase),可以使蔗糖水解成葡萄糖和果糖。
2. 麦芽糖(maltose)
它大量存在于发芽的谷粒,特别是麦芽中,在自然界中很少以游离状态存在。它是淀粉的组成成分。淀粉在淀粉酶作用下水解可以产生麦芽糖。用大麦淀粉酶水解淀粉,可以得到产率为80%的麦芽糖。
用酸或麦芽糖酶水解麦芽糖只得到D-葡萄糖,麦芽糖酶的作用表明这2个D-葡萄糖是通过第l和第4碳原子连结的,故麦芽糖可以认为是-D-葡萄糖-(l,4)-D-葡萄糖苷。因为有一个醛基是自由的,所以它是还原糖。

3. 乳糖(Iactose)
乳糖存在于哺乳动物的乳汁中(牛奶中含乳糖4%~7%)。高等植物花粉管及微生物中也含有少量乳糖。乳糖是由D-葡萄糖和D-半乳糖分子以 l,4键连结缩合而成的,乳糖是还原糖。分子结构如下:

4. 纤维二糖 (cellobiose)
纤维素经过小心水解可以得到纤维二糖,它是由2个葡萄糖通过β-l,4-葡萄糖苷键缩合而成的还原性糖。与麦芽糖不同,它是β-葡萄糖苷。

纤维二糖[β-D-吡喃葡萄糖(1,4)-D-吡喃葡萄糖苷]
二、 三糖

自然界中广泛存在的三糖(trisaccharide)仅有棉籽糖(raffinose),主要存在于棉籽、甜菜及大豆中,水解后产生D-葡萄糖、D-果糖及D-半乳糖。在蔗糖酶作用下,由棉籽糖中分解出果糖而留下蜜二糖;在-半乳糖苷酶作用下,由棉籽糖中分解出半乳糖而留下蔗糖。棉籽糖的分子结构如下:

三、四糖

水苏糖(stachyose)是目前研究得比较清楚的四糖,存在于大豆、豌豆、洋扁豆和羽扇豆种子内,由2个分子半乳糖、1分子-葡萄糖及1个分子-果糖组成。结构如下:

第三节 植物的贮藏多糖和结构多糖

多糖(polysaccharides)是分子结构很复杂的碳水化合物,在植物体中占有很大部分。 多糖可以分为两大类:一类是构成植物骨架结构的不溶性的多糖,如纤维素、半纤维素等,是构成细胞壁的主要成分;另一类是贮藏的营养物质,如淀粉、菊糖等。
多糖是由许多单糖分子缩合而成的:由一种单糖分子缩合而成的如淀粉、糖原、纤维素等;由二种单糖分子缩合而成的如半乳甘露糖胶、阿拉伯木糖胶等;由数种单糖及非糖物质构成的如果胶物质等。
1.淀粉(starch)
淀粉几乎存在于所有绿色植物的多数组织中。是植物中最重要的贮藏多糖,是禾谷类和豆科种子、马铃薯块茎和甘薯块根的主要成分,它是人类粮食及动物饲料的重要来源。在植物体中,淀粉以淀粉粒状态存在,形状为球形、卵形,随植物种类不同而不同。即使是同种作物,淀粉含量也因品种、气候、土壤等条件变化而有所不同。
淀粉在酸和体内淀粉酶的作用下被降解,其最终水解产物为葡萄糖。这种降解过程是逐步进行的:
淀粉—红色糊精—无色糊精—麦芽糖—葡萄糖
遇碘显 (紫蓝色) (红色) (不显色) (不显色)
用热水溶解淀粉时,可溶的一部分为直链淀粉;另一部分不能溶解的为支链淀粉。
(1) 直链淀粉(amylose) 直链淀粉溶于热水,遇碘液呈紫蓝色,在620~680nm间呈最大光吸收。相对分子质量约在10 000~50 000之间。每个直链淀粉分子只含有一个还原性端基和一个非还原性端基,所以它是一条长而不分枝的链。直链淀粉是由 l,4糖苷键连结的-葡萄糖残基组成的,当它被淀粉酶水解时,便产生大量的麦芽糖,所以直链淀粉是由许多重复的麦芽糖单位组成的,分子结构如下:
直链淀粉
(2) 支键淀粉(amylopectin) 支链淀粉的相对分子质量非常之大,在50 000一1 000 000之间。端基分析表明,每24~30个葡萄糖单位含有一个端基,因而它必定具有支链的结构,每条直链都是-l,4键连结的链,支链之间由-l,6键连结,可见支链淀粉分支点的葡萄糖残基不仅连接在C4上,而且连接在C6上,-1,6-糖苷键占5%~6%。支链淀粉的分支长度平均为24~30个葡萄糖残基。遇碘显紫色或紫红色,在530~555nm呈现最大光吸收。
一般淀粉都含有直链淀粉和支链淀粉。但在不同植物中,直链淀粉和支链淀粉所占的比例不同,如表1-1。即使是同一作物,品种不同二者的比例也不同,如糯玉米中几乎不含直链淀粉,全为支链淀粉。
支链淀粉

表1-1 不同植物的淀粉中直链淀粉和支链淀粉的比例
淀 粉 直链淀粉(%) 支链淀粉(%)
马铃薯淀粉
小麦淀粉
玉米淀粉
稻米淀粉 19~20
24
21~23
17 78~81
76
77~79
83

2. 糖原(glycogen)
糖原是动物细胞中的主要多糖,是葡萄糖极容易利用的储藏形式。其作用与淀粉在植物中的作用一样,故有“动物淀粉”之称。糖原中的大部分葡萄糖残基是以-1,4-糖苷键连结的,分支是以-1,6-糖苷键结合的,大约每10个残基中有一个键(图1-3)。糖原端基含量占9%而支链淀粉为4%,故糖原的分支程度比支链淀粉约高1倍多。糖原的相对分子质量很高,约为5 000 000。它与碘作用显棕红色,在430~490nm下呈最大光吸收。

图1-3 糖原的分子结构
3. 菊糖(inu1in)
菊糖是多聚果糖,菊糖中的果糖一律以D-呋喃糖的形式存在。菊科植物如菊芋、大丽花的根部,蒲公英、橡胶草等都含有菊糖,代替了一般植物的淀粉,因而也称为菊粉。菊糖分子中含有约30个 l,2-糖苷键连接的果糖残基。菊糖分子中除含果糖外,还含有葡萄糖。葡萄糖可出现在链端,也可以出现在链中。
菊糖不溶于冷水而溶于热水,因此,可以用热水提取,然后在低温(如0℃)下沉淀出来。菊糖具有还原性。淀粉酶不能水解菊糖,因此人和动物不能消化它。蔗糖酶可以以极慢的速度水解菊糖。真菌如青霉菌(Penicillium glaucum)、酵母及蜗牛中含有菊糖酶,可以使菊糖水解。
4. 纤维素(cellulose)
纤维素是最丰富的有机化合物,是植物中最广泛的骨架多糖,植物细胞壁和木材差不多有一半是由纤维素组成的。棉花是较纯的纤维素,它含纤维素高于90%。通常纤维素、半纤维素及木质素总是同时存在于植物细胞壁中。
植物纤维素不是均一的一种物质,粗纤维可以分为-纤维素、-纤维素和γ-纤维素三种。-纤维素不溶于17.5%NaOH,它不是纯粹的纤维素,因为在其中含有其他聚糖(如甘露聚糖); -纤维素溶于17.5%NaOH,加酸中和后沉淀出来;γ-纤维素溶于碱而加酸不沉淀。这种差别大概是由于纤维素结构单位的结合程度和形状的不同。
实验证明, 纤维素不溶于水,相对分子质量在50 000~400 000,每分子纤维素含有300~2 500个葡萄糖残基。葡萄糖分子以-l,4-糖苷键连接而成。在酸的作用下完全水解纤维素的产物是-葡萄糖,部分水解时产生纤维二糖,说明纤维二糖是构成纤维素的基本单位。水解充分甲基化的纤维素则产生大量的2,3,6-三甲氧基葡萄糖,表明纤维素的分子没有分枝。其分子结构如下:
二、酰甘油的类型

三酰甘油有许多不同的类型,主要是由它们所含脂肪酸的情况决定的。三酰甘油的通式为:

如果三个脂肪酸是相同的(即R 1、 R 2 、R 3是相同的),称为简单三酰甘油(simple triacylglycerols),具体命名时称为某某脂酰甘油,如三硬脂酰甘油、三软脂酰甘油、三油脂酰甘油等。如果含有两个或三个不同脂肪酸(即R 1、 R 2 、R 3不同时)的三酰甘油称为混合三酰甘油,如一软脂酰二硬脂酰甘油。在混合三酰甘油中各脂酰基由于位置不同,又有不同的异构体。
多数天然油脂都是简单三酰甘油和混和三酰甘油的极其复杂的混合物。到目前为止,还没有发现在天然油脂中脂肪酸分布的规律。
三、三酰甘油的理化性质
1. 溶解度
三酰甘油不溶于水,也没有形成高度分散的倾向。二酰甘油和单脂酰甘油则不同,由于它们有游离羟基,故有形成高度分散态的倾向,其形成的小微粒称为微团(micelles),它们常用于食品工业,使食物更易均匀,便于加工,且二者都可以被机体利用。
2. 熔点
三酰甘油的熔点是由其脂肪酸的组成决定的,一般随饱和脂肪酸的数目和链长的增加而升高。如三软脂酰甘油和三硬脂酰甘油在常温下为固态,三油酰甘油和三亚油酰甘油在常温下为液态。猪的脂肪中油酸占50%,猪油固化点为30.5℃。人脂肪中油酸占70%,人脂固化点为15℃。植物油中含大量的不饱和脂肪酸,因此呈液态。
3.皂化和皂化值
当将脂酰甘油与酸或碱共煮或经脂酶(lipase)作用时,都可发生水解。酸水解可逆;碱水解,由于脂肪酸羧基全部处于解离状态,即成为负离子,因而没有和甘油作用的可能性,故碱水解不可逆。当用碱水解三酰甘油时,生成物之一为脂肪酸的盐类,这就是日常所用的肥皂,所以脂类的碱水解反应一般称为皂化反应(saponification)。完全皂化1g油或脂所消耗的氢氧化钾毫克数称为皂化值(saponification number),用以评估油脂质量,并计算该油脂相对分子质量。
4.酸败和酸值
油脂在空气中暴露过久即产生难闻的臭味,这种现象称为“酸败”(rancidity)。其化学本质是油脂水解放出游离的脂肪酸,后者再氧化成醛或酮,低分子的脂肪酸(如丁酸)的氧化产物都有臭味。脂肪分解酶或称脂酶(lipase)可加速此反应。油脂暴露在日光下可加速此反应。 中和1g油脂中的游离脂肪酸所消耗的氢氧化钾毫克数称为酸值(acid value)。酸败的程度一般用酸值来表示。不饱和脂肪酸氧化后所形成的醛或酮可聚合成胶状的化合物。桐油等可用作油漆即是根据此原理。
5.氢化和卤化
油脂中的不饱和键可以在催化剂的作用下发生氢化反应。工业上常用Ni粉等催化氢化使液状的植物油适当氢化成固态三酰甘油酯,这称为人造奶油,便于运输。氢化可防止酸败作用。
油脂中的不饱和键可与卤素发生加成作用,生成卤代脂肪酸,这一作用称为卤化作用(halogenation)。
100g油脂所能吸收的碘的克数称为碘值(iodine value),在实际碘值测定中,多用溴化碘或氯化碘为卤化试剂。
6.乙酰化值(acetylation number)
含羟基的脂酰化合物,羟基含量可通过与乙酸酐或其他酰化剂反应生成乙酰化酯或相应酰化酯而测得。乙酰化值指1g乙酰化的油脂所分解出的乙酸用氢氧化钾中和时所需氢氧化钾的毫克数。

第二节 其它酰基甘油类

一、烷基醚脂酰甘油(alkyl ether acylglycerols)

它含有两个脂肪酸分子和一个长的烷基或烯基链分别与甘油分子以酯键相连。例如烷基醚键二脂酰甘油和、-烯基醚二脂酰甘油(、-alkenyl ether acylglycerols),其结构如下:

烷基醚键二脂酰甘油 、-烯基醚二脂酰甘油
这种脂类不易与甘油三酯分开,因此发现较晚。用弱碱或酶促水解,它们则形成甘油醚(glycerol ethers)。例如,鲛肝醇和鲨肝醇实际上都是甘油醚,其结构如下:

二、糖基脂酰甘油(glycosylacylglycerols)

糖基与甘油分子第三个羟基以糖果苷键相连,甘油另两个羟基与脂肪酸以酯键相连。最普通的例子是在高等植物和脊椎动物神经组织中发现的单半乳糖基二脂酰甘油,其结构如下:

3. 磷酸甘油酯的命名
如果将甘油C1或C3分别用脂肪酸或磷酸酯化,C2则成为一个不对称C原子,于是形成两个互为对映体(antipode)的异构物。天然存在的甘油磷脂都属L-构型。结构如下:

D-构型 L-构型
1967年国际理论和应用化学联合会及国际生物化学联合会的生物化学命名委员会建议采用下列命名原则:
将甘油的三个碳原子分别标号为1,2,3(三者顺序不能随便颠倒)。

用投影式表示,C2上羟基一定要放在C2的左边。这种编号称为立体专一编号(stereospecific numbering),用sn表示,写在化合物名称前面。根据这一命名原则,磷酸甘油和磷脂酸命名如下:

sn-甘油-1-磷酸 sn-甘油-3-磷酸

sn-二脂酰甘油-1-磷酸 sn-二脂酰甘油-3-磷酸
三、非皂化脂质
非皂化脂质的特点是它们都不含脂肪酸,因此不能为碱所皂化。它们在组织和细胞内含量虽少,但却包括许多有重要生物功能的物质,如维生素和激素等。

阅读全文

与如何利用化学性分子识别和生物学特异性相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:734
乙酸乙酯化学式怎么算 浏览:1397
沈阳初中的数学是什么版本的 浏览:1343
华为手机家人共享如何查看地理位置 浏览:1036
一氧化碳还原氧化铝化学方程式怎么配平 浏览:877
数学c什么意思是什么意思是什么 浏览:1401
中考初中地理如何补 浏览:1290
360浏览器历史在哪里下载迅雷下载 浏览:693
数学奥数卡怎么办 浏览:1380
如何回答地理是什么 浏览:1014
win7如何删除电脑文件浏览历史 浏览:1047
大学物理实验干什么用的到 浏览:1478
二年级上册数学框框怎么填 浏览:1691
西安瑞禧生物科技有限公司怎么样 浏览:947
武大的分析化学怎么样 浏览:1241
ige电化学发光偏高怎么办 浏览:1330
学而思初中英语和语文怎么样 浏览:1641
下列哪个水飞蓟素化学结构 浏览:1418
化学理学哪些专业好 浏览:1479
数学中的棱的意思是什么 浏览:1050