1. 生物制药是什么意思
生物制药以天然的生物材料为主,包括微生物、人体、动物、植物、海洋生物等用来制药。
生物药物的特点是药理活性高、毒副作用小,营养价值高。生物药物主要有蛋白质、核酸、糖类、脂类等。用免疫法制得的动物原料、改变基因结构制得的微生物或其它细胞原料等。这些物质的组成单元为氨基酸、核苷酸、单糖、脂肪酸等,对人体不仅无害而且还是重要的营养物质。
(1)生物制药中流加是什么扩展阅读
生物制药在I型糖尿病DNA疫苗的应用
基于B7-1-PE40KDEL外毒素融合基因的DNA疫苗近日获得国际“三方”发明专利授权。该成果是具有完全自主知识产权的原创性成果,也是我国全新治疗性DNA疫苗领域获得的首个国际“三方”发明专利授权,即该成果将在世界上最大的3个市场(美国、欧盟和日本)受到专利保护。
治疗性DNA疫苗特异性强、疗效确切、安全性好、生产成本低,现已成为继单克隆抗体药之后,全球生物制药产业中又一个新的战略制高点。据介绍,该DNA疫苗在前期的动物实验中能有效防治I型糖尿病,纠正I型糖尿病自身紊乱的细胞与体液免疫应答反应,修复损伤破坏的胰岛β细胞,恢复自身胰岛素的分泌。
该疫苗只需在患者皮下或肌肉注射一次,可有效维持疗效近一个月,将大幅度提高该DNA疫苗用药的依从性,避免患者每天用药的麻烦。
2. 什么是生物制药,怎么定义,如何区分
健康正常的身体在生命活动中能保持健康状态,能躲避疫情和不断战胜疾病,就在于人体内部含有并不断产生多种与人体代谢紧密相关的调控物质,如蛋白质、酶、核酸、激素、抗体、细胞因子等。这些物质起着维持正常生命活动的功能。人体一旦受到外界环境的影响或其本身老化使某种活性物质的产生或作用受到阻碍时,就会发生与该物质有关的疾病,如胰岛素分泌障碍时就会发生糖尿病。
那么,什么叫生物制药呢?生物制药的药物来源是什么呢?
生物药物是指运用微生物学、生物学、医学、生物化学等的研究成果,从生物体、生物组织、细胞、体液等,综合利用微生物学、化学、生物化学、生物技术、药学等科学的原理和方法制造的一类用于预防、治疗和诊断的制品。生物药物原料以天然的生物材料为主,包括微生物、人体、动物、植物、海洋生物等。随着生物技术的发展,有目的人工制得的生物原料成为当前生物制药原料的主要来源。如用免疫法制得的动物原料、改变基因结构制得的微生物或其它细胞原料等。生物药物的特点是药理活性高、毒副作用小,营养价值高。生物药物主要有蛋白质、核酸、糖类、脂类等。这些物质的组成单元为氨基酸、核苷酸、单糖、脂肪酸等,对人体不仅无害而且还是重要的营养物质。生物药物的阵营很庞大,发展也很快。
目前全世界的医药品已有一半是生物合成的,特别是合成分子结构复杂的药物时,它不仅比化学合成法简便,而且有更高的经济效益。
半个世纪以来微生物转化在药物研制中一系列突破性的应用给医药工业创造了巨大的医疗价值和经济效益。微生物制药工业生产的特点是利用某种微生物以“纯种状态”,也就是不仅“种子”要优而且只能是一种,如其它菌种进来即为杂菌。对固定产品来说,一定按工艺有它最合适的“饭”—培养基,来供它生长。培养基的成分不能随意更改,一个菌种在同样的发酵培养基中,因为只少了或多了某个成分,发酵的成品就完全不同。如金色链霉菌在含氯的培养基中可形成金霉素,而在没有氯化物或在培养基中加入抑制生成氯化的物质,就产生四环素。药物生产菌投入发酵罐生产,必须经过种子的扩大制备。从保存的菌种斜面移接到摇瓶培养,长好的摇瓶种子接入培养量大的种子罐中,生长好后可接入发酵罐中培养。不同的发酵规模亦有不同的发酵罐,如10吨、30吨、50吨、100吨,甚至更大的罐。这如同我们作饭时用的大小不同的锅。
我们吃的维生素、红霉素、洁霉素等,注射用的青霉素、链霉素、庆大霉素等就是用不同微生物发酵制得的。医药上已应用的抗生素绝大多数来自微生物,每个产品都有严格的生产标准。预测生物制药的研究进展,它将广泛用于治疗癌症、艾滋病、冠心病、贫血、发育不良、糖尿病等多种疾病。
3. 生物制药是做什么的
生物制药是指将生物技术运用到制药工程当中生产出大量的预防及治疗疾病的职业,主要工作是新药品的研发相关工作(运用生物技术)和药品生产过程中的测试、控制等。下面是我整理的详细内容,一起来看看吧!
1、负责新药品的研发相关工作(运用生物技术)。
2、负责药品生产过程中的测试、控制等过程。
3、与生命科学、化学、医学人员一同进行人类与动物生物系统方面的工程研究。
4、利用工程与生理行为原理,设计与开发医疗诊断和临床检测仪器、设备和流程。
5、完成部门主管安排的其他生产任务。
生物制药专业特色是生物制药已成为国际和国内增长最快的行业之一,21世纪是生物技术的世纪,生物制药已成为侦破中国高新技术发展的重点。
在全球金融危机的阴影下,新兴国家医药市场却表现得风光这边独好,中国作为“金砖四国”之一,生物制药市场也分外亮丽。国家发展改革委安排新增中央投资4.42亿元,支持生物医药、生物育种、生物医学工程高技术产业化专项以及国家生物产业基地公共服务条件建设专项的建设。此举为今后生物制药的发展注入了新的动力。
虽然经过多年的发展,中国生物医药产业已经有了一个良好的基础,但是与世界先进国家的生物医药产业相比,中国生物医药产业还存在不少差距。中国生物医药产业的发展从科研到产业化,将是一条艰难的路。从国家到地方各级政府不断加大力度支持生物医药产业的发展。
4. 求 生物制药工艺流程
微生物制药技术
工业微生物技术是可持续发展的一个重要支撑,是解决资源危机、生态环境危机和改造传统产业的根本技术依托。工业微生物的发展使现代生物技术渗透到包括医药、农业、能源、化工、环保等几乎所有的工业领域,并扮演着重要角色。欧美日等国已不同程度地制定了今后几十年内用生物过程取代化学过程的战略计划,可以看出工业微生物技术在未来社会发展过程中重要地位。
微生物制药技术是工业微生物技术的最主要组成部分。微生物药物的利用是从人们熟知的抗生素开始的,抗生素一般定义为:是一种在低浓度下有选择地抑制或影响其他生物机能的微生物产物及其衍生物。(有人曾建议将动植物来源的具有同样生理活性的这类物质如鱼素、蒜素、黄连素等也归于抗生素的范畴,但多数学者认为传统概念的抗生素仍应只限于微生物的次级代谢产物。)近年来,由于基础生命科学的发展和各种新的生物技术的应用,报道的微生物产生的除了抗感染、抗肿瘤以外的其他生物活性物质日益增多,如特异性的酶抑制剂、免疫调节剂、受体拮抗剂和抗氧化剂等,其活性已超出了抑制某些微生物生命活动的范围。但这些物质均为微生物次级代谢产物,其在生物合成机制、筛选研究程序及生产工艺等方面和抗生素都有共同的特点,但把它们通称为抗生素显然是不恰当的,于是不少学者就把微生物产生的这些具有生理活性(或称药理活性)的次级代谢产物统称为微生物药物。微生物药物的生产技术就是微生物制药技术。可以认为包括五个方面的内容:
第一方面 菌种的获得
根据资料直接向有科研单位、高等院校、工厂或菌种保藏部门索取或购买;从大自然中分离筛选新的微生物菌种。
分离思路 新菌种的分离是要从混杂的各类微生物中依照生产的要求、菌种的特性,采用各种筛选方法,快速、准确地把所需要的菌种挑选出来。实验室或生产用菌种若不慎污染了杂菌,也必须重新进行分离纯化。具体分离操作从以下几个方面展开。
定方案:首先要查阅资料,了解所需菌种的生长培养特性。
采样:有针对性地采集样品。
增殖:人为地通过控制养分或培条件,使所需菌种增殖培养后,在数量上占优势。
分离:利用分离技术得到纯种。
发酵性能测定:进行生产性能测定。这些特性包括形态、培养特征、营养要求、生理生化特性、发酵周期、产品品种和产量、耐受最高温度、生长和发酵最适温度、最适pH值、提取工艺等。
第二方面 高产菌株的选育
工业上生产用菌株都是经过选育过的。工业菌种的育种是运用遗传学原理和技术对某个用于特定生物技术目的的菌株进行的多方位的改造。通过改造,可使现存的优良性状强化,或去除不良性质或增加新的性状。
工业菌种育种的方法:诱变、基因转移、基因重组。
育种过程包括下列3个步骤: (1)在不影响菌种活力的前提下,有益基因型的引入。(2)希望基因型的选出。(3)改良菌种的评价(包括实验规模和工业生产规模)。
选择育种方法时需综合考虑的因素(1)待改良性状的本质及与发酵工艺的关系(例如分批或者连续发酵试验);(2)对这一特定菌种的遗传和生物化学方面认识的明了程度;(3)经济费用。如果对特定菌种的基本性状及其工艺知晓甚少,则多半采用随机诱变、筛选及选育等技术;如果对其遗传及生物化学方面的性状已有较深的认识,则可选择基因重组等手段进行定向育种。
工业菌种具体改良思路:(1)解除或绕过代谢途径中的限速步骤(通过增加特定基因的拷贝数或增加相应基因的表达能力来提高限速酶的含量;在代谢途径中引伸出新的代谢步骤,由此提供一个旁路代谢途径。) (2)增加前体物的浓度。 (3)改变代谢途径,减少无用副产品的生成以及提高菌种对高浓度的有潜在毒性的底物、前体或产品的耐受力。(4)抑制或消除产品分解酶。 (5)改进菌种外泌产品的能力。(6)消除代谢产品的反馈抑制。如诱导代谢产品的结构类似物抗性。
5. 液质联用中流动相加酸,或加碱的意义是什么
自20 世纪70 年代初,人们开始致力于液-质联用接口技术的研究。在开始的20 年中处于缓慢的发展阶段,研制出了许多种联用接口,但均没有应用于商业化生产[1] 。直到大气压离子化(atmospheric-pressure ionization, API)接口技术的问世,液-质联用才得到迅猛发展,广泛应用于实验室内分析和应用领域。
液-质联用接口技术主要是沿着三个分支发展的:
(1)流动相进入质谱直接离子化,形成了连续流动快原子轰击(continuous-flow fast atom bombarment, CFFAB)技术等;
(2)流动相雾化后除去溶剂,分析物蒸发后再离子化,形成了“传送带式”接口(moving-belt interface)和离子束接口(particle-beam interface)等;
(3)流动相雾化后形成的小液滴解溶剂化,气相离子化或者离子蒸发后再离子化,形成了热喷雾接口(thermo spray interface)、大气压化学离子化(atmospheric pressure chemical ionization,APCI)和电喷雾离子化(electrospray ionization, ESI)技术等。有关液相质谱的接口技术和LC-MS 技术的发展,Niessen 曾经进行了较为详细的综述。
目前应用最广泛的离子源有电喷雾电离源和大气压化学电离源。其显着优势有:可将质荷比降低到各种不同类型的质量分析器都能检测的程度,在带电状态进行检测从而计算离子的真实分子量,可以生成高度带电且不发生碎裂的离子,同时,对于分子离子的同位素峰也可确定其分子量和带电数。大气压化学离子化(APCI)技术与ESI源的发展基本上是同步的,其离子化过程主要是借助于电晕放电启动一系列气相反应来完成,整个电离过程是在大气压条件下完成的。ESI和APCI的共同点是离子化效率高,从而显着增强分析的灵敏度和稳定性,大多与离子阱质谱仪和三重四极杆质量分析器联用。
6. 生物药物发酵工艺流程
1、小量发酵种子液
2、灌装培激迅养基
3、发酵罐中加入种子液发酵
4、检测OD、溶氧量行高等指标
5、流加培养基、搅拌
6、发酵到对数生长期中后,进行诱导
7、诱导表达一段时间,放明带此罐
具体请参见《生物反应工程》《发酵工艺》
7. 生物制药是干什么的,前景怎么样
生物制药产业链全景梳理:上游制药设备行业最薄弱
生物制药的上游制药基础主要是由原材料、制药设备以及生物技术构成,其中,原材料主要以天然的生物材料为主,包括微生物、人体、动物、植物、海洋生物等;生物制药设备主要有生物反应器、培养基、灭菌设备、冷冻机等,其中生物反应器为生物制药最核心且最关键的设备。产业链中游是生物制药的研发生产环节,生物制药的产品主要包括单克隆抗体、疫苗、重组蛋白、血液制品、诊断试剂等。下游流通消费层主要是医药的销售和消费。生物医药外包服务CRO、CMO和CSO涉及生物制药产业链中下游。
随着生物制药产业的蓬勃发展,中国生物制药设备市场需求也进一步扩大。但充满机遇的同时,生物制药设备行业面临着较大的挑战,设备中高端市场缺位较严重,行业整体创新能力比较弱
,药企对国产生物制药设备的信任度较低,生物制药的中高端设备主要依赖于进口。生物制药设备的市场份额大部分被欧美日企占据,中国的生物制药设备受制于人,迫切需要摆脱生物制药源头依赖。
生物制药设备龙头企业有颇尔、赛多利斯、东富龙、楚天科技、通用电气等。
生物制药产业链的中游研发制造层涌现了一批优秀的生物制药企业,如药明康德、药明生物、百济神州、中国生物制药、康泰生物制品、华兰生物、康龙化成、万泰生物药业、甘李药业、君实生物等。
生物制药产业链区域热力地图:产业集中度较低
中国生物制药产业企业众多,但总体集中度相对较低。根据公开资料整理生物制药产业链上中游规模以上的企业得出图表3区域热力地图,
从区域分布上看,分布在北京、上海、广东、江苏等地区的生物制药优秀企业明显较多,这与生物制药产业所需的科技水平高、自然资源丰富、人才集中度高等条件相关。
近年来,中国的一些生物制药研发生产企业取得了不错的成效,其中各区域的龙头企业如下,坐落于北京的有白济神州、中国生物、北京天坛、康龙化成、神州细胞等;上海的君实生物、上海莱士、复星医药等;江苏的龙头企业有药明生物、恒瑞医药、信达生物、博瑞医药等;广东的泰康生物、丽珠医药、博济医药等;河南的华兰生物、山东的齐鲁制药、云南的沃森生物、重庆的智飞生物、四川的科伦药业和华神科技等等。
更多数据请参考前瞻产业研究院《中国生物制药行业市场需求预测与投资战略规划分析报告》。
8. 典型生物药物的一般制造流程是什么
一般生物制药的主要流程如下:1. 上游阶段
1.1 目的基因的制备
目的工程的主要目的是使优良性状相关的基因聚集在同一生物体中,创造出具有高度应用价值的新物种. 为此必须从现有生物群体中,根据需要分离出用于克隆的次类基因,这样的基因称之为目的基因. 基因工程中获得的目的基因主要用于: (1).研究该基因,分析其结构,功能和表达的调空机制 (2).和正常基因比较,找出基因的异常点,探索疾病发生的分子生物学基础. (3).研究生物种系的进化 (4).建立基因疗法,将正常基因引入病人体内,治疗遗传性疾病(5).大量表达某种基因,生产出需要的蛋白和多肽 (6).对某些基因进行改选,改良动植物品种.
不同基因组类型的基因组大小不同,基因组和基因排列也各不相同,因此,分离目的基因应采用不同的途径和方法
1.1.1 构建cDNA基因文库分离法
cDNA文库是以真核细胞中分离纯化出所有的mRNA,在以mRNA为模板合成cDNA与适当的载体重组转入宿主细胞,这样建立起来的cDNA重组分子集合体称为cDNA文库.而cDNA文库中插入片段的总和可代表某一种生物全部的mRNA序列.
1.1.1.1 cDNA文库的构建
构建cDNA文库主要包括以下步骤: (1).细胞总RNA的制备及mRNA的分离 (2).以mRNA为模板,合成cDNA第一条链 (3).双链cDNA的合成,而将mRNA—DNA杂交分子转变为双链cDNA分子 (4). CDNA与载体的连接和噬菌体颗粒的包装及传染或质粒的转化等
1.1.1.2 cDNA克隆的优越性
自20世纪70年代初说创cDNA克隆问世以来,以采用构建和筛选cDNA文库的方法克隆了许多目的基因的cDN**段.在基因工程操作中,也长以cDNA为探针从基因文库中分离相应的基因克隆.因此, cDNA克隆常常以基因分离和结构分析的着手点,在分子生物学研究和基因工程应用等方面具有十分重要的意义.
1.1.2 构建基因组文库分离法
1.1.2.1 基因组文库的概念
将某种生物的基因组DNA切割成一定大小的片段,分别与适合的载体重组后导入宿主细胞,这些重组分子中插入片段的总和可代表该生物全部基因组序列.这种通过重组,克隆方法保存在宿主细胞中的各种DNA重组分子的集合体称为基因组文库.
1.1.2.2 基因组文库的大小
克隆片段的平均大小/bp 基因组的大小/bp
2×10^6(细菌) 2×10^7(真菌) 3×10^9(动物)
LN SJ LN SJ LN SJ
5×10^3 400 1831 4000 18418 600000 2736110
10×10^3 200 919 2000 9208 300000 1381550
20×10^3 100 458 1000 4603 150000 690774
40×10^3 50 278 500 2300 75000 345386
一个理想的基因组文库因该是在克隆群体中包含完整基因组的所有DNA序列.这就要求在打断基因组DNA时尽可能做到随机切割,实际上,无论采用什么方法的不能达到理论上的切割.应此构建的基因组文库应包含的克隆子数理论值和经验值之间相差比较大.几类基因组文库的大小见下表: “2”
1.1.2.3 构建基因组文库的类型
通过克隆,重组方法构建的基因组文库主要有:
(1)构建λ噬菌体基因组文库;(2)构建考斯质粒基因组文库
(3) 构建YAC基因组文库
1.1.3 直接分离法
1.1.3.1 限制性核酸内切酶酶切分离法
限制性核酸内切酶酶切分离法适于简单基因组中分离目的基因。质粒和病毒等DNA分子小的只有几千碱基,大的也不超过几万碱基,编码的基因较少,获得的目的基因方法比较简单。
1.1.3.2 基因分离的物理化学法
这是基因工程在发展初期所用的方法,某些生物的rDNA基因最早都是利用该法分离获得的,但目前很少采用。次方法主要有:密度梯度离心法、单链酶解法和分子杂交法等。1.1.3.3 双抗体免疫法分离编码蛋白的基因
双抗体免疫法分离编码蛋白的基因适于某一真核细胞的蛋白质已被分离纯化,且足以产生抗体。
1.1.3.4 利用酶促反转录发直接从特定mRNA分离基因
酶促反转录主要用于合成分子质量较大,转录产物mRNA易分离目的基因。
目的基因的mRNA为模板 逆转录酶 cDNA DNA聚合酶双链 双链cDN**段
与合适载体重组并转入受体菌 cDNA克隆
1.2 目的基因的分离
通过适当的方法构建上一个完整的基因组DNA文库或CDNA文库,意味着包含目的基因在内的所有基因都得以克隆,但并不等于完成了目的基因的分离。因为在基因文库中,不论是CDNA文库还是基因组文库,含目的基因的克隆子都只是数以万计的克隆子中的一个,其中究竟哪个克隆子含有我们所需要的目的基因序列还不清楚。因此,还需要下一个步骤要进行的就是目的基因的分离,主要方法有:
(1)目的基因的功能克隆 (2)序列克隆法
(3)利用差示分析法分离目的基因克隆 (4)功能结合法筛选目的基因
(5)DNA插入诱变法分离目的基因(6)应用基因定位克隆技术分离筛选目的基因
(7)基因的定位侯选克隆法(8)染色体显微切割与微克隆法
(9)根据生物大分子内的相互作用分离目的的CDNA克隆
(10)筛选目的基因片段的差别杂交及减法杂交技术
1.3 基因克隆载体
载体是携带目的基因的DN**段进入受体细胞进行扩增和表达的工具。常用的载体是经过改造的细菌质粒,噬菌体,黏粒和病毒
1.3.1 质粒克隆载体
质粒是细菌染色体外的双链环状的能自我复制的小分子DNA,其对细胞本身的生长繁殖不是必需的,但可以赋予细菌一定的类型,如耐热型等。
与构建克隆载体相关的质粒性质有:
(1) 粒的复(2) 制型(2)质粒的不(3) 相容性
(3)质粒的接合性
(4)质粒作为基因工程载体需要具备的条件:作为基因工程载体的质粒都是经过人工改造过的质粒,具备以下特点:
a, 相对分子质量小3—10kb b, 是松弛型复制质粒
c, 是非接合型质粒 c, 质粒上有多个限制酶的单一切点
d, 带有双选择标记
1.3.2 病毒(噬菌体)克隆载体
病毒主要由DNA(或RNA)和外壳蛋白组成,经包装后成为病毒颗粒。通过感染,病毒颗粒进入宿主细胞,利用宿主细胞的合成系统进行DNA(或RNA)复制的壳蛋白质的合成,实现病毒颗粒的增殖。人们利用这些性质构建了一小列分别适用于不同生物的病毒克隆载体。通过此种方法构建成的基因克隆载体主要有:
(1) 噬菌体克隆载体cosmid克隆技术(黏粒)(2)Μ13噬菌体克隆载体
(2) aMV克隆载体(4)烟草花叶病毒( TMV)载体克隆
(5)SVCO克隆载体(6)反转录病毒克隆载体
(7)腺病毒克隆载体(8)痘苗病毒克隆载体
(9)杆状病毒表达克隆载体
1.3.3 其他类型的克隆载体
(1)染色体定位整合克隆载体(2)人工染色体克隆载体
(3) 特殊用途克隆载体:如启动子探针型,(4) 诱导型,(5) 反义表达组织特异表达,(6) 分泌型表达,(7) 双启动子,(8) 串族启动子和含增强子表达克隆载体等等
1.4 目的基因和载体的连接(重组)
目的基因和载体连接前要先用同一种限制酶将目的基因和载体切割成黏性端或平端,也可以用物理方法切割后再用酶补成平端
体外连接是基因工程的重要环节,体外连接要减少载体的自身环化,提高重但子阳性率。主要的连接方法有:黏性末端连接、平端连接、定向插入和同源多聚尾。
1.5 重组体导入受体细胞
外源目的基因与载体在体外连接重组后形成重组的DNA分子。该重组DNA分子必须导入适宜的受体细胞在中才能使外源目的基因得以大量扩增或表达。随着基因工程的发展,从低等的原核细胞,到简单的真核细胞,进一步达到结构复杂的高等动,植物细胞都可以作为基因工程的受体细胞。选择适宜的受体细胞已经成为重组基因高效克隆或表达的基本前提之一
1.5.1 受体细胞的选择要求
目的基因获得后,必须在合适的宿主细胞中才能进行表达,才能获得目的产物.应此,宿主细胞必须满足:容易获得较高浓度的细胞;能利用易得廉价的材料;不致病、不产生内毒素;发热量低,需氧低,适当的发酵温度和细胞形态;容易进行代谢调控;容易进行DNA重组技术操作技术;产物的产量、产率高,产物容易提取纯化.
1.5.2 受体细胞的类型
人们通过研究,根据需要获得了一定的目的产物,而目的基因能否的到有效的表达,关键在与受体细胞的选择.
1.5.2.1 原核生物细胞
由于原核生物作为基因工程受体具有其他生物所没有的优点,而且人们对其遗传背景清楚,所以早期开展的基因工程操作,都是以原核生物为受体细胞.目前研究比较多的有:大肠杆菌、枯草芽孢杆菌、链霉菌等.
1.5.2.2 真核生物细胞
由于真核生物的细胞结构、基因组成和基因表达较为复杂,适用于原核生物的转基因方法大多数难以有效地用于真核生物.近年来经过探索,发现它可以对表达的蛋白质进行翻译后加工过程,有利于保持天然结构和生物活性.并用这些方法有效的获得了转基因真核生物.研究较多的有:酵母菌、哺乳动物细胞、昆虫细胞、植物细胞等等.
1.5.3 重组子的筛选
在重组DNA分子的转化、转染和转导过程中,并非所有的的受体细胞 都能被导入重组DNA分子.一般仅有少数重组DNA分子能进入受体细胞,同时也只有极少数的受体细胞在吸纳重组DNA分子之后能良好增殖.因此,如何将被转化细胞从大量受体菌细胞中初步筛选出来,然后进一步检测到含有期待重组DNA分子的克隆子将直接关系到基因克隆和工程操作红极为重要的环节.
重组子的筛选可以根据载体的类型、受体细胞种类以及外源DNA分子导入受体细胞的手段等采用不同的方法,一般包括以方面:
(1).遗传直接筛选法; (2),核算分子杂交检测法; (3)依赖于重组子结构特征分析的筛选法;
(4)免疫化学检测法; (5)转译筛选法; (6)亚克隆法; (7)插入失活法;
(8)电子显微镜作图检测法; (9)基因表达产物分析法; (10)DNA序列分析法.
1.6、外源基因的表达
基因工程技术的核心是基因表达技术。迄今为止,已构建了多种基因表达系统,包括原核生物和真核生物基因表达系统,不同的表达系统具有各自的特点。
1.6.1 基因表达的机制(过程)
1.6.1.1 外源基因的起始转录
外源基因在宿主细胞中的有效表达是基因工程的核心问题,而外源基因的起始转录又是基因表达的关键。
1.6.1.2 mRNA的延伸与稳定性
外源基因起始转录后,保持mRNA的有效延伸、终止及稳定存在是外源基因有效表达的关键。
mRNA的稳定性直接导致决定翻译产物的多少,对原核细胞来说,最佳的方法是选择一个RNase缺失受体前。对真核细胞来说则需考虑增加mRNA的正确加工,提高成熟mRNA的稳定性。
1.6.1.3 外源基因mRNA的有效翻译
翻译是mRNA指导多肽链生成的过程,翻译的起始是多种因子协同作用的过程,其中包括mRNA,16SrRNA,fMet-tRNA之间的碱基配对,还有mRNA序列上的终止密码对正确翻译的效率有很大影响。
1.6.1.4 表达蛋白在细胞中的稳定性
外源基因的表达产物能否在宿主细胞中稳定积累而不被内源蛋白水解酶所水解是基因有效表达的一个重要因素,因此,为了避免此现象的发生可从以下几个方面考虑:
(一)构建融合蛋白表达系统; (二)构建分子体蛋白表达系统;
(三)构建包涵体表达系统; (四)选择蛋白水解酶基因缺陷型的受体系统.
1.6.1.5 目的基因沉默
基因沉默是导致外源基因不能正常表达的重要因素。它的作用机制主要有三种:位置效应的基因沉默、转录水平的基因沉默和转录后水平的基因沉默。基因沉默现象主要表现在转基因动物和植物中。
目的基因沉默是在核酸水平上DNA与DNA,DNA与RNA,RNA与RNA相互作用的结果。由于重复序列或同源系列是基因沉默的普通原因之一,因而在构建表达载体时,应尽可能避免与内源序列具有较高的同源性。此外,可以通过选择甲几基化酶活性较弱的受体细胞或以化学物质处理受体细胞抑制甲基化作用。
1.6.2 基因表达的调控元件
通过研究发现主要的基因表达调控元件有:启动子、增强子、终止子、衰减子、绝缘子和反义子
1.6.3 外源基因表达系统
外源基因表达系统泛指目的基因与表达载体重组后,导入合适的受体细胞,并能在其中有效的表达,产生目的基因产物(目的蛋白)。由此可知,外源基因表达系统由基因表达载体和相应的受体细胞两部分组成。基因表达系统有原核生物表达系统和真核生物表达系统。目前,利用较多的是原核生物表达系统,因其遗传背景清楚,繁殖快,表达率高等特点。近年来,真核生物基因表达系统发展很快,因其可以对表达的蛋白质进行翻译后加工过程,有利于保持天然结构和生物活性等优点。目前主要应用的表达系统有:大肠杆菌基因表达系统、芽孢杆菌表达系统、链霉菌表达系统、蓝藻表达系统、酵母表达系统、哺乳动物细胞基因表达系统、植物细胞基因表达系统;还有最新研究的两个新的表达系统[3]:巴斯德毕赤酵母表达系统和动物乳腺生物反应器——全新的生产模式。
2、下游阶段
基因工程只要的过程关键在于上游阶段,因它可以获得有效的工程菌,但下游纯化阶段也必不可少。因此为了获得合格的目的产物,必须建立相应的医药生物技术产品的分离纯化工艺。
2.1、基因工程菌发酵:
良好的发酵工艺对表达外源蛋白至关重要,直接影响下游纯化工艺,形象到产品的质量和生产成本,决定产品在市场上的竞争力。目前,基因工程菌培养常用方法有:补料分批培养、连续培养、透析培养、固定培养。近年来,生物药品已进入生物技术时代,对基因工程菌的培养设备要求十分严格,主要采用新型自动化发酵罐。
2.2、分离纯化的基本过程:
分离纯化是基因工程药物生产中极其重要的
一环,这是由于工程菌经过大规模培养后,产生的
有效成分含量低,杂质含量高;另外由于基因工
程药物是从转化细胞,而不是从正常细胞生产的,
所以对产品的纯度要求也高于传统产品,主要的
步骤如右表:[4]
2.2.1、建立分离纯化工艺根据
主要根据:(1)含目的产物的起始物料特点;
(2)物料中杂志的种类和性质;
(3)目的产物特性;
(4)产品质量的要求.
2.2.2、选择分离纯化方法的依据:
主要依据:
(1) 根据产物表达形式来选择;
(2) 根据分离单元之间的衔接选择;
(3) 根据分离纯化工艺的要求来选择.
2.2.3、常用的分离纯化方法(见下表)[5]
方法 目的
离心/过滤 去除细胞、细胞碎片、颗粒性杂质(如病毒)
阴离子交换层析 去除杂质蛋白、脂质、DNA和病毒等
阳离子交换层析 去除牛血清蛋白或转铁蛋白等
超滤 去除沉淀物及病毒
疏水层析 去除残余的杂蛋白
凝胶过滤 与多聚体分离
0.22μm微孔滤膜过滤 除菌
3、基因工程药物:
自20世纪80年代初第一种基因工程产品——人胰岛素投放市场以来,以基因工程药物为主导的基因工程应用已成为全球发展最快的产业之一。随着生物技术的快速发展,基因工程药物将拥有越来越广阔的发展前景。基因工程药物主要包括细胞因子、抗体、疫苗、激素和寡核苷酸药物等,它对预防和治疗人类的肿瘤、心血管疾病、遗传病、各种传染病、糖尿病、类风湿疾病等有重要作用。
3.1、基因工程激素类药物
激素是一类由生物体内分泌腺或特异性细胞产生的微量有机物,通过体液或细胞外液运送到特定的作用部位,能引起特殊的生理效应。基因工程的激素类主要指通过基因工程方法合成的蛋白多肽类激素。目前被批准上市的激素类药物有胰岛素、人生长激素、人促卵泡激素等。
3.2、基因工程细胞因子类药物
细胞因子是由细胞分泌的能够调节生物有机体生理功能,参与细胞的增殖,分化和凋亡的小分子多肽类物质。目前被批准上市的产品有十多种。主要有:干扰素(IFN)、集落刺激因子(CSF)、白细胞介素(IL)、肿瘤坏死因子(TNF),趋化因子和生长因子(GF)等。它们的生物学功能主要表现为:调节免疫应答、抗病毒、抗肿瘤、调节机体造血功能和促进炎症反应等。
3.3、基因工程疫苗:
直接利用微生物制备疫苗来治疗疾病取得了巨大的成就,但由于各种传染病在世界范围内广泛存在,并不断有新的致病微生物被发现,它们对人类的健康造成巨大威胁。利用基因工程方法制备疫苗对控制传染病的复发和治疗新的传染病有重要意义。目前研究的基因工程疫苗包括:痢疾菌苗、霍乱菌苗、结核菌苗、流感菌苗、狂犬病疫苗、疟疾疫苗、口蹄疫疫苗。
3.4 特殊基因工程药物—防御素
防御素是一类在生物界广泛存在的、富含半胱氨酸,具有微生物和一些恶性细胞抗性的小分子短肽.它的抗性谱十分广泛,目前以发现它不但对细菌、真菌和被膜病毒(如爱滋病病毒)有广泛的毒杀效应,对某些恶性肿瘤细胞也有毒杀作用.最近,对一些长期存活的爱滋病感染者的研究发现,他们体内的爱滋病抑制因子就是一类防御素.这一研究发现给人们战胜爱滋病带来希望.
4. 基因工程研究发展前景
基因工程问世以来短短的二十几年,显示出了巨大的活力,使传统的生产方式和产业结构发生了变化.特别是在医药行业,利用人工的方法合成了许多有用的药物及人体器官等,取得了很大的经济效益.今后,基因工程将重点开展基因组学、基因工程药物、动植物生物反应器和环保等方面的研究.通过这方面的研究、开发,对人类的生活、生存环境从根本上优化做出巨大的贡献.因此,我们相信基因工程的前景将是更加灿烂辉煌.
9. 生物技术制药 影响发酵的主要因素有哪些如何对发酵过程进行控制
这怎么说没锋陵?每一种发酵都不一样。
一般地说,影响发酵的主要因素有发酵液(培养基)基腔中营养物质的组成和比例、温度、PH值、溶氧等。
对于培养基营养物质的组成和比例,一是从培养基配方中加以确定;二是在发酵过程中,通过流加营养素(如氮源)的方法加以调整。
对于温度,通常随着发酵的进行,温度会升高。用发酵罐中冷却盘管中通入冷却水的方法进行控制枯戚。
对于PH值,通常随着发酵的进行,PH值会下降。用流加碱性溶液的方法进行调节(通常与补充氮源同时进行)。
对于溶氧,用调节通风量进行控制。
10. 什么是流加发酵
补料分批发酵也叫半连续发酵、半连续培茄毕养,流加发酵(fed-batch fermentation),它是以分批培养为基础,间歇或连续地补加新鲜培养基的一种发酵方法。
在20世纪初人们就知道在酵母培养基中,假如麦芽汁太多,会使生长过旺,造成供氧不足,供氧不足会产生厌氧发酵生成乙醇,减少菌体的产量。因此,采用降低麦汁初始浓度,让微生物生长在营养不太丰富的培养基中,在发酵过程中再补加营养,用这一方法可大大提高酵母的产量,阻止乙醇的产生。有时,采用补料分批发酵虽然降低了菌体的生长速率,但细胞得率提高了。如今,补料发酵的应用范围已相当广泛,包括单细胞蛋白、氨基酸、生长激素、抗生素、维生素、酶制剂、有机酸等生产几乎遍及整个发酵行业。
补料分批发酵与分批发酵相比,特州枯点在于使发酵系统中维持很低的基册纳洞质浓度。低基质浓度的优点:①可以除去快速利用碳源的阻遏效应,并维持适当的菌体浓度,使不致于加剧供氧矛盾。②避免在培养基中积累有毒代谢物,即代谢阻遏。与连续发酵相比,补料分批发酵不需要严格的无菌条件,也不会产生菌种老化和变异等问题,因此,其应用范围较广。