导航:首页 > 生物信息 > 水稻根际微生物有哪些

水稻根际微生物有哪些

发布时间:2023-05-19 10:48:53

Ⅰ 植物中有哪些微生物微生物对林业有哪些作用

植物体微生物的分布主要有这几种情况:①根际微生物;②附生微生物;③植物与微生物的共生体;④植物的寄生微生物。
根际是微生物生活特别旺盛的环境,在根际范围的土壤中的微生物量比根外土壤中微生物的量要高出几倍到几十倍。根际之所以有这么多微生物分布,主要是与根系的生命活动中,不断地改变周围土壤环境,丰富了土壤有机质密切相关的。首先,植物在生长发育过程中所产生的一些代谢产物由根部分泌到土壤中,成为根际内微生物的有机营养物质。这些营养物质包括氨基酸、维生素、糖类、有机酸、生物碱、磷脂及其他成分。这些物质有的对根际微生物生长有促进作用,有的则可能有选择地产生抑制作用。其次,根系也向土壤分泌多种酶,如蔗糖酶、淀粉酶、蛋白酶等,这些酶,可促进土壤中有机物的转变,从而更有利于根际微生物的吸收和利用。第三,根系的发育产生了许多死亡的根毛和表皮细胞,这些细菌破裂所释放的物质可供根系微生物饱餐一顿。由于这种种的原因,根际吸引了一大批的微生物在此安家落户,生儿育女。而这些在根际落户的微生物吸收了根所供给的各种养分 后,也不忘恩而适时报答给植物。在生态平衡时,根际微生物具有下列生理作用:①生物固氮作用:如固氮刚螺菌和其他固氮细菌为植物提供了很多的氮素。②促进植物对各种养分的吸收:通过根际微生物的转化作用使许多物质变成植物可吸收的养分。③生长刺激作用:根系微生物能产生许多影响植物根系发育的有机化合物,如小麦根际的细菌能合成靛乙酸,靛乙酸是一种促进植物生长的植物生长激素。而有的微生物能合成赤霉素类化合物,能提高种子发芽率和根毛的发育。④他毒作用:根际微生物可以分泌一些抗菌素类的物质,所有这些物质能抑制其他微生物生长;另外,也有一些微生物可产生一些对其他植物有毒害作用的物质,所有这些保护了宿主植物和根系自身的微生物群落,以便让这些生物有更有利的生活空间。

植物在地上部分的器官上也分布着许多微生物,包括多种细菌、酵母菌和少数丝状真菌,此外还有微生物的孢子,附生于植物表面的微生物主要靠植物所分泌出的有机物,如蜡质、糖汁等为生。

还有一种植物与微生物的共生体:这种共生体的典型例子就是根瘤菌和豆科植物所形成的共生体--根瘤。根瘤菌作为异养菌可以自由生活在土壤中,但自由生活的根瘤菌无固氮作用。而在适宜的条件下,它侵入根须,与植物的根组织共同形成根瘤。根瘤菌在根瘤内从植物根部获得营养而生长繁殖,同时进行固氮作用,而产生的氮素则通过植物的根吸收,可供植物生长发育所用,这样,根瘤菌和植物间互利互惠,成为生理上的一个共生联合体系。除豆科植物与根瘤菌能形成这种关系外,放线菌的内生菌也能与某些木本植物如杨梅、沙棘等的一些品种形成根瘤。

红萍和固氮蓝细菌也能形成共生体。红萍鳞叶腹腔中共生着一种鱼腥藻,后者是蓝细菌的一种,其有旺盛的固氮能力。红萍从这种固氮蓝细菌的代谢产物中得到氮素养料,而鱼腥藻则在红萍体内得到各种营养物质。这也是典型的一种植物的共生关系。

植物与微生物共生体的第三种形式是形成菌根。所谓菌根是某些真菌在一些植物根部发育,菌丝体包围在根表面或侵入根内同根组织共同发育,从而建立了共生关系的一种共生体。植物根部发生菌根是一个较普遍的现象,现已发现有2000多种植物有真菌共生形成菌根。根据形态结构,菌根可分为外生菌根和内生菌根两个类型。菌根的形成可以促进植物的生长,因为共生根上的真菌可以分解土壤中的有机物,同时促进根对各种营养的吸收。菌根对有些植物影响极大,如兰科植物的种子若没有菌根共生就不能发芽,杜鹃花的幼苗需有菌根共生才能存活。

植物上除共生或附生着许多微生物外还寄生着各种微生物,包括细菌、放线菌、真菌和病毒等。这当中有许多是植物病害的病原菌。寄生性的微生物需要从植物体内摄取养料,所以往往造成植物的伤害。

植物上的寄生微生物有的是严格寄生的,有的是兼性寄生的。严格寄生的微生物,一般只能在特定的一种活的植物体内生长繁殖,一旦离开植物体就不能生长,如致植物病害的各种病毒。而兼性寄生微生物则既能在被寄生的植株上生长繁殖,也能在土壤等外界环境中生长,而且这类微生物致病也往往是有条件的,故可称为条件致病菌。如引起水稻纹枯病的病原菌--薄膜霉,引起棉花枯萎病的病原菌--镰刀菌等都属于这一类。

Ⅱ 影响水稻生存的生物因素有哪些

生物因素包括植物 动物 微生物的因素。这些生物有的对水稻有益有的有害。我只说说有害的生物因素。动物主要友尺圆有饲草动物和吃粮食的鼠类和鸟类还有昆虫等,困碧昆虫主要有蚊蝇类螟虫类飞虱类叶蝉类蝗类蝽类等。植物主要包括水稻本身的竞争和水稻和其好塌他植物的竞争,最主要是水稻和杂草的竞争。微生物主要包括真菌细菌病毒等,微生物是影响水稻生存的生物因素中最主要的。 真菌有稻瘟病 稻纹枯病 水稻恶苗病 水稻霜霉病等,细菌有水稻白叶枯病 稻细菌性条斑病等,病毒有普通矮缩病 黄叶病 条纹叶枯病等。

Ⅲ 根际微生物的种类

根际芹胡微生物以细菌为主,前肆并且是革兰氏阴性菌占优势。嫌悔拦
常见的有假单胞菌、黄杆菌、产碱杆菌、土壤杆菌和色杆菌等。

Ⅳ 土壤中对农作物有利的有益菌有哪些

一、枯草芽孢杆菌:增加作物抗逆性、固氮。

二、巨大芽孢杆菌:解磷(磷细菌),具有很好的降解土壤中有机磷的功效。

三、胶冻样芽孢杆菌:解钾,释放出可溶磷钾元素及钙、硫、镁、铁、锌、钼、锰等中微量元素。

四、地衣芽孢杆菌:抗病、杀灭有害菌,

五、苏云金芽孢杆菌:杀虫(包括根结线虫),对鳞翅目等节肢动物有特异性的毒杀活性。

六、侧孢芽孢杆菌:促根、杀菌及降解重金属,

七、胶质芽孢杆菌:有溶磷、释钾和固氮功能,分泌多种酶,增强作物对一些病害的抵抗力。

八、泾阳链霉菌:具有增强土壤肥力、刺激作物生长的能力。

九、菌根真菌:扩大根系吸收面,增加对原根毛吸收范围外的元素(特别是磷)的吸收能力。

十、棕色固氮菌:固定空气中的游离氮,增产。

十一、光合菌群:是肥沃土壤和促进动植物生长的主力部队。

十二、凝结芽孢杆菌:可降低环境中的氨气、硫化氢等有害气体。提高果实中氨基酸的含量。

十三、米曲霉:使秸秆中的有机质成为植物生长所需的营养,提高土壤有机质,改善土壤结构。

十四、淡紫拟青霉:对多种线虫都有防治效能,是防治根结线虫最有前途的生防制剂。

三种以上多种复合菌相互促进、相互补充,抗土传病害效果远远大于单一菌种。有益菌群相互协同,共同作用,能使作物达到高产丰产的效果.

1、促进快速生长:菌群中的巨大芽孢杆菌、胶冻样芽孢杆菌等有益微生物在代谢过程中产生大量的植物内源酶,可明显提高作物对氮、磷、钾等营养元素的吸收率。

2、调节生命活动,增产增收:菌群中的胶冻样芽孢杆菌、侧孢芽孢杆菌、地衣芽孢杆菌等有益菌可促进作物根系生长,须根增多。有益微生物菌群代谢产生的植物内源酶和植物生长调节剂经由根系进入植物体内,促进叶片光合作用,调节营养元素往果实流动,膨果增产效果尺羡明显。与施用化肥相比,在等价投入的情况下可增产15%—30%。

3、果实品质明显提高:菌群中的侧孢芽孢杆菌、枯草芽孢杆菌、凝结芽孢杆菌等可降低植物体内硝酸盐含量20%以上,能降低重金属含量,可使果实中Vc含量提高30%以上,可溶性糖提高2—4度。乳酸菌、嗜酸乳杆菌、凝结芽孢杆菌、枯草芽孢杆菌谨兆等可提高果实中必需氨基酸(赖氨酸和蛋氨酸)、维生素B族和不饱和脂肪酸等的含量。果实口感好,耐储藏,卖价高。

4、分解有机物质和毒素,防止重茬:菌群中的米曲菌、地衣芽孢杆菌、枯草芽孢杆菌等有益微生物能加速有机物质的分解,为作物制造速效养分、提供动力,能分解连作有毒有害物质,防止重茬。

5、根际环境保护屏障:菌群中的地衣芽孢杆菌等有益微生物施入土壤后,迅速繁殖成为优势菌群,控制根际营养和资源,使重茬、根腐、立枯、流胶、灰霉等病原菌丧失生存空间和条件。使植物根系细胞的细胞壁增厚,纤维化、木质化,并生成角质双硅层,形成阻止病原菌侵袭的坚固屏障。

6、增强抗逆性:菌群中的地衣芽孢杆菌、巨大芽孢杆菌、侧孢芽孢杆菌等有益微生物可增强土壤缓冲能力,保水保湿,增陵晌拍强作物抗旱、抗寒、抗涝能力;同时侧孢芽孢杆菌还可强化叶片保护膜,抵抗病原菌侵染,抗病,抗虫。

Ⅳ 植物根际的木霉

根际的概念是由德国科学家Heltener于1904年首次提出,即指植物根周数毫米的区域。根际作为根系、土壤界面的微环境,是根系-微生物-土壤三者紧密结合且相互影响的场所。木霉的根际定殖,即木霉菌能随着根一起生长延伸。木霉在植物的根际分泌一些物质或溶解植物根周围的一些营养物质,同时,分解许多难降解的物质,为植物提供所需要的营养物,从而促进植物的生长。Avni等(1994)分别用100μg/mL的苯来特诱变绿色木霉和康宁木霉菌株,获得对苯莱特具有耐药性的木霉菌株,也意外地提高了这些木霉菌株的根际定殖能力:根际定殖能力强的木霉菌株能有效地利用复杂的枣轿碳水化合物如棉绒、纤维素、木质素及木聚糖作为碳源,菌丝在根表面生长较快,能随着根的生长进行拓展。未经诱变的木霉菌株只能拓展到根长的3cm以内,而经过诱变的获得强根际定殖能力的木霉菌株则拓展到整个根部,直至根尖。其后,Björkman等(1998)发现,根际定殖能力强的哈茨木霉菌株在植物根部竞争和拓展能力显着强于其他菌株,菌丝能随着玉米根部拓展到22cm处旦凯。用该菌株处理玉米后,玉米根部比未经处理健壮,根及茎生长量比对照组平均提高66%,提示刺激植物生长是木霉菌株对植物种子或幼苗直接作用的结果,并不是在抑制其他病原菌过程中所产生的结果。Altomare等(1999)发现,哈茨木霉菌株T22具有溶解可溶性或微溶性矿物质的能力,通过螯合或降解作用来溶解金属氧化物,如MnO2,Zn,Fe及磷酸钙的溶解,促进了植物对矿物质的吸收,从而促进植物的生长。黄有凯等(2003)的研究也表明,哈茨木霉H-13能促进水稻生长与提高水稻植株硝酸还原酶活力,增强水稻植株对N,P,K的吸收力。

木霉能抑制土壤中的病原菌,使植物充分生长。生长在自然条件下的植物因为受到病原菌的抑制,不能达到它的生长极限,在植物的根际土壤中接入了木霉,抑制了病原菌对植物的侵害,而使植物的生长潜能得以发挥。Calvet等(1993)观察了黄绿木霉(T.aureoviride)和一种菌根菌(Glomus mosseae)混合处理对植物的刺激生长作用。结果表明,单独使用深绿木霉对终极腐霉(Pythium ultimum)无抑制作用,但它与菌根菌混合后,能抑制终极腐霉,促进植物的生长,证明植物根际微生物菌根菌在深绿木霉促进植物生长过程中起着关键作用。Danrand等(2000)在用哈茨木霉防治豌豆根腐病的试验中发现,哈茨木霉的防病促生作用与豌豆根际土壤中存在的荧光假单胞(Pseudomonas fluo-rescens)密切有关。燕嗣皇等(2005)将广谱拮抗木霉菌株接入辣椒根际,分析模岩唤其对根际微生物区系和种群数量的影响,以及不同类型根际微生物与木霉菌和病原尖孢镰刀菌、青枯假单孢菌(Pseudomonas solanacearum)的互作。研究结果证实,木霉生防菌对辣椒根际大多数真菌有抑制作用或重寄生作用,或两者皆有,并主要引起真菌种群数量的减少和区系组成变化,多数根际优势细菌对木霉产孢有较强的促进作用,但也受放线菌(Actinomy-ces)和少数真菌和细菌的抑制。上述研究提示,木霉对植物的促生长作用与木霉和根际微生物的相互作用密切有关。

Ⅵ 水稻微生物研究方向

水稻微生物组动态变化揭示核心垂直传播的种子内生微生物

期刊:Microbiome

IF:16.837

发表时间:2022.12.9

第一作者:张晓霞,马毅楠

通搜行腊讯作者:魏带蚂海雷

通讯作者单位:中国农科院农业资源与农业区划研究所

DOI号:10.1186/s40168-022-01422-9

实验设计

实验设计图:本研究基于两代水稻、6个品种(RBQ、L31、M63、P64、Dular和Kasalath)、4个种植区(三亚、廊坊、南昌和西双版纳)、5个取样部位(散土、根际土、根内、茎内、种子内)的481份样品进行了高通量微生物组深度解析。

结果

1.水稻微生物群落多样性及其驱动因素

作者利用Chao1和Shannon指数描述样品的α-多样性后发现,同一水稻品种的根际、根、茎和种子内生微生物在不同地区的α-多样性没有显着差异。此外,6个水稻品种的根际、根内、茎内和种子内样品的α-多样性指数在4个种植地点没有显着差异,说明水稻基因型对微生物多样性没有影响。此外,根际和散土微生物群落的α-多样性在4个种植地点具有明显的差异,然而,内生微生物(茎、根和种子)多样性在4个地点具有不同的分布,表明外界环境对水稻内部的微生物多样性影响不大。重要的是,作者还发现水稻微生物的α-多样性不受品世滑种和种植地区的影响,始终呈现从根际、根、茎到种子内降低的规律。



图1 水稻相关微生物群落的α-多样性。

d和g, 6个水稻品种不同取样部位的4个种植地区合集的Chao1和Shannon指数。e和h, 4个种植地区6个水稻品种不同微生境微生物区系的Chao1和Shannon指数。f和I, 不同取样部位的所有水稻品种和种植地区合集的Chao1和Shannon指数。

通过基于Bray-Curtis相异性的PCoA分析,结果显示取样部位是微生物组变异的最主要影响因素(R2 = 0.314, p < 0.001),而受种植地区(R2= 0.0967, p < 0.001)和水稻品种(R2 = 0.0106, p = 0.478)的影响较小。可见,取样部位是水稻微生物组组成的主要驱动力。这些数据表明,水稻微生物群落的多样性从根部远处到近处、从外部到内部、从地下到地上呈稳步下降趋势。



图2 基于Bray-Curtis相异性的水稻取样部位、种植地区和品种的PCoA分析。

2.水稻微生物的群落组成及动态变化

为了调查水稻微生物的群落组成及动态变化,作者分析了在不同条件下的水稻微生物群落富集和组成情况。对于散土样品,三亚种植区的β-变形菌纲(Betaproteobacteria)的占比最高(57.9%),而其他细菌菌纲占比均小于10%。相比之下,放线菌纲(Actinobacteria)广泛分布在廊坊和西双版纳种植区,而疣微菌门(Verrucomicrobia subdivision 3)在南昌种植区显着富集。根际土样品细菌群落组成与散土样品十分相似,但少数类群在这两种取样部位间变化明显,例如β-变形菌纲(Betaproteobacteria)。γ-变形菌纲(Gammaproteobacteria)是唯一一个在散土、根际、根、茎和种子中逐渐富集的菌纲,而放线菌纲、α-变形菌纲和β-变形菌纲逐渐减少,说明水稻内部生态位更加有利于γ-变形菌纲的生存。因此,来自于γ-变形菌纲的泛菌属(Pantoea)和黄单胞菌属(Xanthomonas)比来自α-变形菌纲的鞘氨醇单胞菌属(Sphingomonas)和β-变形菌纲的食酸菌属(Acidovorax)在研究水稻内生方面更加具有优势。此外,在不同取样部位中丰度最高的前五个菌纲和菌属呈现动态变化,在子代种子样品中,γ-变形菌纲和泛菌属最为优势。



图3 水稻取样部位微生物群落组成。

a,纲水平散土、根际土、根内、茎内、子代种子和亲代种子内生微生物组成柱状图。b, 纲水平各取样部位前五汇总图。c, 属水平散土、根际土、根内、茎内、子代种子和亲代种子内生微生物组成柱状图。d, 属水平各取样部位前五汇总图。

3.细菌共现性网络和关键类群

通过构建不同取样部位的细菌共现性网络,作者进一步解析了细菌类群和取样部位间复杂相互作用对水稻微生物群落组成的影响。总体而言,网络的复杂性从根际、根内、茎内到种子内逐步降低。根据模块化指数可以观察到地下部分(散土、根际土和根内)比地上部分(茎内和种子内)具有更明显的模块化趋势。子代种子内样品的网络节点数、边数和平均聚类系数均为最低,网络组成最为简单。由此可见,取样部位对微生物网络的构建具有显着影响。作者根据网络节点解析微生物群落中的关键微生物。网络节点中变形菌门数量最多,且在茎内和种子内生样品中所有的节点微生物都来自变形菌门,说明该菌门在水稻内生微生物组中的重要地位。



图4 基于SparCC构建的微生物网络及网络参数。

a, 水稻微生物组不同取样部位间的共现性网络。每个节点代表一个细菌ASV,青色标记代表网络节点,边的颜色代表作用类型,红色代表正相关,蓝色代表负相关。b, 各取样部位间微生物网络的主要拓扑结构特征。

4.水稻核心内生菌群

为了挖掘能够在水稻中垂直传播的核心内生微生物类群,作者首先以大于70%的阈值在不同地点、水稻品种和微生境中提取核心ASV,最终在根、茎和子代种子内生样品中分别发现了438个、94个和27个ASV,其中三者共有的ASV为14个,分布在两个菌门,6个菌目。因此,作者推测水稻核心内生菌群的组成并不完全随机,而是受到了细菌特征、宿主环境和代谢特点的影响。



图5 水稻核心内生微生物和垂直传播类群。

a, 韦恩图显示高频率出现在水稻内生取样部位(根内、茎内和种子内)的ASV。b, 韦恩图展示10个潜在的从亲本种子垂直传播到子代种子的ASV。c, 在不同取样部位的潜在垂直传播ASV的绝对丰度。

5.种子内生菌垂直传播的证据

为了鉴定潜在的垂直传播细菌类群,作者分析了核心内生菌和亲代种子内生样品之间的重叠ASV,发现在14个共有内生ASV中,10个均来自亲代种子内生样品。同时ASV_2 (Pantoea)、ASV_26 (Pseudomonas)、ASV_48(Xanthomonas)和ASV_238(o_Enterobacterales)在根内、茎内、亲代种子和子代种子样品中的绝对丰度和出现频率均显着高于散土和根际土样品,表明这4种ASV最有可能是垂直传播的类群。

为进一步获得垂直传播的细菌类群,作者对种子内生细菌进行了高通量地分离、培养、纯化和鉴定,从4个种植地区和2个水稻品种(P64和Dular)的亲子代种子中分离获得了957株细菌。其中泛菌和黄单胞菌是数量最多的两个细菌菌属,分别占分离菌株的39.39%和27.69%。21株泛菌和27株黄单胞菌的部分16S rRNA基因序列分别与ASV_2和ASV_48序列完全相同。其中,9株泛菌和17株黄单胞菌来源于子代种子样品,其余均来自亲代种子样品。作者对这些菌株进行了基因组草图测序并进行了系统发育分析,发现分离获得的泛菌菌株分别属于P. ananatis、P. dispersa和 P. stewartia三个种,黄单胞菌均为X. sacchari种。通过比对亲代和子代的ANI值和核心基因组的相似性,发现来源于子代种子的8株泛菌与来源于亲代种子的9株泛菌具有极高的相似性;来自子代种子样品的4株黄单胞菌与来自亲代的4株菌株黄单胞菌具有极高相似性。以上结果表明种子内生菌在株系水平上存在垂直传播。



图6 可培养的垂直传播水稻种子内生菌鉴定。

a, 四个水稻种植区、两个水稻品种的亲代种子和子代种子中分离获得的可培养细菌菌株数量。b,圈图展示a中菌株属水平相关关系。c, 亲代种子和子代种子样品中分离的泛菌菌株ANI热图。d, 亲代种子和子代种子样品中分离的泛菌菌株串联核心基因组一致性热图。e, 亲代种子和子代种子样品中分离的黄单胞菌菌株ANI热图。f, 亲代种子和子代种子样品中分离的黄单胞菌菌株串联核心基因组一致性热图。

6.可垂直传播的种子内生菌群基因组挖掘和功能特征

为了进一步阐明水稻中可垂直传播类群的潜在功能,作者对所有已测序的内生泛菌和黄单胞菌菌株进行基因组挖掘分析。作者计算了泛菌和黄单胞菌的泛基因和核心基因数量,并利用COG和KEGG数据库对核心基因进行了功能注释。在COG注释中,核心基因组显着富集在E(氨基酸转运和代谢)和G(碳水化合物转运和代谢)两个功能类别中,且KEGG注释中同样存在高度相关的 “碳水化合物代谢”和“氨基酸代谢” 通路。随后,作者重点关注了级代谢产物、蛋白质分泌系统和酶三大功能类别,分析中发现所有泛菌菌株都含有促进植物生长相关的1-氨基环丙烷-1-羧酸(ACC)脱氨酶和吲哚乙酰胺水解酶(iaaH)。此外,所有泛菌基因组中都具有编码多种消化酶的基因,如右旋糖酶、β-半乳糖苷酶、果胶酶、纤维素酶和淀粉酶基因。并且均具有T1SS、T5aSS和T6SS,而只有少数菌株具有T2SS、T3SS、T4SS、T5bSS和T5cSS。黄单胞菌基因组中也具有iaaH基因和丰富的消化酶编码基因如β-半乳糖苷酶、淀粉酶和果胶酶基因。然而,分离出的黄单胞菌菌株基因组中仅含有T1SS、T4SS和T5SS,而不含致病性T3SS和T6SS。随后作者对部分泛菌和黄单胞菌进行了一些促生功能特征的检测并发现所有菌株都具有纤维素酶活性,并能够产生吲哚-3-乙酸(IAA),这与基因组挖掘的结果相对应。



图7 水稻种子垂直传播内生菌的系统发育分析。

a, 基于1258个单拷贝同源基因的串联多序列比对建立的21株泛菌菌株与20株模式菌株的最大似然发系统发育关系。b, 基于892个单拷贝同源基因的串联多序列比对建立的27株泛菌菌株与22株模式菌株的最大似然发系统发育关系。SM,次生代谢产物;PSS,蛋白质分泌系统;ENZ,消化酶。

总结

本研究建立了水稻内生微生物资源库,并通过多尺度微生物组学分析,阐明了种子内生微生物组中核心类群的垂直传播与功能特征,对未来开发种子内生菌并提高植物适应性奠定了理论基础。对进一步理解微生物-植物共进化理论提供了新的证据。水稻内生微生物资源在营养转化与吸收、抗病抗逆、耐胁迫等方面表现出的巨大潜力,也为微生物肥料、微生物农药、微生物种衣剂、微生物防腐剂的研发开辟了新的思路。

中国农科院农业资源与农业区划研究所张晓霞研究员和马毅楠博士后为该论文的共同第一作者,魏海雷研究员为通讯作者。该研究得到国家自然科学基金、中国农业科学院科技创新工程等项目资助。

Ⅶ 进行固氮原因

思路解析:微生物之所以能固氮,关键是体内有固氮酶,世腔在固氮酶的作用下,可将空气中游离态的氮还原成 ,而固氮酶则是在固氮基因的指搜嫌衫导下合成的,因此固氮基因是微生者大物进行固氮作用的根本。固氮基因是有遗传效应的DNA片段,其上含有指导合成固氮酶的遗传信息。固氮基因一方面可通过复制将遗传信息传递给后代,另一方面,在微生物体内,固氮基因的遗传信息通过转录传给信使RNA,再通过翻译传给固氮酶(一种蛋白质)。 答案:(1)固氮基因 (2)固氮酶 固氮基因 信使RNA 固氮酶 (3)常温 常压 能源

阅读全文

与水稻根际微生物有哪些相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:703
乙酸乙酯化学式怎么算 浏览:1371
沈阳初中的数学是什么版本的 浏览:1316
华为手机家人共享如何查看地理位置 浏览:1009
一氧化碳还原氧化铝化学方程式怎么配平 浏览:846
数学c什么意思是什么意思是什么 浏览:1368
中考初中地理如何补 浏览:1259
360浏览器历史在哪里下载迅雷下载 浏览:670
数学奥数卡怎么办 浏览:1348
如何回答地理是什么 浏览:988
win7如何删除电脑文件浏览历史 浏览:1021
大学物理实验干什么用的到 浏览:1447
二年级上册数学框框怎么填 浏览:1658
西安瑞禧生物科技有限公司怎么样 浏览:824
武大的分析化学怎么样 浏览:1212
ige电化学发光偏高怎么办 浏览:1300
学而思初中英语和语文怎么样 浏览:1605
下列哪个水飞蓟素化学结构 浏览:1387
化学理学哪些专业好 浏览:1451
数学中的棱的意思是什么 浏览:1016