❶ 双水相萃取生物小分子与萃取大分子有何不同之处
不同之处主要在于萃取过程中所使用的萃取剂种类和操作条件的差异。
双水相萃取是一种段轮新型的生物分离技术,其基本原理是利用两种互不相溶的水相进行分离,其中一相通常为有机纳燃轮相,另一相为水相。在萃取小分子时,通常使用的是极性有机溶剂(如醇类、酮类等)作为有机相,而在萃取大分子时,则通常使用的是聚乙二醇、聚丙烯酸等高分子化合物作为有机相。此外,萃取小分子时通常采洞信用液液萃取方式,而萃取大分子时则通常采用固相萃取方式。
双水相萃取技术具有高效、快速、环保等优点,因此在生物分离和提取领域得到了广泛应用。
❷ 生物分离工程中有什么方法啊
蒸发、过滤(普通过滤,膜过滤)、离心分离、萃取、层析、色谱(薄层色谱、柱色谱)、电泳、
❸ 微生物分离和纯培养技术有哪些
微生物的培养方式
1.分批培养(batchculture)将微生物置于一定容积的培养基中,经培养,最后一次收获,谓分批培养。在分批培养中,培养基一次加入,不予补充,不再更换。由于营养消耗,代谢产物积累,对数生长期不能长期维持。
2.连续培养(continuous culture)在培养器中不断补充新鲜营养物质,并不断排出部分培养物(包括菌体和代谢产物),以保持长时间生长状态的一种培养方式。主要有恒浊连续培养和恒化连续培养两类。恒浊连续培养通过不断调节流速,使培养液浊度保持恒定,因而可不断提供具有一定生理状态的细胞,并可得到以最高生长速率进行生长的培养物。恒化连续培养通过控制恒定的流速使营养物浓度基本恒定,从而使微生物保持恒定的生长速率。用不同浓度的限制性营养物进行恒化培养,可得到不同生长速率的培养物。
3.半连续培养(semi-continuous culture)在发酵罐中的一部分发酵液保留下来作为菌种液,放出其余部分进入提练加工工序,在剩余的培养液中加满新的未接种的培养液,继续培养,如此反复,谓之半连续培养。
4.补料分批培养(fed-batch culture)补料分批培养又称半分批培养,是指在分批培养过程中,间歇或连续地补加新鲜培养液,但不取出培养物。待培养到适当时期,将其从反应器中放出,从中提取目的生成物(菌体或代谢产物)。若放出大部分培养物后,继续进行补料培养,如此反复进行,则称为重复补料分批培养(repeated fed-batch culture)。与传统分批发酵相比,补料分批发酵的优点在于使发酵系统中的基质浓度维持在低水平,这有以下优点:①可除去快速利用碳源的阻遏效应,并维持适当的菌体浓度,以减轻供氧矛盾;②避免有毒代谢物的抑菌作用;③大为减少了无菌操作要求十分严格的接种的次数。与连续发酵相比,补料分批培养不会产生菌种老化和变异等问题。故其应用范围十分广泛。
5.同步培养 能使培养的微生物处于较一致的,生长发育在同一阶段上的培养方法叫同步培养法。利用同步培养法控制细胞的生长,使它们处于同一生长阶段,所有细胞都能同时分裂,这种生长方式叫同步生长(图3—4)。用同步培养法得到的培养物叫同步培养物(synchronous culture)。这样,群体和个体行为一致,即可用研究群体的方法来研究个体水平上的问题。由于同步群体的个体差异,同步生长往往最多维持2个~3个世代,然后又逐步变为随机生长。
青岛海博生物技术有限公司,主要从事生物、医学及相关领域的产品技术研究、开发和销售,涉及分子生物学、生物化学、医用诊断试剂以及各种微生物、检验用培养基等诸多方面。
海博生物技术有限公司现有产品:干燥培养基、显色培养基、常规检验培养基、药典培养基、植物组织培养基、运送培养基、临床检验培养基、动物疫苗培养基、一次性平板等。
干燥培养基:有600多个品种,采用法国进口原料制作, 质量稳定、特异性好,并在不断开发新产品。
支原体培养基:由于质量稳定、特异性好,广泛用于全国各大医院和皮肤病专科医院,得到用户的一致好评。
显色培养基:生产金黄葡萄球菌显色培养基、大肠杆菌显色培养基、大肠菌群显色培养基、大肠杆菌和大肠菌群二合一显色、李斯特氏菌显色培养基、0157菌显色培养基、弧菌显色培养基、坂崎杆菌显色培养基等。
生化试剂:经营多种生化试剂,品种齐全,质量保证。
❹ 分离纯化微生物的方法有哪些各方法适用分离什么菌种
主要有:划线法、倒平板法、涂布法,根据分离的菌种选择不同的培养基。
稀释混合倒平板法、稀释涂布平板法、平板划线分离法、稀释摇管法、液体培养基分离法、单细胞分离法、选择培养分离法等。其中前三种方法最为常用,不需要特殊的仪器设备,分离纯化效果好。
从混杂微生物群体中获得只含有某一种或某一株微生物的过程称为微生物分离与纯化。在分子生物学的研究及应用中,不仅需要通过分离。
分离技术
主要是稀释和选择培养,稀释是在液体中或在固体表面上高度稀释微生物群体,使单位体积或单位面积仅存留一个单细胞,并使此单细胞增殖为一个新的群体。最常用的为平板划线法。
如果所要分离的微生物在混杂的微生物群体中数量极少或者增殖过慢而难以稀释分离时,需要结合使用选择培养法,即选用仅适合于所要分离的微生物生长繁殖的特殊培养条件来培养混杂菌体,改变群体中各类微生物的比例,以达到分离的目的。为保证分离到的微生物是纯培养,分离时必须用。
以上内容参考:网络-微生物分离纯化
❺ 微生物分离方法
微生物分离法是获得微生物纯培养物的一种分离方法。通过这个方法可实现一种微生物的培养,或获得一个细胞的后代。其具体方法有:
1、稀释倒平皿法。将待分离的材料作一系列稀释,取不同稀释度适量涂布于固体培养基平板上或与已熔化的固体培养基一起倾注入平板内,经过培养即有一个微生物细胞繁殖来的单个菌落。
2、划线法。先将已熔化的固体培养基制成平板,待凝后,取分离材料在上面划线,可作平行划线、扇形划线或其他形状的连续划线,使菌样逐渐减少,最后得到单个孤立的菌落。
(5)新的生物分离技术有哪些扩展阅读:
微生物分离技术的应用措施:
1、减少毒性氧物质的毒害作用:由于常规培养方法使用的高浓度营养基质不利于微生物生长,适当降低营养基质的浓度可以减弱这种不利影响。发现低浓度基质的培养基培养出的细菌在数量和种类上均多于高浓度基质的培养基,但营养浓度过低时会使培养出的微生物数量反而下降。
2、维持微生物间的相互作用:在培养基中加入微生物相互作用的信号分子就可简单模拟微生物间的相互作用,满足微生物生长繁殖的要求。
3、供应新型的电子供体和受体:不同微生物的代谢过程不同,因此对反应的底物要求也不尽相同。供应微生物需要的特有底物有助于新陈代谢反应的进行及微生物的正常生长。大量的研究表明,将新颖的电子供体和受体应用到微生物培养中,能够发现未知的生理型微生物。
4、分散微生物细胞:自然界中很多微生物聚集生长,形成“絮体”和“颗粒”等,致使其内部的微生物不易被培养。对“絮体”和“颗粒”进行适度的超声处理,将细胞分散再进行培养,可以使更多的微生物接触培养基而得到培养。
5、延长培养时间:对“寡营养菌”的培养,可适当延长培养时间,使其能长至肉眼可见的尺度。当然培养时间不能无限增长,因为培养时间越长,对培养环境的无菌要求就越高[4]。
6、利用琼脂替代物:琼脂对某些微生物具有毒性作用,采用无害且凝结作用较好的替代物质作为培养基固化剂,可以增加微生物的可培养性。
❻ [生化分离--生化分离技术总结]生化分离技术有哪些
各种膜分离技术的特点,膜的结构类型,分离原理以及用途:
渗透汽化 目的产物 结构类型 分离原理 用途 有机溶剂脱水、水的有
机物污染处理 产品可以是浓缩或均质膜 分解 扩散 稀释的不同组分 复合膜
非对称膜
渗析 溶液中大分子和小对称微孔扩散 溶解 血液渗析、酶的纯化
分子的分离 膜 筛分
电渗析 1. 没有离子的溶离子交换经过离子膜超纯水的制备、电子工
剂
2. 有离子溶质的
溶液浓缩
3. 离子交换
4. 电解产物的分
离 膜 的逆向传递 业正型蔽用水的处理、制备有机酸
微滤 没有颗粒的溶液 对称多孔筛分
膜 微生物、细胞碎片、大分子、DNA 的截留
发酵液浓缩、抗生素的
生产、食品工业、医疗
用水
溶液浓缩、海水淡化 超滤 1. 没有大分子溶非对称多筛分 质的溶液 2. 溶液浓缩 孔膜 反渗透 1. 没有任何溶质非对称膜 扩散 溶解
的溶液
2. 浓缩溶液 复合膜
液膜 气体或液体混合物 乳状液膜 溶解扩散
支撑液膜 抗生素生产、冶金工业废水中金属回收、气体
分离
新的膜分离技术简介:
液膜分离技术概述
1. 液膜分离技术分类
液膜技术是 1968 年美国埃克森公司的美籍华人黎念之博士提出的一种新型膜分离方法。它是利用对混合物各组分渗透性能的差异来实现分离、提纯或浓缩的分离技术。
根据液膜构成和操作方式的不同, 可将液膜分为支撑液膜 ( Supported liquid mempane) 和乳租粗状液膜(Emulsion liquid mempane) 。
液膜分离技术兼有溶剂萃取和膜渗透两项技术的特点。液膜具有的传质速率高与选择性好,工艺简单 ,操作方便 ,成本低等优点。
1.1支撑液膜:举州将多孔惰性基膜 (支撑体) 浸在溶解有载体的膜溶剂中, 在表面张力的作用下, 膜溶剂即充满微孔而形成。由于载体的存在, 它具有很高的选择性, 可以承担有机高分子固态膜所不能胜任的分离要求。
1.2乳状液膜:将两种互不相溶的液相通过高速搅拌或超声波处理制成乳状液, 然后将其分散到第三种液相 ( 连续相) 中, 就形成了乳状液膜体系。需要用表面活性剂来稳定乳状液的选择性和稳定性。
2. 液膜分离技术的应用进展
2.1支撑液膜:目前已用于气体分离、废水处理、湿法冶金中重金属离子的回收浓缩、生物产品的分离和固定酶等方面。(从含铜废水中脱除和回收铜、用于 CO2、 NO 、 CO 、 H2S 、 烯烃和氧气等气体分离)
2.2乳状液膜:利用乳状液膜技术处理含锌废水在国内外均有广泛研究, 用乳状液膜技术处理含镉废水取得了较好的结果 。
3. 影响液膜分离的因素
液相容易从支撑体的微孔中流失
膜内存在压差的影响
3.1支撑液膜 支撑膜孔被阻塞
剪切力诱导的乳化作用
渗透压的影响
3.2乳状液膜:它必须由制乳、提取与破乳 3 道工序所组成, 而制乳与破乳往往是相互矛盾的操作。由于夹带 (re-entrainment) 和渗透压差 (osmotic pressure difference) 引起的液膜溶胀, 导致了内相中已浓缩溶质的稀释、传质推动力的减小以及膜稳定性的下降。
3.3针对支撑液膜稳定性 , 进行了复合支撑液膜的研究、 膜液改性 (膜载体固定化、 载体化学接枝及溶剂功能一体化支撑膜 ) 、新型 SLM 组件的研究。
3.4针对乳化液膜稳定性 , 进行了以下研究:合成新型表面活性剂、
对乳化液膜流变性能进行改性、 微乳化液膜 的制备。
3. 液膜分离技术在医药工业中的应用
3.1液膜萃取技术分离氨基酸
1973年 Behr 首先提出了液膜法提取氨基酸, 接着 Thien 等、 Reisinger 等相继发表了有关乳化液膜法提取氨基酸的报告。Deblag 等以 Aliquat - 336为萃取剂、 癸醇为稀释剂、 微孔聚丙烯膜为支撑体 , 利用支撑液膜法从发酵液中分离 L -缬氨酸 , 产物的回收与精制可一步完成 , 该支撑液膜具有足够的稳定性 , 模型预测与实验数据能很好的吻合。
3.2液膜萃取技术在提取抗生素中的应用
沈力人等研究了以 Span- 80、 醋酸丁酯的煤油溶液为有机相 , Na2 CO3 水溶液为膜内相的乳化液膜 , 萃取模拟发酵液中青霉素的传质过程 , 找出了其较为适宜的液膜组成及萃取工艺条件。Ghosh 以 Auquat - 336为载体、 以 Buoac 为溶剂、 以聚丙烯多孔膜为支撑体 , 在氯离子反向迁移的推动力作用下, 采用支撑液膜完成了头孢霉素 C 的提取工作。
3.3利用液膜萃取技术提取生物碱
Kazuo Nomura 和 Terumasa Yata 采用支撑液膜分离生物碱 (盐酸奎宁 ) , 并同时测定了由于生物碱在支撑液膜上吸附而引起的表面电势的变化 , 提出了表面电势变化的动态测定法。
❼ 生物分离技术在食品工业中的应用
食品工业中用发酵和煮制的话,常常用离心技术。此外层析和膜分离也很常用。
下面介绍下生物分离技术和生物技术在食品工业中的应用进展。
生物分离技术最常见的分离纯化方法包括盐析和有机溶剂分级沉淀、超滤技术、层析技术、电泳技术、离心技术。
(1)盐析或有机溶剂分级沉淀:向反应产物溶液中加入大量易溶解的盐如氯化钠、硫酸铵,这些盐的离子能结合大量的水,产物因此被盐沉淀出来。产物溶液中加入能和水互溶的有机溶剂如乙醇、丙酮,常常能降低产物溶解度,而使产物沉淀。选择适当条件可使产物和杂质分开。
(2) 超滤技术:选择适当孔径的超滤膜或超滤中空纤维柱,通过抽滤加压使一定大小的分子能水一起穿过孔径,更大的分子则被挡住,以此将产物分离出来。
(3)层析技术:使用滤纸、纤维素、树脂、凝胶颗粒、多空玻璃珠等填充支持物或者不同于溶剂的另一种液相作为固定的介质对溶剂中的不同物质的结合力不一样,当溶剂向前推进时,溶剂中的不同溶质便可彼此分开。此外还有按分子大小分开的分子筛层析,按解离能力和离子性质分开的离子交换层析,按生物分子间亲和力大小分开的亲和层析,以及按两相溶液间分配系数差异而分开的逆流分溶。
(4)电泳技术:带有电荷的离子或颗粒在电场作用下向一个电击方向移动,离子或颗粒因其所带电荷和质量的不同,在电场中的移动速度不同,因而彼此被分开。被广泛使用的是凝胶电泳,而毛细管电泳具有最灵敏的分析效果。
(5)细胞、细胞碎片和生物大分子在离心力场作用下能被沉淀下来。离心机在每分钟旋转10000次以下的低速是就能使细胞沉淀,细胞碎片要在每分钟旋转20000到30000次的高速下才能被沉降,生物大分子则需要在每分钟旋转30000次以上的超速离心方能克服分子热运动而被沉降。
生物技术在食品工业中的应用进展
益生菌:随着益生菌多项保健功能的不断发现,如平衡肠道菌群,改善肠道功能、调节免疫、增强消化功能,促进营养物质吸收、抗诱变和防癌特性、抗氧化与延缓衰老以及改善心血管系统等。目前,国际上对益生菌的研究显得非常活跃,特别是在日本、法国、美国等国家已形成了系统化专业性科研队伍。
世界各国益生菌研究主要集中在益生菌促进人体健康的机理、益生菌的工业化与产业化应用技术、更高质量或带多功能性益生菌的高效筛选与定向设计等前沿领域,其研究成果应用于食品工业生产大大提高了人体健康水平并带来了客观的经济效益。在我国,特别是在奶
制品和一些功能性的食品中益生菌已广为运用。
在基础研究方面,我国科学家取得了丰硕的研究成果。2008年7月,内蒙古农业大学等单位承担的益生菌L.casei Zhang基因组学和蛋白质组学研究项目通过鉴定,项目完成了益生菌L.ca-sei Zhang染色体基因组和质粒基因组plca36序列的测定,从而能够准确地将该菌株的益生功能基因进行定位,为其益生机理进一步深入研究和相关产品的开发应用从基因水平上奠定了基础。该项目的完成标志着我国在乳酸菌基因组学方面的研究达到国际水平。同时,国内围绕乳制品、发酵肉制品工业发酵剂菌株筛选获得重要进展,建立了从多菌相肉品发酵体系中定向筛选特质菌株的高通量技术平台和我国第一个原创性、具有自主知识产权的乳酸菌菌种资源库,筛选得到了几十株具有优良生产性状及益生特性的乳酸菌菌株,为我国益生菌制品的开发奠定了强大的技术和菌源基础。
代谢工程:在代谢工程研究方面,随着研究应用的深入,代谢工程的定义也在不断更新,现在多将其定义为利用基因工程技术,有目的地对细胞代谢途径进行精确地修饰、改造或扩展、构建新的代谢途径,以改变微生物原有代谢特性,并与微生物基因调控、代谢调控及生化工程相结合,提高目的代谢产物活性或产量,合成新的代谢产物的工程技术科学。总体而言,代谢工程是在建立代谢网络理论的基础上,通过对代谢流的定性、定量分析,从而对代谢工程进行设计包括改变代谢流、扩展代谢途径和构建新的代谢途径等方法,其核心是在分子水平上对靶基因或基因簇进行遗传操作,所以又称为第三代基因工程。
代谢工程主要包括3个步骤:细胞途径的修饰(合成),修饰后细胞表型的严格评价(表型表征),根据评价结果设计进一步的修饰(优化设计)。其中,表现表征的评价即是在获得大量生化反应数据的基础上,采用化学、数学的研究方法并结合先进的信息技术进行高通量分析,进一步研究细胞代谢的动态特征和控制机理,并由此发展了各种数学系统模型用于辅助改善代谢工程设计。
随着后基因组学时代的到来,各种组学技术(基因组学、转录物组学、蛋白质组学、代谢物组学、代谢通量组学等)在代谢工程相关研究中被广泛使用,通过组学技术对细胞基因组以及细胞与微观和宏观环境条件关系等特性进行表型表征,代替传统表型表征的方法,使代谢工程的研究从局部通路水平上升到整体水平,从而可以更好地揭示生物复杂代谢网络及调控机理,进行代谢工程的研究。目前,以各层次功能基因组学研究为基础,借助高通量实验技术和生物信息学工具等,通过整合各层次组学研究数据,建立数学模型,或通过比较不同菌株或同一菌株在不同条件下各个层次组学差异以阐明生命活动规律,以此进行代谢工程设计的尺度多层次的系统生物学方法,成为了各国科学家研究的重点方向。
生物反应器:在生物反应器研究方面,自动化、多功能和高效率的新型生物反应器一直是近年来研究的热点。包括人工生物反应器和天然生物反应器,比如微生物、动物和植物表达系统等,研究主要集中在将分离技术和生物反应过程结合开发出高效率的生物反应器,比如超临界反应器和膜反应器等,以及研究生物反应机理、反应过程参数传感器的研制、自动化控制系统和数学模型的建立等,特别是参数控制方面的研究和固体发酵生物反应器的开发是研究的两个重点领域。
安全检测:此外,生物技术,如酶联免疫吸附测定(ELISA)、聚合酶链式反应(PCR)和DNA芯片技术等用于食品微生物、毒素以及残留药物等食品安全检测方面也显示出其灵敏度高、特异性强、简便快捷等优势,逐渐成为食品安全研究的重要方向。
❽ 常用的分离技术有哪两类各包括哪些这些常用的分离技术的基本原理是什么
分离的原理就是把随机控制系统的控制器分解成状态估计和确认反馈控制两部分然后进行设置的。他们的分离技术来说的话一种是萃取分离法。和离子交换分离法。当然,这是作用于化学方面的。
❾ 生物样品分离有哪些实验技术
生物样品分离的实验技术:吸附柱层析,薄层层析,离子交换层析,凝胶过滤。
离子交换层析是在以离子交换剂为固定相,液体为流动相的系统中进行的。离子交换剂是由基质、电荷基团和反离子构成的。离子交换剂与水溶液中离子或离子化合物的反应,主要以离子交换方式进行,或借助离子交换剂上电荷基团对溶液中离子或离子化合物的吸附作用进行。
典型性
采样的部位要能充分反映所了解的情况,这就是典型性。而适时性是根据研究的目的和环境污染物对植物的影响,必须按照植株的生长状况,发育阶段以及植株的不同部位,如根、茎、叶和果实或具体要求进行分别采样。为了植株同一部分进行比较分析,不能将植株的上、下部位随意混合。
以上内容参考:网络-生物样品
❿ 现代分离分析技术有哪些
现代分离分析技术有哪些相关内容如下:
1、液相色谱法(HPLC):
即以现代HPLC技术为基础,引入不对称中心来实现对映体的拆分,分为间接法和直接法。
4、毛细管电泳法(CE):
毛细管电泳手性分离是20世纪80年代以来新兴的一种分离技术,这项技术袜慧为极性大、热稳定性差和挥发性手性药物的拆分提供了经济有效的手段,因它操作简单、运行成本低、分离效率高而被广泛应用于药物、生物、大分子、临床医学等领域。
常用的手性选择剂有环糊精、冠醚、手性混合胶束、手性纤维素、蛋白质、糖类、大环抗生素等。其中β-CD以其分子大小适中、价格便宜被广泛应用,尤以衍生化的β-CD为最。
目前,毛细管电泳分离方法的讨论主要集中在各种手性添加剂与对映体药物的匹配以及具体实验中条件最优化选择上。随着各种具体方法的成熟,CE在现实中的应用也会更广泛。