导航:首页 > 生物信息 > 微生物黏泥是什么东西

微生物黏泥是什么东西

发布时间:2023-05-31 07:12:36

‘壹’ 生物质原料清洗常用到的清洗液有

冷水,热水,蒸汽,药剂溶液,喷水。
具体不同清洗液的作用如下:
1、冷水:不损伤原料的品质。
2、热水:温度以不损伤原料的品质为官,有杀菌作用。
3、蒸汽:如制糖时用离心分离机分离结晶糖,须用蒸汽清洗去掉表面的不纯物及糖蜜,而糖的水分并不增加。
4、药剂溶液:酸性洗液通常使用稀盐酸、稀磷酸、稀硝酸。
5、喷水:适合大多数产品的清洗,但要早带燃注意选择好喷水。
微生物污泥又可以称为微生物软泥或粘陆虚泥,一般是在微生物繁殖的过程中分泌的粘稠液,结合环境中的无机盐、砂尘土、腐蚀产物、淤泥、油污行差等物质,形成的一种污垢。

‘贰’ 循环水处理设备的工作原理

循环水处理器用于微生物(如菌藻)滋生水质的净化处理,其原理在于水流经 SCLL 型水处理器时,水中的细菌和藻类的生态环境发生变化,生存条件丧失而死亡。具体表现在三个方面:
任何一种生物都有其特定的生存生物场。电荷在生物体内的分布运动,受到生物体外环境电场变化的影响,从而影响到机体的生命活动。地球上的微生物一般只能适应并生存于地球表面的电场强度( 130v/m) 中,改变电场强度,可改变或影响细菌( E.Coli )的生理代谢,如基因表达程序,酶活性等,使细菌生存反常,这是导致细菌死亡的原因之一。
细胞膜有许多通道。通过这些通道,细胞同它的周围联系。这些通道是由单个分子或分子复合体组成,能够让离子通过。离子通道的调节影响细胞的生衡贺命和细胞的功能。外电场破坏了细胞膜上的离子通道,改变了调解细胞功能的内部电流,从而影响细菌的生命。含菌液体流过强电场,致使瞬间变化电流通过液体,在导电通路上的细胞被高速运动的的电子冲击波致死,达到灭菌的目的。
电场处理水过程中,溶解氧得咐竖派到活化,产生 O2- 、 · OH 、 H2O2 以及 1 O2 等活性氧( O2- 是超氧阴离子自由基, · OH 是基自由基, H2O2 时过氧化氢, 1 O2 时单线态氧)。活性氧自由基对微生物集体可产生一系列的有害作用,是造成有机体衰老的最主要的原因。 O2- 可损伤重要的生物大分子,造成微生物机体损伤; O2- 赠机微生物机体膜过氧化,加速衰老。 活性氧在新管壁上生成氧化被膜。
微生物腐蚀、沉寂腐蚀被抑制。 水经过 SCLL 型处理器后,水分子聚合度降低,结构发生变形,产生一纤掘系列物理化学性质的微小弹性变化,如:水偶极矩增大,极性增加,因而增加了水的水和能力和溶垢能力。
水中所含盐类离子如 Ca2+ 、 Mg2+ 受到电场引力作用,排列发生变化,难于趋向管壁积累,从而防止垢类生成。特定的能场改变 CaCO3结晶过程,抑制方解石产生,提供产生文结晶的能量。
水中悬浮粒子及胶体经过处理后其表面 Zeta 电位发生变化,脱稳絮凝而趋于沉淀析出。沉淀被水流冲走或排污去除,使水得到净化。
处理后水中产生活性氧。活性氧参杂结晶过程,加速胶体脱稳。对于已结垢的系统,活性氧将破坏垢分子间的电子结合力,改变其晶体结构,使坚硬老垢变为疏松软垢,这样积垢逐渐剥落,乃至成碎片、碎屑脱落,达到除垢的目的。
循环水运行过程中主要产生的问题:
(1)水垢:由于循环水在冷却过程中不断地蒸发,使水中含盐浓度不断增高,超过某些盐类的溶解度而沉淀。常见的有碳酸钙、磷酸钙、硅酸镁等垢。水垢的质地比较致密,大大的降低了传热效率,0.6毫米的垢厚就使传热系数降低了20%。(2)污垢:污垢主要由水中的有机物、微生物菌落和分泌物、泥沙、粉尘等构成,垢的质地松软,不仅降低传热效率而且还引起垢下腐蚀,缩短设备使用寿命。(3)腐蚀:循环水对换热设备的腐蚀,主要是电化腐蚀,产生的原因有设备制造缺陷、水中充足的氧气、水中腐蚀性离子(Cl-、Fe2+、Cu2+)以及微生物分泌的黏液所生成的污垢等因素,腐蚀的后果十分严重,不加控制极短的时间即使换热器、输水管路设备报废。(4)微生物粘泥:因为循环水中溶有充足的氧气、合适的温度及富养条件,很适合微生物的生长繁殖,如不及时控制将迅速导致水质恶化、发臭、变黑,冷却塔大量黏垢沉积甚至堵塞,冷却散热效果大幅下降,设备腐蚀加剧。因此循环水处理必须控制微生物的繁殖。
循环水工艺图及设备图:

‘叁’ 冷却塔中的黏泥通常用什么来清理合适一些

冷却塔中的生物黏泥的产生,主要是由于水质里面的微生物。冷却水的温度常年在25-40度之间,特别适合微生物生长;有充沛的水和营信码亩养物质,水中溶解氧基本维持饱和,这是微生物生长的可靠保证;冷却塔阳光充足,特别适合藻类繁殖;同时,冷却水中的黏泥为厌氧微生物提供了很好的庇护场所。循环水中的微生物有细菌、藻类、真菌、和原生动物这些。循环水系统中有细菌,本身问题不大,只要不是水里面有什么嗜肺军团菌这种恐怖的微生物就好。讨厌的是他们也会像人一样要排泄诶(其实叫分泌粘液),它们这样就很容滑森易发育成为很薄的生物膜,由于细菌喜欢抱团嘛,这些生物膜就会增厚。同时没有附着能力的微生物和无机沉淀物由于生物膜的阻拦和吸附作用,一直生长、死亡和堆积,形成了厚厚的一层污垢,这层黏泥不仅是截面减小、传热效率降低,而且黏泥下部会产生氧浓差电池,最终导致局部氧腐蚀腐蚀,打开换热器端盖,看看端盖是不是有包状的腐蚀产物,就是用手一捏发现好恶心的一堆堆黑色的铁锈和微生物杂合体流出来的像脓包一样的金属表模薯面的产物,大量繁殖的真菌等可以形成很多丝状物或絮状物,这些可是可以堵塞管道的诶。要保持冷却塔的运转效率,通常都会使用杀菌剂,一般的杀菌剂都有三大缺点,一是微生物抗药性,二是增加水中氯离子含量导致腐蚀增快,三呢,就是导致青苔、藻类这些死不瞑目,形成超级硬的死亡产物,很难剥离的哦,各位看官不妨试试看,青苔啊什么的表面喷点漂水验证一下。丹麦DCW的杀菌溶液清除生物膜和生物粘泥并抑制其再生,保证循环水系统长期正常运行,确保正常生产。

‘肆’ 个人如何让水循环的速度快于水污染的速度

冷却水的分类:

冷水流过需要降温的生产设备(常称换热设备,如换热器、冷凝器、反应器),使其降温,而冷水温度上升。

冷却水按系统划分为直流冷却水和循环冷却水。

直流水系统的定义:在直流水系统中,冷却水只经换热器一次利用后就被排掉了,所以直流水又称为一次利用水,由于用水量很大,因此在水量丰富的地区也不提倡采用直流水系统。

循环水系统的定义:在循环水系统中,冷却水可以反复使用,水经换热器后温度升高,由冷却塔或其他冷却设备将水温降低下来,再由泵将水送往用户,水如此不断的进行重复使用。

循环冷却水系统:

1.封闭式循环冷却水系统

冷却水收回利用,循环不已,因此,水量损失很少。

水中各种矿物质和离子含量一般不发生变化,而水的再冷却是在另一台换热设备中用其他冷却介质来进行团肆冷却的乎或肆。

2.敞开式循环冷却水系统

冷却水循环再用。水的再冷却是通过冷却塔来进行的。水中各种矿物质和离子含量也不断被浓缩增加。

3.循环冷却水系统的组成:补充水系统、旁滤水处理系统、管网系统、水冷却设施。

敞开式循环冷却水的水质特点:

1、循环冷却水四种水量损失:

(1)蒸发损失;(2)风吹损失;

(3)渗漏损失;(4)排污损失。

2、循环冷却水中的CO2散失和O2的增加

天然水中含有一定数量的重碳酸盐和游离CO2,水在冷却塔淋洒过程中(相当于曝气)将使CO2散失和O2增加。

3、循环冷却水的水质污染

(1)大气中杂物进入冷却系统;

(2)冷却塔风机漏油及塔体的腐蚀剥落物进入冷却水中;

(3)冷却水处理中加入药剂产生沉淀;

(4)微生物繁殖及分泌物形成的粘性污垢。

循环冷却水泵系统中产生的问题:

冷却水在循环系统中不断循环使用,由于水的温度升高,水流速度的变化,水的蒸发,各种无机离子和有机物质的浓缩,冷却塔和冷水池在室外受到阳光照射、风吹雨淋、灰尘杂物的进入,以及设备结构和材料等多种因素的综合作用,会产生严重的沉积物的附着、设备腐蚀和微生物的大量滋生,以及由此形成的粘泥污垢堵塞管道等问题。我们把它们归结为三类:

1、循环冷却水系统中的沉积物

2、循环冷却水系统中金属的腐蚀

3、循环冷却水系统中的微生物

这些问题不加以解决与控制,它们会威胁和破坏工厂长周期地安全生产,甚至造成经济损失,因此不能掉以轻心,所以我们必须要选择一种实用的循环冷却水处理方案,是上述问题得以解决或改善。

我们下面对循环冷却水系统中所产生的三类问题逐一进行分析。

循环冷却水系统中的沉积物及其控制:

一、循环冷却水系统中的沉积物

循环冷却水系统在运行的过程中,会有各种物质沉积在换热器的传热管表面。这些物质统称为沉积物。它们主要是由水垢、淤泥、腐蚀产物和生物沉积物构成。通常,人们把淤泥、腐蚀产物和生物沉积物三者统称为污垢。

所以我们可以把循环冷却水系统中的沉积物分成两类:

一、污垢;

二、水垢。

污垢:污垢一般是由颗粒细小的泥砂、尘土、不溶性盐类的泥状物、胶状氢氧化物、杂物碎屑、腐蚀产物、油污、特别是菌藻的尸体及其粘性分泌物等组成。

水处理控制不当,补充水浊度过高,细微泥砂、胶状物质等带入冷却水系统,或者菌藻杀灭不及时,或腐蚀严重、腐蚀产物多等都会加剧污垢的形成。由于这种污垢体积较大、质地疏松稀软,故又称为软垢。

当这样的水质流经换热器表面时,容易形成污垢沉积物,特别是当水走壳层,流速较慢的部位污垢沉积物更多。大量的污垢沉积会引起垢下腐蚀,同时又是某些细菌(厌氧菌)生存和繁殖的温床。

水垢:天然水中溶解有各种盐类,其中又以溶解的重碳酸盐如Ca(HCO3)2、Mg(HCO3)2为最多,也最不稳定,容易分解生成碳酸盐。

使用含重碳酸盐较多的水作为冷却水,当它通岁轿过换热器传热表面时,会受热分解:

冷却水通过冷却塔相当于一个曝气过程,溶解在水中的CO2会逸出,因此,水的PH值会升高。此时,重碳酸盐在碱性条件下会发生反应:

当水中溶有氯化钙时,还会产生下列置换反应:

碳酸钙和磷酸钙均属于微溶性盐,它们的溶解度比氯化钙和重碳酸钙要小得多。此外,碳酸钙和磷酸钙的溶解度与一般的盐类不同,它们不是随着温度的升高而升高,而是随着温度的升高而降低。因此,在换热器的传热表面上,这些微溶性盐很容易达到过饱和状态而从水中结晶析出。当水流速度比较小或传热面比较粗糙时,这些结晶沉积物就容易在传热表面上。

此外,水中溶解的硫酸钙、硅酸钙、硅酸镁等,当其阴、阳离子溶度的乘积超过其本身溶度积时,也会生成沉淀沉积在传热表面上。

以上所述的此类沉积物通称为水垢。因这些水垢都是由无机盐组成,故又称为无机垢;由于这些水垢结晶致密,比较坚硬,故又称为硬垢。它们通常牢固地附着在换热表面上,不易被水冲洗掉。

大多数情况下,换热器传热表面上形成的水垢是以碳酸垢为主的。

水垢的控制:冷却水中如无过量的PO43-或SiO2,则磷酸钙垢和硅酸盐垢是不容易生成的。循环冷却水系统中最易生成的水垢是碳酸钙垢,在此谈沉积物控制主要是指如何防止碳酸盐水垢的析出。

控制水垢析出的方法,大致有下图中的几类:

污垢的控制:污垢的形成主要是由尘土、杂物碎屑、菌藻尸体及其分泌物和细微水垢、腐蚀产物等构成。因此,欲控制好污垢,必须做到下图几点:

循环冷却水系统中金属的腐蚀及其控制:

一、循环冷却水中金属腐蚀的机理

工业循环冷却水系统中大多数的换热器是由碳钢制造的,又因为种种原因,碳钢的金属表面并不是均匀的。当他与冷却水接触时,会形成许多微小的腐蚀电池(微电池)。其中活泼的部位成为阳极,腐蚀学上称为阳极区;而不活泼的部位则成为阴极,腐蚀学上称为阴极区。

在阳极区,碳钢氧化生成亚铁离子进入水中,并在碳钢的金属基体上留下两个电子。与此同时,水中的溶解氧则在阴极区接受从阳极区流过来的两个电子,还原为OH-。两个去可以表示为:

在阳极区:Fe:Fe2+ +2e

在阴极区:½02+H2O+2e 2OH-

当亚铁离子和氢氧根离子在水中相遇时,就会生成Fe(OH)2沉淀:Fe2++2OH- =Fe(OH)2

二、冷却水中金属腐蚀的形态

在冷却水系统的正常运行过程中以及化学清洗过程中,金属常常会发生不同形态的腐蚀。

现将发生的金属腐蚀形态归纳为以下几种:

三、循环冷却水中金属腐蚀的影响因素

冷却水中金属换热设备腐蚀的影响因素很多,概括起来可以分为化学因素、物理因素和微生物因素。先仅讨论其中的一些化学因素和物理因素,微生物方面待在谈微生物时再详细讨论。

四、循环冷却水中金属腐蚀的控制指标

工业冷却水系统中的金属设备有各种换热器(水冷器、冷凝器、凝汽器等)、泵、管道、阀门等。由于换热器腐蚀后更换的费用较大,更重要的是由于换热器管壁腐蚀穿孔和泄漏造成的经济损失更大,因此冷却水系统中的腐蚀控制主要是各种换热器或换热设备的腐蚀控制。

《工业循环冷却水处理设计规范》(GB50050-2007)中对循环冷却水系统中腐蚀控制指标规定:碳钢换热器管壁的腐蚀速度宜小于0.125mm/a;铜、铜合金和不锈钢换热器管壁的腐蚀速度宜小于0.005mm/a。

由此可见,对冷却水系统中金属的腐蚀控制不是要求金属绝对不发生(即腐蚀速度为零),而是要求把金属的腐蚀速度控制在一定范围,从而把换热器的使用寿命控制在一定的范围之内。

五、循环冷却水中金属腐蚀的控制方法

循环冷却水系统中金属腐蚀的控制放法甚多。常用的主要有以下四种:

循环冷却水系统中的微生物及其控制:

在敞开式循环冷却水系统中,人们经常可以看到微生物大量生长的情景。含有微生物的补充水不断进入循环冷却水系统,以此同时,冷却塔中从上面喷淋下来的冷却水又从逆流相遇的空气中捕集了大量的微生物进入冷却水系统。冷却水系统中充沛的水量为这些进入的微生物的生长提供了可靠的保障。冷却水的水温通常被设计在32~42℃之间,这一温度范围又特别有利于某些微生物的生长。冷却水在冷却塔内的喷淋曝气过程中溶入了大量的氧气,为好氧性微生物提供了必要的条件;而冷却水悬浮物形成的淤泥又为厌氧性微生物提供了庇护所,冷却水中的硫酸盐则成为厌氧性微生物-硫酸盐还原菌所需能量的来源。因此,有些冷却水系统成了一些微生物的一个巨大的捕集器和培养器。

一、冷却水系统中引起故障的微生物

冷却水系统中并不是所有的微生物都会引起故障,但在工业冷却水系统运行时,常会遇到一些引起故障的微生物。它们是细菌、真菌和藻类。先分别对它们作一扼要的介绍:

1-1 细菌:

与藻类和霉菌相比,细菌显得微小。除非有大的菌落存在,否则就需要借助显微镜才能察见或鉴别。

1-2 真菌:

冷却水系统中的真菌包括霉菌和酵母两类。

真菌破坏木材中的纤维素,使冷却塔的木质构件朽蚀。

真菌对冷却水系统中的金属并没有直接的腐蚀性,但它们产生的粘状沉积物会在金属表面建立差异腐蚀电池而引起金属的腐蚀。粘状沉积物覆盖在金属表面,使冷却水中的缓蚀剂不能到那里去发挥它的防护作用。

1-3 藻类

冷却水中的藻类主要有蓝藻、绿藻和硅藻。藻类的生长需要阳光,所以它们常常停留在阳光和水分充足的地方。

死亡的藻类团块进入换热器中后,会堵塞换热器中的管路,降低冷却水的流量,从而降低其冷却作用。

藻类本身并不直接引起腐蚀,但它们生成的沉积物所覆盖的金属表面则由于形成差异腐蚀电池而常会发生沉积物下腐蚀。

二、冷却水系统中金属的微生物腐蚀

冷却水系统中金属微生物腐蚀的形态可以是严重的均匀腐蚀,也可以是缝隙腐蚀和应力腐蚀破裂,但主要是点蚀。

微生物粘泥(简称粘泥)是指由于水中溶解的营养源而引起细菌、丝状菌(霉菌)、藻类等微生物群的增殖,并以这些微生物为主体,混有泥砂、无机物和尘土等,形成附着的或堆积的软泥性沉积物。

冷却水系统中的微生物粘泥不仅会降低换热器和冷却塔的冷却作用、恶化水质,而且还会引起冷却水系统中设备的腐蚀和降低水质稳定剂的缓蚀、阻垢和杀生作用。

微生物粘泥的组成:以微生物菌体及其粘结在一起的粘性物质(多糖类、蛋白质等)为主体组成。

3-1 粘泥微生物的种类和特点

在决定粘泥的处理方法时,必须了解构成粘泥的微生物种类、性质和特点:

3-3 影响微生物和粘泥的环境因素

影响微生物和粘泥的环境因素很多,下表逐一列出:

3-4 冷却水系统中微生物的控制指标

冷却水系统中微生物的控制主要是通过对微生物生长的控制来实现的,即通过控制冷却水中的微生物的数量来实现。

循环冷却水系统中微生物控制的指标及监测频率

3-5 冷却水系统中微生物的控制方法

冷却水系统中微生物引起的腐蚀、粘泥及其生长的控制方法主要有以下一些:

循环冷却水系统的日常运行:

运行过程中水质的变化:

循环冷却水在其运行过程中,补充水不断进入冷却水系统。此时,补充水中的一部分水被蒸发进入大气,另一部分则留在冷却水中而被浓缩,并发生以下一系列的变化。

2-1 日常运行过程中需要控制的指标

2-2、日常运行过程中的监测与控制项目介绍

循环冷却水系统中的腐蚀、结垢和微生物生长与冷却水的水质-水的化学组成和物理化学性质有着密切的关系。

循环冷却水系统在正常运行时使用的水处理药剂是否能发挥其最佳的作用也与冷却水的水质有着十分密切的关系。

因此,在日常运行过程中需要对冷却水系统的补充水和循环水的化学组成和化学性质进行监测和控制。

冷却水系统中的现场监测:

实验室的模拟条件比较单纯和稳定,而现场生产中的条件则比较复杂和多变。因此,需要在冷却水系统的日常运行期间对其中的腐蚀、沉积物和微生物的情况进行现场监测。

一、设计规范的要求

《工业循环冷却水处理设计规范》规定:

(1)敞开式循环冷却水系统中换热设备的碳钢管壁的腐蚀速度宜小于0.125mm/a。

(2)敞开式循环冷却水系统中换热设备的水侧管壁的年污垢热阻值宜为1.72×10-4~3.44×10-4m2·K/W。

(3)敞开式循环冷却水中的异养菌数宜小于5×105个/mL ,粘泥量宜小于4mL/m3。

本次我们仅对日常运行期间的腐蚀与微生物的现场监测做介绍。

二、腐蚀的现场监测

冷却水系统中常用的腐蚀监测方法有:试片法、旁路试验管法、线性极化法和监测换热器法。其中以试片法使用最为广泛,我们本次只对试片法做详细的介绍。

2-1、试片法

试片法是冷却水系统中最简便、最经济、使用最广泛和最经典的腐蚀监测方法。它可以测定腐蚀速度、蚀孔密度、蚀孔深度,并了解腐蚀形态。

2-1-1、试片的材质和规格

腐蚀试片的材质应与所监测的换热器管子的材质相同。

标准腐蚀试片有两种:Ⅰ型和Ⅱ型。我们监测时应尽可能采用Ⅰ型,因其边缘的影响较小。

使用时,可按以下步骤进行操作:①启封后用不锈钢镊子把试片取出放在滤纸上;②在盛有蒸馏水的小搪瓷盆中,用脱脂棉擦洗一遍,再用蒸馏水冲洗15秒钟;③立即置于盛有化学纯无水乙醇的小搪瓷盆中,用脱脂棉擦洗两遍;④将试片放在干净滤纸上,用冷风吹干;⑤用滤纸将试片包好,放在干燥器中,24小时后称重待用。

2-1-2、试片的安装

试片应安装在所监测的换热器的回水管线上。

2-1-3、监测时间

试片的监测时间一般为30~90天,也可将同一组试片分不同时间取出。长年观察时,每次放12个或24个试片,每月取出1或2片,分别测定腐蚀速度。最后绘出腐蚀速度-时间曲线。

2-1-4、监测内容

试片法监测的内容包括:外观检查、腐蚀速度测定和对孔蚀的监测。

三、微生物的现场监测

冷却水系统中全面的微生物现场监测对象应包括:异养菌、真菌、硫酸盐还原菌、铁细菌、氨化细菌、硝化细菌、藻类和粘泥量等。本次我们就其中最常用的监测项目:粘泥量的测定。

3-1、粘泥量的测定

微生物粘泥会堵塞冷却水的管道,降低冷却塔和冷却水的冷却效果,降低水质稳定剂的作用,引起金属设备的腐蚀。因此冷却水中微生物粘泥量的多少,直接反映了冷却水系统中微生物活动的情况和危害。测

定微生物粘泥量是监测冷却水处理质量和微生物生长情况的主要方法之一。

设计规范要求,敞开式循环冷却水中的粘泥量宜小于4mL/m3。

微生物粘泥量的测定常采用生物过滤网法。现将该法做扼要介绍:

3-1-1、概况

生物过滤网法是让循环冷却水以一定的流速流经转子流量计后,再通过生物过滤网过滤;将过滤后的水导入水箱,测量水的体积,或由转子流量计中的流速和通过水的时间来计算水的体积;然后将生物过滤网捕集的粘泥移入量筒,测定粘泥的体积,并以1m3冷却水中含有的粘泥的体积(mL)表示粘泥量。

3-1-2、测定的方法

(1)调解采集粘泥装置中的阀门,是冷却水的流速控制在0.8m/s左右,水量在1m3/h左右。然后关上浮游生物网的旋塞阀,过滤1m3水。

(2)关闭进水阀门,取下浮游生物网。打开浮游生物网上的旋塞阀,将粘泥收集在一个500mL量筒内,静置30min使其沉淀后倾出上层清液。将剩余浊液转移至25mL量筒内,静置30min,记录沉淀出的粘泥

体积(mL)。

(3)粘泥量V按下式计算:V=V2/V1

式中:V-循环冷却水中的粘泥量,mL/m3;

V1-通过浮游生物网过滤的循环水量,m3;

V2-量筒中的粘泥体积,mL 。

药剂说明:

在前面的篇幅中我们主要介绍了循环冷却水中会出现的危害。在此,

我们将对控制危害所使用的药剂进行逐一的说明:

一、阻垢分散剂

1-1、有机膦酸的阻垢、分散机理

有机膦酸阻垢机理比较复杂,说法也有多种,目前大致有以下两种说法。

(1)晶格畸变论

碳酸钙垢是结晶体,它的成长是按照严格顺序,有带正电荷的Ca2+与带负电荷的CO32-相撞才能彼此结合,并按一定的方向成长。在水中加入有机膦酸时,它们会吸附到碳酸钙晶体的活性增长点上与Ca2+螯合,抑制了晶格向一定的方向成长,因此使晶格歪曲,长不大,也就是说晶体被有机膦酸表面去活剂的分子所包围而失去活性。这也是产生前述临界值效应的机理。同样,这种效应也可阻止其他晶体的沉淀。另外,部分吸附在晶体上的化合物,随着晶体增长被卷入晶格中,使CaCO3晶格发生位错,在垢层中形成一些空洞,分子与分子之间的相互作用减小,使垢变软。

(2)增加成垢化合物的溶解度

有机膦酸在水中能离解出H+,本身成带负电荷的阴离子,这些负离子能与Ca2+、Mg2+等金属离子形成稳定络合物,从而提高了CaCO3晶粒析出时的过饱和度,也就是说增加了CaCO3在水中的溶解度。

1-2、药剂实例说明

阻垢分散剂:

(1)特点

阻垢分散剂是含有羧基、膦酸基、无机磷等的水溶性共聚物,对Ca3(PO4)2、CaCO3垢具有卓越的阻垢能力,对铁、锌离子有良好的稳定作用,对悬浮物的分散性能良好,其各项指标达到国外同类产品水平。可用作循环冷却水和油田注水系统的防垢、分散作用。

(2)使用方法:(因各品牌而异)

正常运行时投加浓度为20~50mg/L,可与有机膦和无机磷等复配使用,适用PH7.0 ~ 9.2。

二、阻垢缓蚀剂

循环冷却水系统中控制金属腐蚀的第一种方法是向冷却水系统中添加阻垢缓蚀剂。可供冷却水系统采用的缓蚀剂并不是很多,现将敞开式和密闭式冷却水系统中几种常用的阻垢缓蚀剂罗列如下:

三、杀生剂

冷却水系统中微生物的主要控制方法之一就是添加杀生剂。人们通常把冷却水杀生剂分为两大类:氧化性杀生剂和非氧化性杀生剂。

药剂实例说明:

杀生剂(杀菌灭藻剂)

(1)特点

异噻唑啉酮杀生剂是一种高效、广谱、低毒性的非氧化性杀生剂,它能抑制各种细菌、霉菌和藻类。在较宽的PH值范围内都有良好的杀生性能。与各种水处理药剂相容性好,不产生泡沫,杀菌力持久。

(2)使用方法

循环冷却水中一般投加浓度为50~100mg/L,一次性投入集水池泵的吸入口。投加次数根据循环冷却水中藻类繁殖情况加以控制与调整。

水质分析项目及含义:

1、电导率:电阻率的倒数称为电导率,单位是μs/cm。

电导率仅决定于水中离子的多少和性质。代表了水中的含盐量,因此电导率越高水中含盐量越高。

2、酸度:指水中能与强碱发生中和作用的物质的总量,包括无机酸、有机酸、强酸弱碱盐等。

酸度的数值越大说明溶液酸性越强。

3、碱度:指水中能与强酸发生中和反应物质的总量。

一般水中碱度由氢氧化物、碳酸盐、重碳酸盐组成,称为总碱度。

总碱度=在甲基橙指示剂变色的等当点时所需的酸量= HCO3- + CO32- + OH- =M碱度。

碱度只存在于pH=4.3以上。

4、pH:pH是水中氢离子浓度的负对数

pH =-log10(H+ mol/l)

5、硬度:一般将水中钙、镁离子称作硬度,钙离子叫钙硬度,钙、镁离子总量叫总硬度。

硬度分为碳酸盐硬度(暂时硬度)和非碳酸盐硬度(永久硬度)。

碳酸盐硬度:主要是由钙、镁的碳酸氢盐[Ca(HCO3)2、Mg(HCO3)2]所形成的硬度,还有少量的碳酸盐硬度。碳酸氢盐硬度经加热之后分解成沉淀物从水中除去,故亦称为暂时硬度。

非碳酸盐硬度:主要是由钙镁的硫酸盐、氯化物和硝酸盐等盐类所形成的硬度。这类硬度不能用加热分解的方法除去,故也称为永久硬度,如CaSO4、MgSO4、CaCl2、MgCl2、Ca(NO3)2、Mg(NO3)2等。

碳酸盐硬度和非碳酸盐硬度之和称为总硬度;当水的总硬度小于总碱度时,它们之差,称为负硬度。

6、浓缩倍数:在循环冷却水中,由于蒸发而浓缩的溶解固体与补充水中溶解固体的比值。在实际测量中,通常为循环冷却水的电导率值与补充水的电导率之比,或[K+]之比。

7、浊度:浊度是指水中悬浮物对光线透过时所发生的阻碍程度。水中的悬浮物一般是泥土、砂粒、微细的有机物和无机物、浮游生物、微生物和胶体物质等。水的浊度不仅与水中悬浮物质的含量有关,而且与它们的大小、形状及折射系数等有关。

水质分析中规定:1L水中含有1mg SiO2所构成的浊度为一个标准浊度单位,简称1度。通常浊度越高,溶液越浑浊。

8、COD:在一定的条件下,采用一定的强氧化剂处理水样时,所消耗的氧化剂量。它是表示水中还原性物质多少的一个指标。

COD是指标水体有机污染的一项重要指标,能够反应出水体的污染程度。

9、污垢热阻:表示换热设备传热面上因沉积物而导致传热效率下降程度的数值,即换热面上沉积物所产生的传热阻力,单位为 ㎡·K / W。

10、余氯:水中投氯,经一定时间接触后,在水中余留的游离性氯和结合性氯的总称。 是指氯投入水中后,除了与水中细菌、微生物、有机物、无机物等作用消耗一部分氯量外,还剩下了一部分氯量,这部分氯量就叫做余氯。自来水出水余氯指得是游离性余氯。

11、总磷:总磷是水样经消解后将各种形态的磷转变成正磷酸盐后测定的结果,以每升水样含磷毫克数计量。

12、悬浮固体:当冷却水的流速降低时,进入系统的悬浮物容易在换热器部件的表面生成疏松的沉积物,引起垢下腐蚀。

当冷却水的流速过高时,悬浮物的颗粒又容易对硬度较低的金属或合金产生磨损腐蚀。

13、流速:当流速较低的时候,金属的腐蚀速度随水流速的增加而增加。

当水的流速足够高时,足量的氧到达金属表面,使金属部分或全部钝化。钝化发生后,金属的腐蚀将下降。

如果水流速度继续增加,水对金属表面上钝化膜的冲击腐蚀将使金属的腐蚀速度重新增大。

超高速的流体设备中,还会引起空泡腐蚀。

水处理工艺:

1)加酸调pH 控制在一个合适的范围。

目的是:防止结垢。

(1)适当提高运行pH值可以降低碳钢的腐蚀速度

根据前述金属腐蚀影响的因素知,铁的氧化物溶于酸性环境,因此,低碳钢在低pH值条件下腐蚀速度快,在高pH值下腐蚀速度减慢,一般保持pH在8-9.5之间。

(2)适当提高pH值的方法

曝气:吹脱CO2,就可提高水中pH值。

少量加酸:也是将水中的重碳酸根离子变为二氧化碳,加以曝气,把二氧化碳吹脱掉,就可适当提高水中的pH值,但一定要注意控制酸的投加量。

2)加强微生物控制

连续投加氧化性杀菌剂;冲击投加非氧性杀菌剂。

3)连续投加缓蚀阻垢剂,投制一个指标。

含膦/磷的药剂一般控制磷/膦的含量,非磷/膦的药剂可用示踪剂或其它控制项目。

通常讲,三分药剂七分管理。

一个药剂在生产运行过程中,能否取得好的水处理效果,还是要靠现场的管理,如果管理跟不上,再好的水处理药剂,也不会取得好的水处理效果。

循环水处理常识:

在循环冷却水系统中,冷却水用过后不是立即排放,而是收回循环再用。水的再冷却是通过冷却塔来进行的,因此冷却水在循环过程中要与空气接触,部分水在通过冷却塔时会不断被蒸发损失掉,因而水中各种

矿物质和离子含量也不断被浓缩增加。为了维持各种矿物质和离子含量稳定在某一个定值上,必须对系统补充一定量的冷却水(补充水);并排出一定量的浓缩水(排污水)。其流程如图所示:

常用术语介绍:

1、冷却塔:敞开式循环冷却水系统中主要设备之一是冷却塔,冷却塔用来冷却换热器中排出的热水。

在冷却塔中,热水从塔顶(冷却塔内部布有溅水装置)向下喷淋成水滴或水膜状,空气则由下向上与水滴或水膜逆向流动,或水平方向交流流动,使水在填料表面上以薄膜形式与空气接触,在气水接触过程中,进行热交换,使水温降低。

2、浓缩倍数:

在敞开式循环冷却水系统中,由于蒸发,系统中的水会愈来愈少,而水中各种矿物质和离子含量就会愈来愈浓。通常在操作时,用浓缩倍数来控制水中含盐的浓度。设以K表示浓缩倍数,则K的含意就是指循环水中某物质的浓度与补充水中某物质的浓度之比。

K=CR/CM

式中:CR-循环水中某物质的浓度

CM-补充水中某物质的浓度

用来计算浓缩倍数的物质,要求它们的浓度除了随浓缩过程而增加外,不受其他外界条件,如加热、沉淀、投加药剂等的干扰。通常选用的物质有cl-、k+等物质或电导率。

3、补充水量 M

水在循环过程中,除因蒸发损失和维持一定的浓度倍数而排掉一定的污水外,还由于空气流由塔顶逸出时,带走部分水滴,以及管道渗漏而失去部分水,因此补充水是下列各项损失之和。

补充水量:M=蒸发损失 E+风吹损失D+渗漏损失 F+排污水量B

(1

‘伍’ 循环水主要分析哪些指标

余氯、氨、NO2-等。

在循环水系统中,水垢是由过饱和的水溶性组分形成的,水中溶解有各种盐类,如碳酸氢盐、碳酸盐、氯化物、硅酸盐等,其中以溶解的碳酸氢盐如Ca(HCO3)2.MgHCO3)2 最不稳定;

极容易分解生成碳酸盐,因此,当冷却水中溶解的碳酸氢盐较多时,水流通过换热器表面,特别是温度较高的表面,就会受热分解;水中溶有磷酸盐与钙离子时,也将产生磷酸钙的沉淀;

碳酸钙和Ca3(PO4)2等均属难溶解度与一般的盐类还不同,其溶解度不是随温度的升高而加大,而是随着温度的升高而降低。

因此,在换热器传热表面上,这些难溶性盐很容易达到过饱和状态而水中结晶,尤其当水流速度小或传热面较粗糙时,这些结晶沉淀滑银物就会沉积在传热表面上,形成通常所称的水垢,由于这些水垢结晶致密,比较坚硬,又称之为硬垢;

常见的水垢成分为:碳酸钙,硫酸钙,磷酸钙,镁盐,硅酸盐。

(5)微生物黏泥是什么东西扩展阅读

循环水运行过程中主要产生的问题:

(1)水垢:由于循环水在冷却过程中不断地蒸发,使水中含盐浓度不断增高,超过某些盐类的溶解度友闷而沉淀。常见的有碳酸钙、磷酸钙、硅酸镁等垢。水垢的质地比较致密,大大的降低了传热效率,0.6毫米的垢厚就使传热系数降低了20%。

(2)污垢:污垢主要由好让弯水中的有机物、微生物菌落和分泌物、泥沙、粉尘等构成,垢的质地松软,不仅降低传热效率而且还引起垢下腐蚀,缩短设备使用寿命。

(3)腐蚀:循环水对换热设备的腐蚀,主要是电化腐蚀,产生的原因有设备制造缺陷、水中充足的氧气、水中腐蚀性离子(Cl-、Fe2+、Cu2+)以及微生物分泌的黏液所生成的污垢等因素,腐蚀的后果十分严重,不加控制极短的时间即使换热器、输水管路设备报废。

(4)微生物粘泥:因为循环水中溶有充足的氧气、合适的温度及富养条件,很适合微生物的生长繁殖,如不及时控制将迅速导致水质恶化、发臭、变黑,冷却塔大量黏垢沉积甚至堵塞,冷却散热效果大幅下降,设备腐蚀加剧。因此循环水处理必须控制微生物的繁殖。

‘陆’ 什么是水处理

1.地表水:是指存在于地壳表面,暴露于大气的水,是河流、冰川、湖泊、沼泽四种水体的总称,亦称“陆地水”。

2.地下水:是贮存于包气带(包气带是指位于地球表面以下、潜水面以上的地质介质)以下地层空隙,包括岩石孔隙、裂隙和溶洞之中的水.地下水存在于地壳岩石裂缝或土壤空隙中。

3.原水:是指采集于自然界,包括并不仅限于地下水,水库水等自然界中能见到的水源的水,未经过任何人工的净化处理。

4.pH:表示溶液酸碱度的数值,pH=-lg[H+]即所含氢离子浓度的常用对数的负值。

5.总碱度:水中能与强酸发生中和作用的物质的总量。这类物质包括强碱、弱碱、强碱弱酸盐等。

6.酚酞碱度:就是用酚酞作指示剂所测得的碱度(滴定终点pH=8.2~8.4)。

7.甲基橙碱度:就是以甲基橙作指示剂所测得的碱度(滴定终点pH=3.1~4.4)。

8.总酸度:酸度指水中能与强碱发生中和作用的物质的总量,包括:无机酸、有机酸、强酸弱碱盐等。。。

9.总硬度:在一般天然水中,主要是Ca2+和Mg2+,其它离子含量很少,通常以水中Ca2+和Mg2+的总含量称为水的总硬度。

10.暂时硬度:由于水中含有Ca(HCO3)2和Mg(HCO3)2而形成的硬度,经煮沸后可把硬度去掉,这种硬度称为碳酸盐硬度,亦称暂时硬度。

11.永久硬度:由于,水中含CaSO4(CaCl2)和MgSO4(MgCl2)等盐类物质而形成的硬度,经煮沸后也不能去除,这种硬度称为非碳酸盐硬度,亦称永久硬度。

12.溶解物:以简单分子或离子的形式在水(或其它溶剂的)溶液中存在,粒子大小通常只有零点几到几个纳米,肉眼不可见,也无丁达尔现象,用光学显微镜无法看到。

13.胶体:若干分子或离子结合在一起的粒子团,大小通常在几十纳米至几十微米,肉眼不可见,但是,会发生丁达尔现象。小的胶体粒子无法用光学显微镜看到,大的可以看到。

14.悬浮物:是大量分子或离子结合而成的肉眼可见的小颗粒,大小通常在几十微米以上。用光学显微镜可以清楚看到,悬浮物颗粒较长时间静置可以沉淀。

15.总含盐量:水中离子总量称为总含盐量,由水质全分析所得到的全部阳离子和阴离子的量相加而得,单位用mg/L(过去也用PPM)表示。

16.浊度:也称浑浊度。从技术的意义讲,浊度是用来反映水中悬浮物含量的一个水质替代参数。水中主要的悬浮物,一般也就是泥土。以1L蒸馏水中含有1mg二氧化硅作为标准浊度的单位,表示为1PPm。

17.总溶解固体:TDS,又称溶解性固体总量,测量单位为毫克/升(mg/L),它表明1升水中溶有多少毫克溶解性固体。

18.电阻:根据欧姆定律,在水温一定的情况下,水的电阻值R大小与电极的垂直截面积F成反比,与电极之间的距离L成正比。

19.电导:水的导电能力强弱程度,就称为电导度S(或称电导)。

20.电导率:水的导电性即水的电阻的倒数,通常用它来表示水的纯净度。

21.电阻率:水的电阻率是指某一温度下,边长为1CM立方体水的相对两侧面间的电阻,其单位为欧姆*厘米(Ω*CM),一般是表示高纯水水质的参数。

22.软化水:是指将水中硬度(主要指水中钙、镁离子)去除或降低一定程度的水。水在软化过程中,仅硬度降低,而总含盐量不变。

23.脱盐水:是指水中盐类(主要是溶于水的强电解质)除去或降低到一定程度的水。其电导率一般为1.0-10.0μs/cm,电阻率(25℃)0.1-1000000Ω.cm,含盐量为1.5mg/L。

24.纯水:是指水中的强电解质和弱电解质(如SiO2、C02等)。去除或降低到一定程度的水。其电导率一般为:1.0—0.1μs/cm,电阻率1.0--1000000Ω.cm。含盐量<1mg/l。

25.超纯水:是指水中的导电介质几乎完全去除,同时不离解的气体、胶体以及有机物质(包括细菌等)也去除至很低程度的水。其电导率一般为O.1—0.055μs/cm,电阻率(25℃)>10×1000000Ω.cm,含盐量<0.1mg/l。理想纯水(理论上)电导率为0.05μs/cm,电阻率(25℃)为18.3×1000000μs/cm。

26.除氧水:也称脱氧水,脱除水中的溶解氧,一般用于锅炉用水。

27.离子交换:利用离子交换剂中的可交换基团与溶液中各种离子间的离子交换能力的不同来进行分离的一种方法。

28.阳树脂:具有酸性基团。在水溶液中酸性基团可以电离生成H+,可以与水中阳离子进行离子交换。

29.阴树脂:含有碱性基团他们在水溶液中电离并与阴离子进行离子交换。

30.惰性树脂:无活性基团,没有离子交换作用,相对密度一般控制在阴、阳树脂之间,用以隔开阴、阳树脂,避免阴、阳树脂在再生时的交叉污染,使再生更加完全。

31.微滤:MF又称微孔过滤,属于精密过滤。微滤能够过滤掉溶液中的微米级或纳米级的微粒和细菌。

32.超滤:UF,以压力为推动力的膜分离技术之一。以大分子与小分子分离为目的,膜孔径在20-1000A°之间。

33.纳滤:NF,是一种介于反渗透和超滤之间的压力驱动膜分离过程,纳滤膜的孔径范围在几个纳米左右。

34.渗透:渗透是水分子经半透膜扩散的现象。它由高水分子区域(即,低浓度溶液)渗入低水分子区域(即,高浓度溶液)。

35.渗透压:对于两侧水溶液浓度不同的半透膜,为了阻止水从低浓度一侧渗透到高浓度一侧而在高浓度一侧施加的最小额外压强称为渗透压。

36.反渗透:RO,反渗透就是通过人工加压将水从浓溶液中压到低浓度溶液中,RO反渗透膜孔径小至纳米级,在一定的压力下水分子可以通过RO膜,而源水中的无机盐、重金属离子、有机物、胶体、细菌、病毒等杂质无法通过RO膜。

36.渗析:又称透析。一种以浓度差为推动力的膜分离操作,利用膜对溶质的选择透过性,实现不同性质溶质的分离。

37.电渗析:ED,在电场作用下进行渗析时,溶液中的带电的溶质粒子(如,离子)通过膜而迁移的现象称为电渗析。

38.EDI:又称连续电除盐技术,是一种将离子交换技术、离子交换膜技术和离子电迁移技术相结合的纯水制造技术。

39.回收率:指膜系统中给水转化成为产水或透过液的百分率。

40.脱盐率:通过反渗透膜从系统进水中除去总可溶性的杂质浓度的百分率,或通过纳滤膜脱除特定组份如二价离子或有机物的百分数。

41.透盐率:脱盐率的相反值,它是进水中溶解性的杂质成份透过膜的百分率。渗透液:经过膜系统产生的净化产水。

42.通量:以单位膜面积透过液的流率,通常以每小时每平方米升(l/m2h)或每天每平方英尺加仑表示(gfd)。

43.产品水:净化后的水溶液,为反渗透或纳滤系统的产水。

44.浓水:没透过膜的那部分溶液,如反渗透或纳滤系统的浓缩水。

45.循环水:用水来冷却工艺介质的系统称作冷却水系统。

46.直流冷却水系统:冷却水仅仅通过换热设备一次,用过后水就被排放掉。

47.敞开式循环水:以水冷却移走工艺介质或换热设备所散发的热量,然后,利用热水和空气直接接触时将一部分热水蒸发出去,而使大部分热水得到冷却后,再循环使用。

48.封闭式循环水系统:又称为密闭式循环冷却水系统。在此系统中,冷却水用过后不是马上排放掉,而是回收再用。

49.冷却塔:是用水作为循环冷却剂,从一系统中吸收热量排放至大气中,以降低水温的装置。分自然通风和机械通风两种冷却方式。

50.布水器:回水通过布水器均匀分布到填料上。

51.填料:回水经过填料形成水膜,增加与空气的接触面积。

52.收水器:回收部分蒸发水蒸汽中携带的液体水。

53.循环水量:指循环水系统上冷却塔的循环水量总和。n50保有水量:循环水系统内所有水容积的总和,等于水池容积及管道和水冷设备内水的容积总和。

54.补充水量:用来补充循环水系统中由于蒸发/排污/何飞溅的损失所需的水。

55.旁滤水量:从循环冷却水系统中分流出部分水量按要求进行处理后,再返回系统的水量。

56.蒸发水量:循环冷却水系统在运行过程中蒸发损失的水量。

57.排污水量:在确定的浓缩倍数条件下,需要从循环冷却水系统中排放的水量。

58.风吹泄露损失水量:循环冷却水系统在运行过程中风吹和泄露损失的水量。

59.补充水量:循环冷却水系统在运行过程中补充所损失的水量。

60.浓缩倍数:循环冷却水的含盐浓度与补充水的含盐浓度之比值。

61.换热:物体间的热量交换称为换热。循环水换热有三种基本形式:热交换、对流换热、辐射换热、蒸发换热。

62.导热:直接接触的物体各部分之间的热量传递现象叫导热。

63.对流换热:在流体内,流体之间的热量传递主要由于流体的运动,使热流中的一部分热量传递给冷流体,这种热量传递方式叫做对流换热。

64.辐射换热:高温物体的部分热能变为辐射能,以电磁波的形式向外发射到接收物体后,辐射能再转变为热能而被吸收,这种电磁波传递热量的方式叫做辐射换热。

65.蒸发换热:通过水分子蒸发时要带走汽化潜热的一种换热形式。

66.冷却水进出口温差:冷却塔入口与水池出口之间水的温差。

67.湿球温度:是指同等焓值空气状态下,空气中水蒸汽达到饱和时的空气温度。

68.干球温度:是温度计在普通空气中所测出的温度,即,我们一般天气预报里常说的气温。

69.物理清洗:通过水的流速将管道内杂物清洗出管道。

70.化学清洗:通过药剂的作用,使金属换热器表面保持清洁及活化状态,为预膜做准备。

71.预膜:即,化学转化膜,是金属设备和管道表面防护层的一种类型,特别是酸洗和钝化合格后的管道,可利用预膜的方法加以保护。

72.缓蚀剂:抑制或延缓金属被腐蚀的处理过程。

73.阻垢剂:利用化学的或物理的方法,防止换热设备的受热面产生沉积物的处理过程。

74.氧化性杀菌剂:具有强烈氧化性的杀生剂,通常是一种强氧化剂,对水中的微生物的杀生作用强烈。

75.非氧化性杀菌剂:不是以氧化作用杀死微生物,而是以致毒作用于微生物的特殊部位,因而,它不受水中还原物质的影响。

76.有效氯:是指含氯化合物(尤其作为时消毒剂)中氧化能力相当的氯量,可以定量地表示消毒效果。

77.余氯:余氯是指水经过加氯消毒,接触一定时间后,水中所余留的有效氯。

78.化合性氯:指水中氯与氨的化合物,有NH2Cl、NHCl2及NHCl3三种,以NHCl2较稳定,杀菌效果好,又叫结合性余氯。

79.游离性余氯:指水中的ClO-、HClO、Cl2等,杀菌速度快,杀菌力强,但消失快,又叫自由性余氯。

80.正磷:磷酸盐中的+5价的磷。

81.有机磷:是含碳-磷键的化合物或含有机基团的磷酸衍生物。

82.总铁:各种存在状态的铁,包含:所以铁元素。

83.总锌:各种存在状态的锌,就是包含所有锌元素的。

84.药剂停留时间:药剂在循环冷却水系统中的有效时间。

85.结垢:水中溶解的钙、镁碳酸氢盐受热分解,析出白色沉淀物,渐渐积累附着在容器上,叫结垢。

86.腐蚀:指(包括:金属和非金属)在周围介质(水,空气,酸,碱,盐,溶剂等。。。)作用下产生损耗与破坏的过程。

87.生物粘泥:由微生物及其产生的粘液,与其他有机和无机杂质混在一起,粘着在物体表面的粘滞性物质。

88.生活污水:主要是人类生活中使用的各种厨房用水、洗涤用水和卫生间用水所产生的排放水,多为无毒的无机盐类,生活污水中含氮、磷、硫多,致病细菌多。

89.市政污水:排入城镇污水系统的污水的统称。载合流制排水系统中,还包括生产废水和截留的雨水。市政污水主要包括生活污水和工业污水,由城市排水管网汇集并输送到污水处理厂进行处理。

90.工业废水:是指工业生产过程中产生的废水、污水和废液,其中含有随水流失的工业生产用料、中间产物和产品以及生产过程中产生的污染物。

91.COD:化学需氧量,水体中能被氧化的物质在规定条件下进行化学氧化过程中所消耗氧化剂的量,以每升水样消耗氧的毫克数表示,通常记为COD。

92.BOD:地面水体中微生物分解有机物的过程消耗水中的溶解氧的量,称生化需氧量,通常记为BOD,常用单位为毫克/升。

93.BC比:表示水中污染物的可生化程度,0.1-0.25难生化,0.25-0.5可生化,>0.5易生化。

94.TOC:指水体中溶解性和悬浮性有机物含碳的总量,反映水中氧化的有机化合物的含量,单位为ppm或ppb。

95.氨氮:是指水中以游离氨(NH3)和铵离子(NH4+)形式存在的氮。

96.有机氮:与碳结合的含氮物质的总称,如,蛋白质、氨基酸、酰胺、尿素等。。。

97.凯氏氮:TKN,是指以基耶达(Kjeldahl)法测得的含氮量。它包括氨氮和在此条件下能转化为铵盐而被测定的有机氮化合物。

98.硝态氮:NOxˉ,是指硝酸盐中所含有的氮元素。硝酸跟与亚硝酸根之和。

99.总氮:TN,是水中各种形态无机和有机氮的总量。

100.总磷:TP,水样经消解后将各种形态的磷转变成正磷酸盐后测定的结果,以每升水样含磷毫克数计量。

101.次磷:以H2PO2ˉ形式存在的磷酸盐,正常化学除磷去除不了,需要转化为硫酸根才能去除。

102.色度:是指含在水中的溶解性的物质或胶状物质所呈现的类黄色乃至黄褐色的程度。

103.格栅:用于去除水中漂浮物。

104.初沉池:又称一沉池,污水处理中用于去除可沉物和漂浮物的构筑物。

105.调节池:用以调节进、出水流量的构筑物。主要起对水量和水质的调节作用,以及对污水pH值、水温,有预曝气的调节作用,还可用作事故排水。

106.事故池:事故水收集池,是污水处理过程中所需构筑物的一种,在处理化工、石化等一些工厂所排放的高浓度废水时,一般都会设置事故池。

107.隔油池:利用废水中悬浮物和水的比重不同而达到分离的目的。

108.气浮:在水中产生大量的微细气泡,使空气以高度分散的微小气泡形式附着在悬浮物颗粒上,造成密度小于水的状态,利用浮力原理使其浮在水面,从而实现固-液分离。

109.生化池:生化处理中细菌代谢所处的池子。

110.二沉池:即,二次沉淀池,二沉池是活性污泥系统的重要组成部分,其作用主要是使污泥分离,使混合液澄清、浓缩和回流活性污泥。

111.平流式沉淀池:池体平面为矩形,进口和出口分设在池长的两端。

112.竖流式沉淀池:又称立式沉淀池,是池中废水竖向流动的沉淀池。池体平面图形为圆形或方形,水由设在池中心的进水管自上而下进入池内。通过污泥自身重量沉淀。

113.幅流式沉淀池:废水自池中心进水管进入池,沿半径方向向池周缓缓流动。悬浮物在流动中沉降,并沿池底坡度进入污泥斗,澄清水从池周溢流出水渠。

114.污泥池:一般是用于盛放回流污泥及剩余污泥的池子。

115.监测池:又称清水池,用于盛放处理过的污水。

116.凝聚:胶体失去稳定性的过程。俗称胶体脱稳。

117.絮凝:脱稳胶体互相聚结成大颗粒絮体的过程。

118.混凝:通过脱稳、絮凝形成大颗粒的絮凝物的两个阶段的整个过程。凝聚和絮凝的总称

119.新陈代谢:机体与外界环境之间的物质和能量交换以及生物体内物质和能量的自我更新过程叫做新陈代谢。新陈代谢包括合成代谢(同化作用)和分解代谢(异化作用)。

120.菌胶团:有些细菌由于其遗传特性决定,细菌之间按一定的排列方式互相粘集在一起,被一个公共荚膜包围形成一定形状的细菌集团,叫做菌胶团。

121.丝状菌:结构为丝状的一类细菌。菌胶团的骨架。

122.自养菌:以无机碳源为碳源的细菌。

123.异养菌:以有机碳源为碳源的细菌。

124.厌氧环境:理论上厌氧是指没有分子氧,也没有硝态氮,但是,实际工作中不可能达到。工程上DO<0.2为厌氧,,

125.好氧环境:既有溶解氧又有硝态氮。工程上DO>0.5以上为好氧。

126.缺氧环境:是指没有分子氧有硝态氮。工程上DO在0.2~0.5为缺氧。

127.活性污泥法:通过菌胶团的吸附,代谢,泥水分离来实现的污水处理方法。

128.生物膜法:利用附着生长于某些固体物表面的微生物(即生物膜)进行有机污水处理的方法。

129.水力停留时间:简写作HRT,水处理工艺名词,水力停留时间是指待处理污水在反应器内的平均停留时间,也就是污水与生物反应器内微生物作用的平均反应时间。

130.泥龄:指曝气池中微生物细胞的平均停留时间。对于有回流的活性污泥法,污泥泥龄就是曝气池全池污泥平均更新一次所需的时间(以天计)。

131.SV:30分钟沉降比,是指将混匀的曝气池活性污泥混合液迅速倒进1000mL量筒中至满刻度,静置沉淀30分钟后,则沉淀污泥与所取混合液之体积比为污泥沉降比(%),又称污泥沉降体积(SV30)以mL/L表示。因为,污泥沉降30分钟后,一般可达到或接近最大密度,所以普遍以此时间作为该指标测定的标准时间。

132.MLSS:污泥浓度,1升曝气池污泥混合液所含干污泥的重量。

133.MLVSS:混合液挥发性悬浮固体浓度,表示的是混合液活性污泥中有机性固体物质部分的浓度。

134.RSS:回流污泥的污泥浓度。

135.SVI:污泥体积指数,是衡量活性污泥沉降性能的指标。指曝气池混合液经30min静沉后,相应的1g干污泥所占的容积(以mL计),即:SVI=混合液30min静沉后污泥容积(mL)/污泥干重(g),即,SVI=SV30/MLSS。

136.内回流比:硝化液回流的流量与进水流量的比值,一般用百分数表示,符号为r。

137.外回流比:又称污泥回流比,回流污泥的流量与进水流量的比值。一般用百分数表示,符号为R。

138.接种:向生化处理的系统中投加活性污泥或者颗粒污泥的过程。

139.驯化:为使已培养成熟的粪便污水活性污泥逐步具有处理特定工业废水的能力的转化过程。

140.有机负荷:是指单位质量的活性污泥在单位时间内所去除的污染物的量。

141.容积负荷:单位曝气池容积,在单位时间内所能去除的污染物重量。

142.冲击负荷:在污水处理运行当中,污泥量一般都会保持在一定水平,反应器(曝气池、厌氧反应器等)容积当然也不会发生变化。但是如果进水水质发生很大变化(COD飙升或大幅下降),就会使污泥负荷和容积负荷发生很大变化,对污泥微生物带来影响,就是所谓的冲击负荷。

143.ORP:氧化还原电位,是水溶液氧化还原能力的测量指标,其单位是mV。

144.DO:溶解于水中的分子态氧称为溶解氧,通常记作DO,用每升水里氧气的毫克数表示。

145.曝气:使空气与水强烈接触的一种手段,其目的在于将空气中的氧溶解于水中,或者将水中不需要的气体和挥发性物质放逐到空气中。

146.充氧率:在废水处理中,曝气器对液体供氧的能力称为充氧能力,以kg/(m3˙h)计[10℃或20℃,101.3kPa)。每千瓦小时内液体的充氧能力称为充氧效率。

147.推流式活性污泥法:污水均匀地推进流动,废水从池首端进入,从池尾端流出,前段液流与后段液流不发生混合。

148.序批式活性污泥法:一种按间歇曝气方式来运行的活性污泥污水处理技术。它的主要特征是在运行上的有序和间歇操作。

149.镜检:显微镜检查的简称。就是将待检标本取样、制片,在显微镜下观察、分析、判断。

150.原生生物:原生动物是动物界中最低等的一类真核单细胞动物,个体由单个细胞组成。

151.后生生物:除原生动物外所有其他动物的总称(后生动物亚界)。

152.非丝状菌膨胀:由于菌胶团细菌体内大量累积高粘性物质(如,葡萄糖、甘露糖、阿拉伯糖、鼠李糖和脱氧核糖等形成的多类糖)而引起的非丝状菌性膨胀。

153.丝状菌膨胀:由于活性污泥中大量丝状菌的繁殖而引起的污泥丝状菌膨胀。

154.过氧化:微生物在氧气充足而营养不足也就是污水中碳源等不足时自身继续氧化反应。

155.外源呼吸:在正常情况下,微生物利用外界供给的能源进行呼吸代谢叫外源性呼吸。

156.内源呼吸:如果外界没有供给能源,而是利用自身内部储存的能源物质进行呼吸代谢叫做内源呼吸。

157.老化:因为,泥龄过长、长时间低负荷或者过氧化导致的污泥解体现象。

158.剩余污泥:是指活性污泥系统中从二次沉淀池(或沉淀区)排出系统外的活性污泥。

159.氨化:是指含氮有机物如蛋白质、尿素等微生物分解而转变为氨的过程。

160.硝化:指氨在微生物作用下氧化为硝酸的过程。

161.反硝化:指细菌将硝酸盐(NO3−)中的氮(N)通过一系列中间产物(NO2−、NO、N2O)还原为氮气(N2)的生物化学过程。

短程硝化是指NH3生成亚硝酸根,不再生产硝酸根,而由亚硝酸根直接生成N2,称为短程反硝化。

163.同步硝化反硝化:硝化和反硝化反应往往发生在同样的处理条件及同一处理空间内,因此,这些现象被称为同步硝化/反硝化(SND)。

164.厌氧氨氧化:即,在缺氧条件下由厌氧氨氧化菌利用亚硝酸盐为电子受体,将氨氮氧化为氮气的生物反应过程。

165.折点加氯:废水中的NH3-N可在适当之pH值,利用氯系的氧化剂(如,Cl2、NaOCl)使之氧化成氯胺(NH2Cl、NHCl2、NCl3)之后,再氧化分解成N2气体而达脱除之目的。

166.鸟粪石法:利用水中的镁离子、铵根离子、磷酸盐形成磷酸铵镁沉淀来去除氨氮及总磷的方法。

167.生物除磷:利用聚磷菌的过量吸磷特性来实现磷的去除的过程。

168.化学除磷:利用磷酸根与某些金属离子形成沉淀的原理来去除磷的过程。

169.气化除磷:磷酸盐在微生物的作用下形成磷化氢的过程。

170.污泥干化:通过渗滤或蒸发等作用,从污泥中去除大部分含水量的过程。

171.厌氧反应器:为厌氧处理技术而设置的专门反应器。

172.厌氧颗粒污泥:升流式厌氧污泥床及其类似的反应器产生的颗粒状污泥,中空接近圆形,主要由无机沉淀物和胞外聚多糖构成,多种微生物生活在一起可有效地去除废水中的污染物。

173.好氧颗粒污泥:是通过微生物在好氧环境下自凝聚作用形成的颗粒状活性污泥。

174.MBR:又称膜生物反应器,是一种由膜分离单元与生物处理单元相结合的新型水处理技术。用膜来替代二沉池。

175.高级氧化:通过产生羟基自由基来对污水中不能被普通氧化剂氧化的污染物进行氧化降解的过程。

176.羟基自由基:是一种重要的活性氧,从分子式上看是由氢氧根(OH-)失去一个电子形成。羟基自由基具有极强的得电子能力也就是氧化能力,氧化电位2.8v。是自然界中仅次于氟的氧化剂。

177.蒸发结晶:加热蒸发溶剂,使溶液由不饱和变为饱和,继续蒸发,过剩的溶质就会呈晶体析出,叫蒸发结晶。

178.噬盐菌:指具有特定的生理结构的,只在含盐环境中才能存活的一类细菌微生物。

179.中水回用:就是把生活污水(或城市污水)或工业废水经过深度技术处理,去除各种杂质,去除污染水体的有毒、有害物质及某些重金属离子,进而消毒灭菌,其水体无色、无味、水质清澈透明,且达到或好于国家规定的杂用水标准(或相关规定),广泛应用于企业生产或居民生活。

180.零排放:指工业水经过重复使用后,将这部分含盐量和污染物高浓缩成废水全部(99%以上)回收再利用,或者使用压滤机过滤出不溶于水的物质后循环使用,无任何废液排出工厂。

阅读全文

与微生物黏泥是什么东西相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:734
乙酸乙酯化学式怎么算 浏览:1397
沈阳初中的数学是什么版本的 浏览:1343
华为手机家人共享如何查看地理位置 浏览:1036
一氧化碳还原氧化铝化学方程式怎么配平 浏览:877
数学c什么意思是什么意思是什么 浏览:1401
中考初中地理如何补 浏览:1290
360浏览器历史在哪里下载迅雷下载 浏览:693
数学奥数卡怎么办 浏览:1380
如何回答地理是什么 浏览:1014
win7如何删除电脑文件浏览历史 浏览:1047
大学物理实验干什么用的到 浏览:1478
二年级上册数学框框怎么填 浏览:1691
西安瑞禧生物科技有限公司怎么样 浏览:947
武大的分析化学怎么样 浏览:1241
ige电化学发光偏高怎么办 浏览:1330
学而思初中英语和语文怎么样 浏览:1641
下列哪个水飞蓟素化学结构 浏览:1418
化学理学哪些专业好 浏览:1479
数学中的棱的意思是什么 浏览:1050