A. 生物传感器可以用在哪些领域
生物传感器是利用生物活性物质与电化学或其他传感器相结合而形成的新型探测器件。生物传感器中最关键的部件是生物活性物,它可以是生物酸、抗体、生物膜或者活细胞等。这些活性物质与所要测定的物质相遇,便会发生化学变化、物理变化和生物化学变化。此类变化进一步通过化学过程或其他传感器的作用,转化为电信号或光信号,就可以被仪器记录下来,成为可掌握的信息。
世界上第一台生物传感器是在60年代由美国开发成功的酶传感器。他们利用酶的专一性,即能识别某种物质分子的独特功能,研究成生物传感器的最初构型——葡萄糖酶电极。用它可以很方便地测定出人体血液中和尿中的葡萄糖含量。这是检查糖尿病很有效的办法。
从那以后,开发生物传感器进入了一个飞速发展的时期。首先,生物传感器有极佳的检测本领,即使是含量极低的检测物也逃不过它的火眼金睛。第二,生物传感器的测定过程简便快速。一般检测一次仅需20秒钟,而以往检测方法一般需要2~20小时。第三,它可以直接在人体内进行检测,而不需在体外取样进行检测。
生物传感器已广泛应用于食品、卫生、医疗、环境等领域。
B. 什么是生物传感器其基本组成有哪些生物传感器的种类
1)光纤传感器
光纤传感器技术是随着光导纤维实用化和光通信技术的发展而形成的一门崭新的技术。光纤传感器与传统的各类传感器相比有许多特点,如灵敏度高.抗电磁干扰能力强,耐腐蚀,绝缘性好,结构简单,体积小.耗电少,光路有可挠曲性,以及便于实现遥测等。
光纤传感器一般分为两大类,一类是利用光纤本身的某种敏感特性或功能制成的传感器.称为功能型传感器;另一类是光纤仅仅起传输光波的作用,必须在光纤端面或中间加装其他敏感元件才能构成传感器,称为传光型传感器。无论哪种传感器,其工作原理都是利用被测量的变化调制传输光光波的某一参数,使其随之变化,然后对已调制的光信号进行检测,从而得到被测量。
光纤传感器可以测量多种物理量.目前已经实用的光纤传感器可测量的物理量达70多种,因此光纤传感器具有广阔的发展前景。
2)红外传感器
红外传感器是将辐射能转换为电能的一种传感器,又称为红外探测器.常见的红外探测器有两大类,热探测器和光子探m器.热探测器是利用人射红外辐射引起探测器的敏感元件的沮度变化,进而使有关物理参数发生相应的变化,通过测量有关物理参数的变化来确定红外探测器吸收的红外辐射.热探测器的主要优点是响应波段宽,可以在室沮下工作,使用方便。但是,热探测器响应时间长,灵敏度较低,一般用于红外辐射变化缓慢的场合.如光谱仪、测温仪、红外摄像等。光子红外探测器是利用某些半导体材料在红外辐射的照射下,产生光子效应,使材料的电学性质发生变化,通过测最电学性质的变化,可以确定红外辐射的强弱。光子探测器的主要优点是灵敏度高,响应速度快,响应频率高。但一般需在低温下_L作,探测波段较窄,一般用于侧温仪、航空扫描仪、热像仪等。红外传感器广泛用于测温、成像、成分分析、无损检测等方面,特别是在军事上的应用更为广泛,如红外侦察、红外雷达、红外通信、红外对抗等。
3)气敏传感器
气敏传感器是指能将被侧气体浓度转换为与其成一定关系的电量输出的装置。气敏传感器的性能必须满足下列条件:
(1)能够检渊易爆炸气体的允许浓度、有害气体的允许浓度和其他基准设定浓度.并能及时给出报薯、显示与控制信号;
(2)对被侧气体以外的共存气体或物质不敏感;
(3)长期稳定性好、重复性好;
(4)动态特性好、响应迅速;
(5)使用、维护方便,价格便宜等。
4)生物传感器
生物传感器是利用生物或生物物质做成的、用以检测与识别生物体内的化学成分的传感器。生物或生物物质是指酶、微生物、抗体等,被侧物质经扩散作用进人生物敏感膜,发生生物学反应(物理、化学反应),通过变换器将其转换成可定量、可传输、处理的电信号.按照所用生物活性物质的不同,生物传感器包括酶传感器、微生物传感器、免疫传感器、生物组织传感器等。酶传感器具有灵敏度高、选择性好等优点,目前已实用化的商品达200种以上,但由于酶的提炼工序复杂,因而造价高,性能也不太稳定。微生物传感器与酶传感器相比,价格便宜,性能稳定,它的缺点是响应时间较长(数分钟),选择性差,目前微生物传感器已成功应用于环境监测和医学中,如测定水污染程度、诊断尿毒症和搪尿病等。免疫传感器的基本原理是免疫反应,目前已研制成功的免疫传感器达儿十种以上。生物组织传感器制作简便,工作寿命长,在许多情况下可取代酶传感器,但在实用化中还存在选择性差、动植物材料不易保存等问题。目前生物传感器的开发与应用正向着多功能化、集成化的方向发展。半导体生物传感器是将半导体技术与生物技术相结合的产物,为生物传感器的多功能化、小型化、微型化提供了重要的途径。
5)机器人传感器
机器人传感器是一种能将机器人目标物特性(或参量)变换为电量输出的装置,机器人通过传感器实现类似于人类的知觉作用。
机器人传感器分为内部检测传感器和外界检测传感器两大类。内部检测传感器是在机器人中用来感知它自己的状态,以调整和控制机器人自身行动的传感器。它通常由位置、加速度、速度及JR力传感器组成。外界检测传感器是机器人用以感受周围环境、目标物的状态特征信息的传感器.从而使机器人对环境有自校正和自适应能力。外界枪侧传感器通常包括触觉、接近觉、视觉、听觉、嗅觉、味觉等传感器。机器人传感器是机器人研究中必不可缺的重要课题,需要有更多的、性能更好的、功能更强的、集成度更高的传感器来推动机器人的发展。
6)智能传感器
智能传感器是一种带有微处理机的,兼有信息检测、信息处理、信息记忆、逻辑思维与判断功能的传感器。本书第9章将对这种传感器进行详细阐述。
C. 传感器有哪些种类
1.按用途
压力敏和力敏传感器、位置传感器、液位传感器、能耗传感器、速度传感器、加速度传感器、射线辐射传感器、热敏传感器。
2.按原理
振动传感器、湿敏传感器、磁敏传感器、气敏传感器、真空度传感器、生物传感器等。
3.按输出信号
模拟传感器:将被测量的非电学量转换成模拟电信号。
数字传感器:将被测量的非电学量转换成数字输出信号(包括直接和间接转换)。
膺数字传感器:将被测量的信号量转换成频率信号或短周期信号的输出(包括直接或间接转换)。
开关传感器:当一个被测量的信号达到某个特定的阈值时,传感器相应地输出一个设定的低电平或高电平信号。
4.按其制造工艺
集成传感器是用标准的生产硅基半导体集成电路的工艺技术制造的。通常还将用于初步处理被测信号的部分电路也集成在同一芯片上。薄膜传感器则是通过沉积在介质衬底(基板)上的,相应敏感材料的薄膜形成的。使用混合工艺时,同样可将部分电路制造在此基板上。厚膜传感器是利用相应材料的浆料,涂覆在陶瓷基片上制成的,基片通常是Al2O3制成的,然后进行热处理,使厚膜成形。陶瓷传感器采用标准的陶瓷工艺或其某种变种工艺(溶胶、凝胶等)生产。完成适当的预备性操作之后,已成形的元件在高温中进行烧结。厚膜和陶瓷传感器这二种工艺之间有许多共同特性,在某些方面,可以认为厚膜工艺是陶瓷工艺的一种变型。每种工艺技术都有自己的优点和不足。由于研究、开发和生产所需的资本投入较低,以及传感器参数的高稳定性等原因,采用陶瓷和厚膜传感器比较合理。
5.按测量目
物理型传感器是利用被测量物质的某些物理性质发生明显变化的特性制成的。
化学型传感器是利用能把化学物质的成分、浓度等化学量转化成电学量的敏感元件制成的。
生物型传感器是利用各种生物或生物物质的特性做成的,用以检测与识别生物体内化学成分的传感器。
6.按其构成
基本型传感器:是一种最基本的单个变换装置。
组合型传感器:是由不同单个变换装置组合而构成的传感器。
应用型传感器:是基本型传感器或组合型传感器与其他机构组合而构成的传感器。
7.按作用形式
按作用形式可分为主动型和被动型传感器。
主动型传感器又有作用型和反作用型,此种传感器对被测对象能发出一定探测信号,能检测探测信号在被测对象中所产生的变化,或者由探测信号在被测对象中产生某种效应而形成信号。检测探测信号变化方式的称为作用型,检测产生响应而形成信号方式的称为反作用型。雷达与无线电频率范围探测器是作用型实例,而光声效应分析装置与激光分析器是反作用型实例。
被动型传感器只是接收被测对象本身产生的信号,如红外辐射温度计、红外摄像装置等。
D. 生物医学传感器有哪些
压力传感器、气体传感器、超声传感器、PH值传感器等等
E. 生物传感器的应用领域
生物传感器是一门由生物、化学、物理、医学、电子技术等多种学科互相渗透成长起来的高新技术。因其具有选择性好、灵敏度高、分析速度快、成本低、在复杂的体系中进行在线连续监测,特别是它的高度自动化、微型化与集成化的特点,使其在近几十年获得蓬勃而迅速的发展。
在国民经济的各个部门如食品、制药、化工、临床检验、生物医学、环境监测等方面有广泛的应用前景。特别是分子生物学与微电子学、光电子学、微细加工技术及纳米技术等新学科、新技术结合,正改变着传统医学、环境科学动植物学的面貌。生物传感器的研究开发,已成为世界科技发展的新热点,形成21世纪新兴的高技术产业的重要组成部分,具有重要的战略意义。 生物传感器在食品分析中的应用包括食品成分、食品添加剂、有害毒物及食品鲜度等的测定分析。
⑴食品成分分析在食品工业中,葡萄糖的含量是衡量水果成熟度和贮藏寿命的一个重要指标。已开发的酶电极型生物传感器可用来分析白酒、苹果汁、果酱和蜂蜜中的葡萄糖。其它糖类,如果糖,啤酒、麦芽汁中的麦芽糖,也有成熟的测定传感器。
Niculescu等人研制出一种安培生物传感器,可用于检测饮料中的乙醇含量。这种生物传感器是将一种配蛋白醇脱氢酶埋在聚乙烯中,酶和聚合物的比例不同可以影响该生物传感器的性能。在目前进行的实验中,该生物传感器对乙醇的测量极限为1nmol/L。
⑵食品添加剂的分析
亚硫酸盐通常用作食品工业的漂白剂和防腐剂,采用亚硫酸盐氧化酶为敏感材料制成的电流型二氧化硫酶电极可用于测定食品中的亚硫酸盐含量,测定的线性范围为0~6的负四次方mol/L。又如饮料、布丁、醋等食品中的甜味素,Guibault等采用天冬氨酶结合氨电极测定,线性范围为2×10的负五次方~1×10的负三次方 mol/L。此外,也有用生物传感器测定色素和乳化剂的报道。
⑶农药残留量分析
人们对食品中的农药残留问题越来越重视,各国政府也不断加强对食品中的农药残留的检测工作。
Yamazaki等人发明了一种使用人造酶测定有机磷杀虫剂的电流式生物传感器,利用有机磷杀虫剂水解酶,对硝基酚和二乙基酚的测定极限为10的负七次方mol,在40℃下测定只要4min。Albareda等用戊二醛交联法将乙酞胆碱醋酶固定在铜丝碳糊电极表面,制成一种可检测浓度为10的负十次方mol/L的对氧磷和10的负十一次方mol/L的克百威的生物传感器,可用于直接检测自来水和果汁样品中两种农药的残留。
⑷微生物和毒素的检验
食品中病原性微生物的存在会给消费者的健康带来极大的危害,食品中毒素不仅种类很多而且毒性大,大多有致癌、致畸、致突变作用,因此,加强对食品中的病原性微生物及毒素的检测至关重要。
食用牛肉很容易被大肠杆菌0157.H7.所感染,因此,需要快速灵敏的方法检测和防御大肠杆菌0157.H7一类的细菌。Kramerr等人研究的光纤生物传感器可以在几分钟内检测出食物中的病原体(如大肠杆菌0157.H7.),而传统的方法则需要几天。这种生物传感器从检测出病原体到从样品中重新获得病原体并使它在培养基上独立生长总共只需1天时间,而传统方法需要4天。
还有一种快速灵敏的免疫生物传感器可以用于测量牛奶中双氢除虫菌素的残余物,它是基于细胞质基因组的反应,通过光学系统传输信号。已达到的检测极限为16.2ng/mL。一天可以检测20个牛奶样品。
⑸食品鲜度的检测
食品工业中对食品鲜度尤其是鱼类、肉类的鲜度检测是评价食品质量的一个主要指标。Volpe等人以黄嗦吟氧化酶为生物敏感材料,结合过氧化氢电极,通过测定鱼降解过程中产生的一磷酸肌苷(IMP)、肌苷(HXR)和次黄嘌吟(HX)的浓度,从而评价鱼的鲜度,其线性范围为5x10的负10次方~2x10的负4次方mol/L。 环境污染问题日益严重,人们迫切希望拥有一种能对污染物进行连续、快速、在线监测的仪器,生物传感器满足了人们的要求。已有相当部分的生物传感器应用于环境监测中。
⑴水环境监测
生化需氧量(BOD)是一种广泛采用的表征有机污染程度的综合性指标。在水体监测和污水处理厂的运行控制中,生化需氧量也是最常用、最重要的指标之一。常规的BOD测定需要5d的培养期,而且操作复杂,重复性差,耗时耗力,干扰性大,不适合现场监测。SiyaWakin等人利用一种毛孢子菌(Trichosporoncutaneum)和芽孢杆菌(Bacilluslicheniformis)制作一种微生物BOD传感器。该BOD生物传感器能同时精确测量葡萄糖和谷氨酸的浓度。测量范围为0.5~40mg/L,灵敏度为5.84nA/mgL。该生物传感器稳定性好,在58次实验中,标准偏差仅为0.0362。所需反应时间为5~lOmin。
硝酸根离子是主要的水污染物之一,如果添加到食品中,对人体的健康极其有害。Zatsll等人提出了一种整体化酶功能场效应管装置检测硝酸根离子的方法。该装置对硝酸根离子的检测极限为7x10的负5次方mol,响应时间不到50s,系统操作时间约为85s。
此外,Han等人发明了一种新型微生物传感器,可用于测定三氯乙烯。该传感器将假单细胞菌JI104固定在聚四氟乙烯薄膜(直径:25 mm,孔径:0.45μm)上。再将薄膜固定在氯离子电极上。带有AgCl/Ag2S薄膜(7024L,DKK,日本)的氯离子电极和Ag/AgCI参比电极连接到离子计(IOL-50,DKK,日本)上,记录电压的变化,与标准曲线对照,测出三氯乙烯的浓度。该传感器线性浓度范围为0.1~ 4 mg/L,适于检测工业废水。在最优化条件下,其响应时间不到10min。
⑵大气环境监测
二氧化硫(S02)是酸雨酸雾形成的主要原因,传统的检测方法很复杂。Martyr等人将亚细胞类脂类(含亚硫酸盐氧化酶的肝微粒体)固定在醋酸纤维膜上,和氧电极制成安培型生物传感器,对S02形成的酸雨酸雾样品溶液进行检测,lOmin可以得到稳定的测试结果。
NOx不仅是造成酸雨酸雾的原因之一,同时也是光化学烟雾的罪魁祸首。Charles等人用多孔渗透膜、固定化硝化细菌和氧电极组成的微生物传感器来测定样品中亚硝酸盐含量,从而推知空气中NOx的浓度。其检测极限为0.01xl0负6次方mo1/L。 在各种生物传感器中,微生物传感器具有成本低、设备简单、不受发酵液混浊程度的限制、可能消除发酵过程中干扰物质的干扰等特点。因此,在发酵工业中广泛地采用微生物传感器作为一种有效的测量工具。
⑴原材料及代谢产物的测定
微生物传感器可用于测量发酵工业中的原材料(如糖蜜、乙酸等)和代谢产物(如头孢霉素、谷氨酸、甲酸、醇类、乳酸等)。测量的装置基本上都是由适合的微生物电极与氧电极组成,原理是利用微生物的同化作用耗氧,通过测量氧电极电流的变化量来测量氧气的减少量,从而达到测量底物浓度的目的。
2002年,Tkac等人将一种以铁氰化物为媒介的葡萄糖氧化酶细胞生物传感器用于测量发酵工业中的乙醇含量,13s内可以完成测量,测量灵敏度为3.5nA/mM。该微生物传感器的检测极限为0.85nM,测量范围为2~270nM,稳定性能很好。在连续8.5h的检测中,灵敏度没有任何降低。
⑵微生物细胞数目的测定
发酵液中细胞数的测定是重要的。细胞数(菌体浓度)即单位发酵液中的细胞数量。一般情况下,需取一定的发酵液样品,采用显微计数方法测定,这种测定方法耗时较多,不适于连续测定。在发酵控制方面迫切需要直接测定细胞数目的简单而连续的方法。人们发现:在阳极(Pt)表面上,菌体可以直接被氧化并产生电流。这种电化学系统可以应用于细胞数目的测定。测定结果与常规的细胞计数法测定的数值相近。利用这种电化学微生物细胞数传感器可以实现菌体浓度连续、在线的测定。 医学领域的生物传感器发挥着越来越大的作用。生物传感技术不仅为基础医学研究及临床诊断提供了一种快速简便的新型方法,而且因为其专一、灵敏、响应快等特点,在军事医学方面,也具有广的应用前景。
⑴临床医学
在临床医学中,酶电极是最早研制且应用最多的一种传感器,已成功地应用于血糖、乳酸、维生素C、尿酸、尿素、谷氨酸、转氨酶等物质的检测。其原理是:用固定化技术将酶装在生物敏感膜上,检测样品中若含有相应的酶底物,则可反应产生可接受的信息物质,指示电极发生响应可转换成电信号的变化,根据这一变化,就可测定某种物质的有无和多少。利用具有不同生物特性的微生物代替酶,可制成微生物传感器,在临床中应用的微生物传感器有葡萄糖、乙酸、胆固醇等传感器。若选择适宜的含某种酶较多的组织,来代替相应的酶制成的传感器称为生物电极传感器。如用猪肾、兔肝、牛肝、甜菜、南瓜和黄瓜叶制成的传感器,可分别用于检测谷酰胺、鸟嘌呤、过氧化氢、酪氨酸、维生素C和胱氨酸等。
DNA传感器是目前生物传感器中报道最多的一种,用于临床疾病诊断是DNA传感器的最大优势,它可以帮助医生从DNA,RNA、蛋白质及其相互作用层次上了解疾病的发生、发展过程,有助于对疾病的及时诊断和治疗。此外,进行药物检测也是DNA传感器的一大亮点。Brabec等人利用DNA传感器研究了常用铂类抗癌药物的作用机理并测定了血液中该类药物的浓度。
⑵军事医学
军事医学中,对生物毒素的及时快速检测是防御生物武器的有效措施。生物传感器已应用于监测多种细菌、病毒及其毒素,如炭疽芽孢杆菌、鼠疫耶尔森菌、埃博拉出血热病毒、肉毒杆菌类毒素等。
2000年,美军报道已研制出可检测葡萄球菌肠毒素B、蓖麻素、土拉弗氏菌和肉毒杆菌等4种生物战剂的免疫传感器。检测时间为3~lOmin,灵敏度分别为10,5Omg/L,5x10的5次方,和5x10的4次方cfu/ml。Song等人制成了检测霍乱病毒的生物传感器。该生物传感器能在30min内检测出低于1xlO的负5次方mol/L的霍乱毒素,而且有较高的敏感性和选择性,操作简单。该方法能够用于具有多个信号识别位点的蛋白质毒素和病原体的检测。
此外,在法医学中,生物传感器可用作DNA鉴定和亲子认证等。
F. 传感器的种类有哪些
一、按照仪器分类:
1、光电/光敏传感器。
2 、电磁/磁敏传感器。
3、 霍尔/电流(压)传感器。
4、 超声波/声敏传感器。
5、光纤/激光传感器。
6、 测距/距离传感器。
7、 视觉/图像传感器 。
8、光栅/光幕传感器 。
9、压力/称重/力(敏)传感器 。
10、力矩/扭矩传感器 。
二、按照工作原理分类:
1、物理传感器。
2、学传感器。
三、按照其用途分类:
1、压力敏和力敏传感器 。
2、位置传感器 。
3、液位传感器。
4、能耗传感器 。
5、速度传感器。
6、加速度传感器。
7、射线辐射传感器。
8、热敏传感器。
9、真空度传感器 。
10、生物传感器。
G. 微生物传感器的分类有什么
微生物传感器是以活的微生物作为敏感材料,利用其体内的各种酶系及代谢系统来测定和识别相应底物。微生物电极的种类很多,可以从不同的角度分类。
根据测量信号的不同,微生物电极可分为如下两类:(1)电流型微生物电极,换能器输出的是电流信号,根据氧化还原反应产生的电流值测定被测物。常用Q电极作为基础电极;(2)电位型微生物电极,换能器输出的是电位信号,电位值的大小与被测物的活度有关,二者呈能斯特响应。常用的电极为各种离子选择性电极、CO2气敏电极、NH3敏电极等。
根据微生物与底物作用原理的不同,微生物电极又可分为如下两类:(1)测定呼吸活性型微生物电极,微生物与底物作用,在同化样品中有机物的同时,微生物细胞的呼吸活性有所提高,依据反应中氧的消耗或二氧化碳的生成来检测被微生物同化的有机物的浓度;(2)测定代谢物质型微生物电极,微生物与底物作用后生成各种电极敏感代谢产物,利用对某种代谢产物敏感的电极即可检测原底物的浓度。
根据微生物的种类分类可分为发光微生物(1uminous microbes)传感器,硝化细菌(nitrifying bacteria)传感器,假单胞茵属(Pseudomonas)与大肠杆菌属(Escherichia)传感器,蓝细菌(cyanobacteria)与藻类(algae)传感器和酵母传感器。发光微生物传感器具有一些显着优点:操作无需严格无菌;发光变化先于基本代谢变化因而对毒性更为敏感;与光电检测手段相结合,自动化程度高、结果客观、人为误差少。硝化细菌传感器利用细菌对污染物毒性十分敏感的特性,根据污染物抑制细胞酶类(如氨单加氧酶、羟氨氧化酶、亚硝酸氧还酶)而干扰硝化过程的原理来检测污染物。基于氧化还原介质的传感器选用的假单胞菌株有洋假单胞菌(Pseudomonas cepacia)和恶臭假单胞菌(Pseudo-monas putida)等。检测的污染物有氯芬磷、氯氰菊酯、溴氢菊酯、乐果、硫丹等,毒物可显着抑制工作电极上电流的产生。目前,有两种类型蓝细菌、藻类传感器:一类是检测毒物对光合作用产物生成的影响;另一类是检测毒物对叶绿素荧光发生强度的影响,毒物通过阻断光合作用的电子传递链导致叶绿素的荧光强度增高,增加的幅度与污染物浓度相关。酵母作为一种真核生物传感器具有以下优点:(1)增殖速度快,可利用的底物广泛;(2)细胞为真核结构,可以检出真核毒性污染物,结果对哺乳动物更有意义;(3)对酸碱度、温度、离子强度等变化的适应能力强于细菌。现在多通过检测耗氧量、酸度(因代谢产物使pH 降低)而分析酵母的活性。污染物可抑制其正常代谢过程的进行。因为人们对酿酒酵母的生理生化特性已有深入了解,常用其作为传感器的敏感材料。
文章参考: http://www.sensorsleader.net
H. 微生物传感器和细胞传感器有什么区别
传感器一般是指感受某物质规定的测定量,并按一定规律转换成可用信号的器件或装置.
其组成主要有3大部分:敏感元件、转换器件和电子线路.另外,还有一些相应的机械设备及附件.
按主要敏感元件的反应性来分,传感器可分为物理、化学和生物传感器3种类型.
生物传感器是以生物活性物质,如酶、微生物等作为敏感元件,配上适当的转换器所构成的具有高度选择性的现代化分析仪器.
按照主要敏感元件的特性或来源不同来分,生物传感器可分为酶传感器、微生物传感器、细胞器传感器、组织传感器和免疫传感器.显而易见,所应用的敏感元件材料依次为酶、微生物菌体、细胞器、动植物组织和抗体.
微生物传感器是应用细胞固定化技术,将各种活体微生物固定在膜上的生物传感器.它的基本原理是:固定化的微生物数量和活性在保持恒定的情况下,它所消耗的溶解氧量或所产生的电极活性物质的量,反映了被检测物质的量.微生物传感器可分为两大类:一类利用微生物的呼吸作用,另一类是利用微生物 菌体内所含有的酶的作用.
微生物传感器的优点是灵敏度高,选择性好,元件成本低,容易制作且使用寿命长,因而应用广泛.它在基础理论研究、临床医学检测、工业产品分析和环境质量监测等方面具有重要作用,如在谷氨酸发酵生产过程中,利用大肠杆菌作为敏感元件制成的微生物传感器,将产生的CO2与CO2气敏电极组装在一起,来测定谷氨酸的含量.又如日本在污水检测中,利用荧光假单胞菌做成的微生物传感器,可在15min内测定BOD而取代传统的5天BOD测定法.
I. 什么是纳米生物传感器
这种生物传感器,是用一种合成薄膜附着在一块基片上,复制身体的传感机制。其中心部件是一个微型电子开关,它起着一个离子通道的作用,其尺寸只有百万分之一毫米,即1纳米。这种传感器通过检查一滴血或者一点唾液,就可以判断出患者有无心脏病或消化不良症。
J. 人体微纳米生物力学传感器有哪些
纳米生物传惑器 是利用生物特异性识别过程来实现检测的传感器件。生物敏感
元件包括生物体、组织、细胞、细胞器、细胞膜、酶、抗体、核酸等,而生物传感器是利用这些从微观到宏观多个层次相关物质的特异性识别能力的器件总称。纳米生物传感器是纳米科技与生物传感器的融合。其研究涉及到生物技术、信息技术、纳米科学、界面科学等多个重要领域,并综合应用光声电色等各种先进检测技术,因而成为国际上的研究前沿和热点。一方面。其设计与开发涉及到很多基本科学问题。为基础研究提供了许多源头创新思路。另一方面.纳米生物传感器可能对临床检测、遗传分析、环境检测、生物反恐和国家安全防御等多个领域产生革命性的影响。正因为这样,世界各国及很多国际性公司纷纷拨巨资支持纳米生物传感器的研究,并吸引着众多领域的研究人员。
纳米生物传感器的信号传导方式主要包括光学、电学、力学、声学等。传统上光学检测是生物传感器的主流,然而近年来随着界面科学(如分子自组装技术)与纳米科学(如扫描探针显微镜)的发展,电化学纳米生物传感器获得了前所未有的发展机遇并引起了极大的关注。