生物信息学中数学占了很大的比重。统计学,包括多元统计学,是生物信息学的数学基础之一;概率论与随机过程理论,如隐马尔科夫链模型(HMM),在生物信息学中有重要应用;其他如用于序列比对的运筹学;蛋白质空间结构预测和分子对接研究中采用的最优化理论;研究DNA超螺旋结构的拓扑学;研究遗传密码和DNA序列的对称性方面的群论等等.总之,各种数学理论或多或少在生物学研究中起到了相应的作用.但并非所有的数学方法在引入生物信息学中都能普遍成立的。
生物信息学(Bioinformatics)是研究生物信息的采集、处理、存储、传播,分析和解释等各方面的学科,也是随着生命科学和计算机科学的迅猛发展,生命科学和计算机科学相结合形成的一门新学科。它通过综合利用生物学,计算机科学和信息技术而揭示大量而复杂的生物数据所赋有的生物学奥秘。
❷ 生物信息学专业的课程有哪些
生物信息学专业主要的课程有:
主干课程:生物学、数学、计算机科学。
课程设置:
普通生物学、生物化学、分子生物学、遗传学、生物信息学、计算生物学、基因组学、生物芯片原理与技术、蛋白质组学、模式识别与预测、数据库系统原理、Linux基础及应用、生物软件及数据库、Perl编程基础等。
生物信息学(Bioinformatics)是一门交叉科学,它包含了生物信息的获取、加工、存储、分配、分析、解释等在内的所有方面,它综合运用数学、计算机科学和生物学的各种工具,来阐明和理解大量生物数据所包含的生物学意义。它随1990年人类基因组计划(HGP)的实施和信息技术的发展而诞生,现已迅速发展成为当今生命科学最具吸引力和重大的前沿领域,为生物学、计算机科学、数学、信息科学等专业的高素质人才提供了更广阔的发展天地。
培养目标
本专业培养德、智、体、美全面发展,具有较好的分子生物学、计算机科学与技术、数学和统计学素养,掌握生物信息学基本理论和方法,具备生物信息收集、分析、挖掘、利用等方面的基本能力,能在科研机构、高等学校、医疗医药、环境保护等相关部门与行业从事教学、科研、管理、疾病分子诊断、药物设计、生物软件开发、环境微生物监测等工作的高级科学技术人才。
专业状况
我国生物学本科教育主要围绕两个专业——生物科学和生物技术进行,而生物信息学相关课程通常作为这两个专业高年级学生的选修课,且要求学生们已修完大部分专业必修课以及一些计算机课程,如C语言等。教学实践表明,这一安排基本上符合国内本科生教育的实际情况,有利于本科生们掌握生物信息学的基本知识和工作原理,激发他们今后深入研究的兴趣。世界上越来越多的政府部门、教育机构和企业都呼吁加快培养各类生物信息学人才。
❸ 如何系统的学习生物信息学
生物信息学,是一门综合学科。涉及到数学,生物学和计算机的内容。但在我看来,计算机的基础需要,但要求不是很高,关键是要有很好的生物学知识,包括遗传学的、生物化学的、发育生物学的、分子生物学的、植物生理学的知识等等,也就说需要达到这样的一个要求:在进行数据分析时,能对各种分析结果进行生物学的评价,并给出最优的分析策略。同时也应该有纯熟的数理基础,包括统计学的、拓扑学的,这样才能把待分析的问题转换成可计算的模型,最后能给出实现的程序。
从个人来说,因为生物信息学是一个非常大的领域,所以,关键是要确定自己的研究方向。比如,以关联分析为方向的生物信息学,那么就要掌握好各种关联分析的统计分析方法,有很强的数据管理能力,足够好的序列分析能力(这是进行variation查找和分析的基础)。
回到6年以前,如果决定在生物信息学上发展,那么我也许会做下面这些事情:
首先,从最不重要的计算机这个方面来说:
(1)要掌握好bash等脚本语言,一般的linux问题都能很好的解决
(2)熟练使用apache,mysql等基础软件工具,用joomla等CMS配置搭建网站
(3)应该努力精通perl,bioperl,以基于此的各种分析工具,比如gbrowser,cmap等
(4)足够好的c/c++语言能力,这是实现新算法的最高效语言。
(5)应该努力精通R语言,这是进行统计分析的基础工具
(6)如果有机会,学学erlang这样一些函数式语言吧
其次,从数学基础来说,我觉得应该:
(1)学好线性代数
(2)学好高等数学,或者数学分析
(3)学好统计学
(4)学好离散数学
(5)学好计算机算法和数据结构
其次,从生物学来说:
(1)如果没有进化论的基层,请把进化论学好
(2)学好发育生物学,植物生理学
(3)学好基因组学、遗传学等
千万不要认为这些没有什么用,当你在数据分析,怎么判断结果的合理性,或者对结果进行解释时候,都离不开这些生物学问题。最后,你对这些问题的理解成度,决定了你的生物信息学水平:只是一个有生物学知识的、会进行计算机操作的技术员,还是一个能给出解决方案的有良好计算机基础的能把握生物学问题的生物信息学家。
最后,从生物信息学的角度来说:
(1)对NCBI等各大数据库非常熟悉
(2)对各种生物学信息学的分析方法和策略非常的清楚,至少应该知道有那些工具软件,以及这些工具软件的原理和基于的生物学基础,包括:基因组学分析,表达谱分析,代谢组分析、调控网络分析、数据结果的整合展示等
最后,生物信息学是一个发展很快的学科,但因起涉及的内容比较多,因此,要想到底一定的要求,是需要付出巨大的努力的。此外,在进行生物信息学学习的过程中,对自己感兴趣的方法工具,一定要把文献上的数据拿来,自己独立分析一遍,自己去体会分析的过程,从而对这些方法和工具有更深入的理解。
❹ 生物信息学入门需要具备什么能力
1.编程
Linux:会用Editor(e.g. VIM) 和 Shell Script (e.g. bash);推荐《鸟哥的Linux私房菜-基础学习篇》
Python/Perl:《Python编程入门(第3版)》,Perl推荐小骆驼
R/MATLAB:《R语言实战(R in action)》
如果做数据库或者server,推荐再学PHP,MySQL,JavaScript
2.课程
Bioinformatics: 生物信息导论和方法(北大高歌老师的课程,讲解逻辑清晰,由浅入深),MOOC。
因为生信有好多分支,如对基因组、蛋白质组学数据分析并给出生物学解释;在研究算法方面,如利用机器学习的各种原理来解决生物学问题(对基因序列原件的注释,如对TSS,splicing sites,promoters,enhancers,positioned nucleosomes等功能区域的注释;通过对RNA-seq,microarray,ChIP-seq等数据的分析,区分不同的疾病类型或疾病的分子标志物(biomarkers);对基因功能的注释,如Gene Ontology term;以及基因间互作调控网络的分析);比如运用统计学知识改进已有的生信软件的算法,等等。可以根据将来要做什么继续补充知识,比如看一下斯坦福大学的Andrew Ng在coursera的机器课程呀 ,看一下统计学原理呀之类的。
3.文献和实战练习
如果是做基因组学的生信公司
3.1 RNA数据分析流程
RNA-seq:可以重复一下文章中的分析Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks当然入门之后可以更多了解相关软件啦,比如STAR,feature counts, Gfold, EdgeR, DESeq2,
DESeq等。
找lncRNA:Recurrently deregulated lncRNAs in hepatocellular carcinoma. 这篇文章中有如何找新lncRNA的流程,可以根据文章提供的方法重复一下。
3.2 DNA数据分析流程
GATK那一套流程检测
同时variant与疾病、eQTL等关联分析的话,可以了解一下STATA
3.3
结合机器学习和基因组学的话,可以看一下以下文献:
DeepVariant:由谷歌Deep mind公司研发,利用卷积神经网络(convolutional neural network, CNN)检测基因组上单碱基突变(SNP)和小的插入缺失(Indel),比现有的GATK软件有更高的精确度。
DeepWAS:根据功能单元选择出一组SNP的集合,与现有的基因组关联分析(GWAS)检测基因组上一个SNP与疾病的关系相比,DeepWAS能够更综合地分析致病基因突变,在寻找调控区域的基因突变也更为直接。
DeepSEA:预测人类基因组非编码区有功能的变异。
DeepBind:预测DNA,RNA结合蛋白的序列特征,并能识别有害的基因突变。
DeepCpG:在表观遗传学层面上,应用深度神经网络算法,研发了通过单细胞测序的DNA序列和不完整的甲基化修饰数据的,用来预测细胞细胞层面是否会发生甲基化,其效果优于现有软件。
❺ 生物信息学专业学什么
生物信息学专业学什么?
快车教育,某名企人力资源总监曾先生表示,生物信息学(Bioinformatics)是一门交叉科学,它包含了生物信息的获取、加工、存储、分配、分析、解释等在内的所有方面,它综合运用数学、计算机科学和生物学的各种工具,来阐明和理解大量生物数据所包含的生物学意义。它随1990年人类基因组计划(HGP)的实施和信息技术的发展而诞生,现已迅速发展成为当今生命科学具吸引力和重大的前沿领域,为生物学、计算机科学、数学、信息科学等专业的高素质人才提供了更广阔的发展天地。
那么生物信息学专业好不好?下面让快车教育我为各位看官总结一下生物信息学专业的主要课程、专业知识以及专业技能的情况吧!
一、生物信息学专业主要课程:
普通生物学、生物化学、分子生物学、遗传学、生物信息学、计算生物学、基因组学、生物芯片原理与技术、蛋白质组学、模式识别与预测、数据库系统原理、Linux基础及应用、生物软件及数据库、Perl编程基础等。
二、生物信息学专业知识与技能:
1.掌握普通生物学、生物化学、分子生物学、遗传学等基本知识和实验技能;
2.掌握计算机科学与技术基本知识和编程技能(包括计算机应用基础、Linux基础及应用、数据库系统原理、模式识别与预测、生物软件及数据库、Perl编程基础等),具备较强的数学和统计学素养(高等数学I、II、生物统计学等);
3.掌握生物信息学、基因组学、计算生物学、蛋白质组学、生物芯片原理与技术的基本理论和方法,初步具备综合运用分子生物学、计算机科学与技术、数学、统计学等知识和技能,解决生物信息学基本问题的能力;
4.掌握生物信息学资料的查询、文献检索及运用现代信息技术获得相关信息的基本方法,具有一定的实验设计、结果分析、撰写论文、参与学术交流的能力;
5.熟悉国家生物信息产业政策、知识产权及生物安全条例等有关政策和法规;
6.了解生物信息学的理论前沿、应用前景和新发展动态;
7.具有较好的科学人文素养和较强的英语应用能力,具备较强的自学能力、创新能力和独立解决问题的能力;
8.具有良好的思想道德素质和文化素养,身心健康;
9.具有较好的科学素质、竞争意识、创新意识和合作精神。
以上是关于大学本科专业生物信息学专业学什么的分析情况,更多高考专业生物信息学专业分析资讯敬请关注快车教育职业规划频道。
❻ 生信分析怎么学
学习生信分析需要具备一定的计算机、生物学和统计学知识,建议按以下步骤学习:
1. 建立基础知识:先学习生物学、计算机科学和统计学的基础知识,掌握常用的生物学术语和基本的编程概念。可以参考一些经典教材如《生物信息学导论》、《R语言实战》等。
2. 学习常用工具和软件:学习生物信息学分析中常用的工具和软件,例如NCBI、BLAST、UCSC等数据库和软件,学习Linux操作系统和常用命令,掌握编程语言如Perl、Python、R等的使用。
3. 参加课程或培训:参加一些线上或线下的课程或培训,例如Coursera上的生物信息学课程、培训班、讲座等,了解生物信息学分析的流程和方法,掌握实践技能。
4. 实践和练习:通过实际项目的实践,积累经验和技能。可以通旅模过参加竞赛、学术项目或者开源社区的项目来进行实践。
5. 学习交流:通过参加学术会议、讨论组、社区等启镇李悄迟渠道,与其他从业人员交流和分享经验,了解最新的技术发展和应用实践。
总之,星科SCIER认为学习生信分析需要综合多个学科知识,需要不断实践和练习,才能熟练掌握相关技能。
❼ 生物信息学是干什么的
生物信息学属于理学,是分子生物学和计算机科学相互交叉形成的新兴前沿学科,本专业是根据21世纪最具市场活力的新兴生物信息产业市场需求而设置的新专业。
专业培养德智体美全面发展,具备生物信息学的基本理论、基本知识和基本技能,并能在高等学校或科研机构和政府机构及相关行业的企业、事业部门等从事生物信息和生物信息软件、产品的研究与教学、生产与开发、经营与管理等方面工作的高级复合型科技人才。
要求学生具有计算机技术背景,通晓分子生物学知识,熟练运用生物信息处理软件的生物学~计算机两栖复合应用型的基本理论、基本知识和基本技能。
生物信息学主要课程和就业方法
主要课程:动物生物学、植物生物学、微生物学、基础生物化学、生物信息学、遗传学、数据库、计算机操作系统、生物统计学、分子生物学、发育生物学及计算机模拟、生物芯片技术、神经生物学、基因工程、软件工程、信息论、计算机图形学等。
生物信息技术专业毕业生可从事科研机构、高等学校、医疗医药、环境保护等相关部门与行业从事教学、科研、管理、疾病分子诊断、药物设计、生物软件开发、环境微生物监测等工作。