❶ 生活中利用分离原理发明出来的物品有哪些
轮船上的各种干扰会影响测量精度和准确性。解决问题的方法之一就是将声呐探测器单独置于船后千米之外,用电缆连接,使声呐探测器和轮船内的各种干扰在空间上得以分离.互不影响.可大大提高测试精度.实现了矛盾的合理解决。
(2) 早期自行车的脚蹬子是与前轮连接成一体的,骑车人既要快蹬(脚蹬子),提高车轮转速以提高白行车的速度,又希望慢蹬(脚蹬子),不至于太累。链条、链轮及飞轮的发明就解决了这个物理矛盾,改进后的自行车如图2所示。在空间上将链轮(脚蹬子)和飞轮(车轮)分离,再用链条将它们连接起来,链轮直径大于飞轮,链轮只需以较慢的速度旋转就能使飞轮较快旋转.即骑车人通过较慢的速度蹬脚蹬子就可以使自行车的车轮以较快的速度旋转。
时间分离原理
所谓时间分离原理是将矛盾双方在不同的时间段上分离.即通过在不同的时刻满足不同的需求.从而解决物理矛盾。
以下是几个应用时问分离原理的例子。
(1) 舰载飞机的机翼我们希望大一些,这样使飞机有更好的承载能力,大机翼提供更大的升力;但是我们又希望小一些,因为要在航空母舰有限的面积上多放些飞机。用时间分离可解决这个物理矛盾,在航母舰上飞机机翼可以折叠存放,在飞行时飞机机翼打开
(2) 一般的自行车由于体积较大,不便于储存.采用折叠的方式,如图5所示.使自行车的体积可以在行走时变大.在储存时变小。行走与储存发生在不同的时间段.使用时间分离原理成功地解决了物理矛盾。
条件分离原理
所谓条件分离原理是根据条件的不同将矛盾双方不同的需求分离,即通过在不同的条件下满足不同的需求,从而解决物理矛盾。
以下是几个应用条件分离原理的例子。
(1) 水射流可以当作软质物质,用于洗澡时按摩;也可以当硬质物质,以高压、高射速流用于加工或作为武器使用。这取决于射流的速度条件或射流中有无其他物质。
(2) 在厨房中使用的水池箅子,对于水而言是多孔的,允许水流过;而对于食物而言则是刚性的,不允许食物通过。
整体部分分离
所谓整体与部分分离原理.是将矛盾双方在不同层次上分离.即通过在不同的层次上满足不同的需求来解决物理矛盾。
以下是几个应用整体与部分分离原理的例子。
(1) 自动装配生产线与零件供应的批量化之间存在着矛盾。自动装配生产线要求零部件连续不断地供应,但是.零部件从自身的加工车间或供应商处运到装配车间时,却只能批量地、间断地运来。我们可使用专用的转换装置.接受间断运来的批量零部件.但连续地将零部件输送到自动装配生产线。
(2) 自行车链条应该是柔软的.以便精确地环绕在传动链轮上,它又该是刚性的.以便在链轮之间传递相当大的作用力。因此,系统的各个部分(链条上的每一个链接)是刚性的,但是系统在整体上(链条)是柔性的.
❷ 生物分离技术在食品工业中的应用
食品工业中用发酵和煮制的话,常常用离心技术。此外层析和膜分离也很常用。
下面介绍下生物分离技术和生物技术在食品工业中的应用进展。
生物分离技术最常见的分离纯化方法包括盐析和有机溶剂分级沉淀、超滤技术、层析技术、电泳技术、离心技术。
(1)盐析或有机溶剂分级沉淀:向反应产物溶液中加入大量易溶解的盐如氯化钠、硫酸铵,这些盐的离子能结合大量的水,产物因此被盐沉淀出来。产物溶液中加入能和水互溶的有机溶剂如乙醇、丙酮,常常能降低产物溶解度,而使产物沉淀。选择适当条件可使产物和杂质分开。
(2) 超滤技术:选择适当孔径的超滤膜或超滤中空纤维柱,通过抽滤加压使一定大小的分子能水一起穿过孔径,更大的分子则被挡住,以此将产物分离出来。
(3)层析技术:使用滤纸、纤维素、树脂、凝胶颗粒、多空玻璃珠等填充支持物或者不同于溶剂的另一种液相作为固定的介质对溶剂中的不同物质的结合力不一样,当溶剂向前推进时,溶剂中的不同溶质便可彼此分开。此外还有按分子大小分开的分子筛层析,按解离能力和离子性质分开的离子交换层析,按生物分子间亲和力大小分开的亲和层析,以及按两相溶液间分配系数差异而分开的逆流分溶。
(4)电泳技术:带有电荷的离子或颗粒在电场作用下向一个电击方向移动,离子或颗粒因其所带电荷和质量的不同,在电场中的移动速度不同,因而彼此被分开。被广泛使用的是凝胶电泳,而毛细管电泳具有最灵敏的分析效果。
(5)细胞、细胞碎片和生物大分子在离心力场作用下能被沉淀下来。离心机在每分钟旋转10000次以下的低速是就能使细胞沉淀,细胞碎片要在每分钟旋转20000到30000次的高速下才能被沉降,生物大分子则需要在每分钟旋转30000次以上的超速离心方能克服分子热运动而被沉降。
生物技术在食品工业中的应用进展
益生菌:随着益生菌多项保健功能的不断发现,如平衡肠道菌群,改善肠道功能、调节免疫、增强消化功能,促进营养物质吸收、抗诱变和防癌特性、抗氧化与延缓衰老以及改善心血管系统等。目前,国际上对益生菌的研究显得非常活跃,特别是在日本、法国、美国等国家已形成了系统化专业性科研队伍。
世界各国益生菌研究主要集中在益生菌促进人体健康的机理、益生菌的工业化与产业化应用技术、更高质量或带多功能性益生菌的高效筛选与定向设计等前沿领域,其研究成果应用于食品工业生产大大提高了人体健康水平并带来了客观的经济效益。在我国,特别是在奶
制品和一些功能性的食品中益生菌已广为运用。
在基础研究方面,我国科学家取得了丰硕的研究成果。2008年7月,内蒙古农业大学等单位承担的益生菌L.casei Zhang基因组学和蛋白质组学研究项目通过鉴定,项目完成了益生菌L.ca-sei Zhang染色体基因组和质粒基因组plca36序列的测定,从而能够准确地将该菌株的益生功能基因进行定位,为其益生机理进一步深入研究和相关产品的开发应用从基因水平上奠定了基础。该项目的完成标志着我国在乳酸菌基因组学方面的研究达到国际水平。同时,国内围绕乳制品、发酵肉制品工业发酵剂菌株筛选获得重要进展,建立了从多菌相肉品发酵体系中定向筛选特质菌株的高通量技术平台和我国第一个原创性、具有自主知识产权的乳酸菌菌种资源库,筛选得到了几十株具有优良生产性状及益生特性的乳酸菌菌株,为我国益生菌制品的开发奠定了强大的技术和菌源基础。
代谢工程:在代谢工程研究方面,随着研究应用的深入,代谢工程的定义也在不断更新,现在多将其定义为利用基因工程技术,有目的地对细胞代谢途径进行精确地修饰、改造或扩展、构建新的代谢途径,以改变微生物原有代谢特性,并与微生物基因调控、代谢调控及生化工程相结合,提高目的代谢产物活性或产量,合成新的代谢产物的工程技术科学。总体而言,代谢工程是在建立代谢网络理论的基础上,通过对代谢流的定性、定量分析,从而对代谢工程进行设计包括改变代谢流、扩展代谢途径和构建新的代谢途径等方法,其核心是在分子水平上对靶基因或基因簇进行遗传操作,所以又称为第三代基因工程。
代谢工程主要包括3个步骤:细胞途径的修饰(合成),修饰后细胞表型的严格评价(表型表征),根据评价结果设计进一步的修饰(优化设计)。其中,表现表征的评价即是在获得大量生化反应数据的基础上,采用化学、数学的研究方法并结合先进的信息技术进行高通量分析,进一步研究细胞代谢的动态特征和控制机理,并由此发展了各种数学系统模型用于辅助改善代谢工程设计。
随着后基因组学时代的到来,各种组学技术(基因组学、转录物组学、蛋白质组学、代谢物组学、代谢通量组学等)在代谢工程相关研究中被广泛使用,通过组学技术对细胞基因组以及细胞与微观和宏观环境条件关系等特性进行表型表征,代替传统表型表征的方法,使代谢工程的研究从局部通路水平上升到整体水平,从而可以更好地揭示生物复杂代谢网络及调控机理,进行代谢工程的研究。目前,以各层次功能基因组学研究为基础,借助高通量实验技术和生物信息学工具等,通过整合各层次组学研究数据,建立数学模型,或通过比较不同菌株或同一菌株在不同条件下各个层次组学差异以阐明生命活动规律,以此进行代谢工程设计的尺度多层次的系统生物学方法,成为了各国科学家研究的重点方向。
生物反应器:在生物反应器研究方面,自动化、多功能和高效率的新型生物反应器一直是近年来研究的热点。包括人工生物反应器和天然生物反应器,比如微生物、动物和植物表达系统等,研究主要集中在将分离技术和生物反应过程结合开发出高效率的生物反应器,比如超临界反应器和膜反应器等,以及研究生物反应机理、反应过程参数传感器的研制、自动化控制系统和数学模型的建立等,特别是参数控制方面的研究和固体发酵生物反应器的开发是研究的两个重点领域。
安全检测:此外,生物技术,如酶联免疫吸附测定(ELISA)、聚合酶链式反应(PCR)和DNA芯片技术等用于食品微生物、毒素以及残留药物等食品安全检测方面也显示出其灵敏度高、特异性强、简便快捷等优势,逐渐成为食品安全研究的重要方向。
❸ 生物制药运用了生物分离与纯化的哪些技术相应的产品有哪些
一、生物分离技术的基本含义 1、定义 生物分离技术是指从动植物与微生物的有机体或器官、生物工程产物(发酵液、培养液)及其生物化学产品中提娶分离、纯化有用物质的技术过程。
也称生物工程下游技术。 实质:是研究如何从混合物中把一种或几种
❹ 工业常用的生物分离技术有哪几种
常用到得分离方法:盐析。常用的中性盐有硫酸铵、氯化钠、硫酸钠等,但以硫酸铵为最多。得到的蛋白质一般不失活,一定条件下又可重新溶解,故这种沉淀蛋白质的方法在分离、浓缩,贮存、纯化蛋白质的工作中应用极广。
萃取分离法(包括溶剂萃取、胶团萃取、双水相萃取、超临界流体萃取、固相萃取、固相微萃取、溶剂微萃取等)、医学|教育|网搜集整理膜分离方法(包括渗析、微滤、超滤、纳滤、反渗透、电渗析、膜萃取、膜吸收、渗透汽化、膜蒸馏等)。
层析方法(离子交换层析、尺寸排阻层析、疏水层析、固定离子交换层析IMAC、亲和层析等)。在这些方法中膜分离的方法和层析技术越来越受到人们的重视。
(4)日常生活中有哪些生物分离产品扩展阅读:
离心分离
借助于离心力,使比重不同的物质进行分离的方法。除常见的固-液离心分离、液-液、气-气(如235U的浓缩)、固-气离心分离等以外,由于超速离心机的发明,不仅能分离胶体溶液中的胶粒,更重要的是它能测定胶粒的沉降速率、平均分子量及混合体系的重量分布。
因而在胶体化学研究、测定高分子化合物(尤其是天然高分子)的分子量及其分布,以及生物化学研究和细胞分离等都起了重大作用。
离心分离法与色谱法结合而产生的场流分级法(或称外力场流动分馏法),则是新的更有效的分离方法,不但对大分子和胶体有很强的分离能力,而且其可分离的分子量有效范围约为103~1017。