A. 生物质燃烧后的主要产物是什么
生物质燃烧后,主要产物就是一氧化碳和二氧化碳。
一氧化碳分子是不饱和的亚稳态分子,在化学上就分解而言是稳定的。常温下,一氧化碳不与酸、碱等反应,但与空气混合能形成爆炸性混合物,遇明火、高温能引起燃烧、爆炸,属于易燃、易爆气体。因一氧化碳分子中碳元素的化合价是+2,能被氧化成+4价,具有还原性;且能被还原为低价态,具有氧化性。在一定条件下,一氧化碳和水蒸气等摩尔反应生成氢气和二氧化碳:CO + H2O → H2+ CO2。在工业装置中,早期的一氧化碳变换反应通常分两段进行,即高(中)温变换和低温变换。高(中)温变换用铁系作催化剂,典型水蒸汽和一氧化碳比为3左右,在温度为300~500℃、空速为2000~4000 h-1的条件下,高温变换炉出口一氧化碳含量为2%~5%;低温变换用高活性铜锌催化剂,在温度为180~280℃、空速为2000~4000 h-1的条件下,低温变换炉出口一氧化碳含量为0.2%~0.5%、二氧化碳(carbon dioxide),一种碳氧化合物,化学式为CO2,化学式量为44.0095、常温常压下是一种无色无味[2]或无色无嗅而其水溶液略有酸味的气体,也是一种常见的温室气体、还是空气的组分之一(占大气总体积的0.03%-0.04%[5])。在物理性质方面,二氧化碳的熔点为-56.6℃,沸点为-78.5℃,密度比空气密度大(标准条件下),溶于水。在化学性质方面,二氧化碳的化学性质不活泼,热稳定性很高(2000℃时仅有1.8%分解),不能燃烧,通常也不支持燃烧,属于酸性氧化物,具有酸性氧化物的通性,因与水反应生成的是碳酸,所以是碳酸的酸酐。
二氧化碳一般可由高温煅烧石灰石或由石灰石和稀盐酸反应制得,主要应用于冷藏易腐败的食品(固态)、作致冷剂(液态)、制造碳化软饮料(气态)和作均相反应的溶剂(超临界状态)等。
B. 生物质炭的定义是什么
当然是真的
1 生物质能简介
植物
水 + 二氧化碳 -----> 有机体 + 氧
太阳能
生物能是太阳能以化学能形式贮存在生物中的一种能量形式,一种以生物质为载体的能量,它直接或间接地来源于植物的光合作用,在各种可再生能源中,生物质是独特的,它是贮存的太阳能,更是一种唯一可再生的碳源,可转化成常规的固态、液态和气态燃料。生物质所含能量的多少与下列诸因素有密切的关系:品种、生长周期、繁殖与种值方法、收获方法、抗病抗灾性能、日照的时间与强度、环境的温度与湿度、雨量、土壤条件等,在太阳能直接转换的各种过程中,光合作用是效率最低的,光合作用的转化率约为0.5%-5%,据估计温带地区植物光合作用的转化率按全年平均计算约为太阳全部辐射能的0.5%-2.5%,整个生物圈的平均转化率可达3%-5%。生物质能潜力很大,世界上约有250000种生物,在提供理想的环境与条件下,光合作用的最高效率可达8~15%,一般情况下平均效率为0.5%左右。
据估计地球上每年植物光合作用固定的碳达2x1011t,含能量达3x1021J,因此每年通过光合作用贮存在植物的枝、茎、叶中的太阳能,相当于全世界每年耗能量的10倍。生物质遍布世界各地,其蕴藏量极大,仅地球上的植物,每年生产量就像当于目前人类消耗矿物能的20倍,或相当于世界现有人口食物能量的160倍。虽然不同国家单位面积生物质的产量差异很大,但地球上每个国家都有某种形式的生物质,生物质能是热能的来源,为人类提供了基本燃料。
生物能具备下列优点:
* 提供低硫燃料;
* 提供廉价能源(于某些条件下);
* 将有机物转化成燃料可减少环境公害(例如,垃圾燃料);
* 与其他非传统性能源相比较,技术上的难题较少。
至于其缺点有:
*小规模利用;
*植物仅能将极少量的太阳能转化成有机物;
*单位土地面的有机物能量偏低;
*缺乏适合栽种植物的土地;
*有机物的水分偏多(50%~95%)。
生物能大致可以分为两类——传统的和现代的。现代生物能是指那些可以大规模用于代替常规能源亦即矿物类固体、液体和气体燃料的各种生物能。巴西、瑞典、美国的生物能计划便是这类生物能的例子。现代生物质包括:1、木质废弃物(工业性的);2、甘蔗渣(工业性的);2、城市废物;3、生物燃料(包括沼气和能源型作物)。传统生物能主要限于发展中国家、广义来说它包括所有小规模使用的生物能,但它们也并不总是置于市场之外。第三世界农村烧饭用的薪柴便是其中的典型例子。传统生物质包括:1、家庭使用的薪柴和木炭;2、稻草,也包括稻壳;3、其他的植物性废弃物;4、动物的粪便。
C. 炭化是什么意思
碳化 dry distillation;carbonization;carbonification
1、又称干馏(dry distillation)。固体燃料的热化学加工方法。将煤、木材、油页岩等在隔绝空气下加热分解为气体(煤气)、液体(焦油)和固体(焦炭)产物,焦油蒸气随煤气从焦炉逸出,可以回收利用,焦炭则由焦炉内推出。
2、有机化合物在隔绝空气下热分解为碳和其他产物,以及用强吸水剂(浓硫酸)将含碳、氢、氧的化合物(如糖类)脱水而成炭的作用也称碳化。碳化时氢氧原子脱去比例为2:1。
3、碳化同炭化,是指生物质在缺氧或贫氧条件下,以制备相应的炭材为目的的一种热解技术.其过程与生物质,木纤维,木质素的分解同步.
D. 人在什么情况下会碳化
火烧。
碳化就是有机化合物在却氧或无氧条件下,因为高温,分子中的氢元素和氧元素生成水和二氧化碳挥发之后仅剩余黑色的碳元素,这就是碳化。碳化同炭化,是指生物质在缺氧或贫氧条件下,以制备相应的炭材为目的的一种热解技术.其过程与生物质,木纤维,木质素的分解同步。
E. 水热法和水热碳化的区别
1、水热法,是指一种在密封的压力容器中,以水作为溶剂、粉体经溶解和再结晶的制备材料的方法。相对于其他粉体制备方法,水热法制得的粉体具有晶粒发育完整,粒度小,且分布均匀,颗粒团聚较轻,可使用较为便宜的原料,易得到合适的化学计量物和晶形等优点。尤其是水热法制备陶瓷粉体毋需高温煅烧处理,避免了煅烧过程中造成的晶粒长大、缺陷形成和杂质引入,因此所制得的粉体具有较高的烧结活性。
2水热碳化一生物质为原料,水作为液相反应介质在一定温度(150度到250度)和压力(2兆帕到10兆帕)将生物质转化为一生物炭为主的一系列高附加值产物。水热碳化是一种高效的废弃生物质资源化技术,水热碳化是将生物质转化为更高能量密度形式的碳的一种有效途径,也是制备生物质碳材料和生物油的重要方法。