导航:首页 > 生物信息 > 生物医学信号包含哪些

生物医学信号包含哪些

发布时间:2023-07-26 07:46:22

1. 生物电信号有何特点对生物医学放大器有何基本要求

活动细胞或组织(如人体、动物组织)不论在静止状态还是活动状态,都会产生与生命状态密切相关的,有规律的电现象,称为生物电。生物电信号包括静息电位和动作电位,其本质是离子的跨膜流动。
静息电位(RP):细胞在安静的状态下,存在于细胞膜内外两端的电位差,称为静息电位或跨膜静息电位。这种电位差是由于细胞膜两侧的钠离子和钾离子分布不均匀造成的。生理学中常把膜外电位规定为"0",因此膜内电位为负。不同细胞的静息电位有所不同,如:神经细胞-86mV,心室肌细胞-90~-80mV,浦肯野纤维-100~-90mV,窦房结细胞-70~-40mV。静息电位又成为极化状态(polarization)。
动作电位(AP):当细胞受到外界刺激而兴奋时,受刺激部位的膜电位将发生一系列短暂的变化,最初发生膜电位升高,接着又慢慢恢复到静息电位,这种膜电位的变化,生理学上成为动作电位。该过程包含了去极化(depolarization)和复极化(repolarization)两个过程,前者指细胞受到刺激时,细胞膜对离子的通透性发生变化,大量Na迅速进入胞内,使得胞内电位迅速上升;后者指当去极化的电位达到峰值后,会逐渐回到静息状态的过程。
临床上常见的生物电信号主要有:心电、脑电、肌电、胃电、视网膜电等。这些体表生物电信号通常能通过电极拾取,经适当的生物电放大器放大,记录而成为心电图、脑电图、肌电图、胃电图、视网膜电图等。
心电图(ECG或者EKG)是利用心电图机从体表记录心脏每一心动周期所产生的电活动变化图形的技术。对整体心脏来说,心肌细胞从心内膜向心外膜顺序除极过程中的电位变化,由电流记录仪描记的电位曲线称为除极波,即体表心电图上心房的P波和心室的QRS波。
肌电图(EMG):通过测定运动单位电位的时限、波幅,安静情况下有无自发的电活动,以及肌肉大力收缩的波型及波幅,可区别神经源性损害和肌源性损害,诊断脊髓前角急、慢性损害(如脊髓前灰质炎、运动神经元疾病),神经根及周围神经病变(例如肌电图检查可以协助确定神经损伤的部位、程度、范围和预后)。
眼电图:目前只有使用较间接的方法,在内、外眦角皮肤上各置一氯化银电极,患者头部固定,眼注视一个在30度内作水平移动的红灯。因为眼球的电轴跟随眼球的转动而改变,所以内、外眦角电极的电位也不断变化,比较明、暗适应下的这种变化并将此电位加以放大及记录,即得眼电图。
生物医学信号属于强噪声背景下的低频微弱信号,它是由复杂的生命体发出的不稳定的自然信号,从信号本身特征、检测方式到处理技术,都不同于一般的信号。

1 生物医学信号的特点

生物医学信号由于受到人体诸多因素的影响,因而有着一般信号所没有的特点。①信号弱,例如从母体腹部取到的胎儿心电信号10~50μV。脑干听觉诱发响应信号小于1μV。②噪声强,由于人体自身信号弱,加之人体又是一个复杂的整体,因此信号易受噪声的干扰。如胎儿心电混有很强噪声,它一方面来自肌电、工频等干扰,另一方面,在胎儿心电中不可避免地含有母亲心电,母亲心电相对我们要提取的胎儿心电则变成了噪声。③频率范围一般较低,除心音信号频谱成份稍高外,其他电生理信号频谱一般较低。④随机性强,生物医学信号不但是随机的,而且是非平稳的。正是因为生物医学信号的这些特点,使得生物医学信号处理成为当代信号处理技术最可发挥其威力的一个重要领域。

2 生物医学信号的分类

生物信号如从电的性质来讲,可以分成电信号和非电信号,如心电、肌电、脑电等属于电信号;其它如体温、血压、呼吸、血流量、脉博、心音等属于非电信号,非电信号又可分为:①机械量,如振动(心音、脉搏、心冲击、Korotkov音等)、压力(血压、气血和消化道内压等)、力(心肌张力等);②热学量,如体温;③光学量,如光透射性(光电脉波、血氧饱和度等);④化学量,如血液的pH值、血气、呼吸气体等。如从处理的维数来看,可以分成一维信号和二维信号,如体温、血压、呼吸、血流量、脉博、心音等属于一维信号;而脑电图、心电图、肌电图、X光片、超声图片、CT图片、核磁共振(MRI)图像等则属于二维信号。

3 生物医学信号的检测方法

生物医学信号检测是对生物体中包含生命现象、状态、性质、变量和成份等信息的信号进行检测和量化的技术。生物医学信号处理的研究,是根据生物医学信号的特点,对所采集到的生物医学信号进行分析、解释、分类、显示、存贮和传输,其研究目的一是对生物体系结构与功能的研究,二是协助对疾病进行诊断和治疗。生物医学信号检测技术是生物医学工程学科研究中的一个先导技术,由于研究者所站的立场、目的以及采用的检测方法不同,使生物医学信号的检测技术的分类呈现多样化,具体介绍如下:①无创检测、微创检测、有创检测;②在体检测、离体检测;③直接检测、间接检测;④非接触检测、体表检测、体内检测;⑤生物电检测、生物非电量检测;⑥形态检测、功能检测;⑦处于拘束状态下的生物体检测、处于自然状态下的生物体检测;⑧透射法检测、反射法检测;⑨一维信号检测、多 维信号检测;⑩遥感法检测、多 维信号检测;一次量检测、二次量分析检测;分子级检测、细胞级检测、系统级检测。

4 生物医学信号的处理

技术自然界中广泛的生物医学信号是连续的,人们处理生物医学信号的程序一般是先经A/D转换,将其转换成数字信号,然后送到计算机中进行处理。本文对一维信号的处理方法进行探讨。

4.1 时域方法——AEV方法AEV方法原是通信研究中用于提高信噪比的一种叠加平均法,在医学研究中也叫平均诱发反应法,简称AEV(averaged evoked response)方法。所谓诱发反应就是肌体对某个外加刺激所产生的反应,AEV方法常用来检测那些微弱的生物医学信号,如希氏束电图、脑电图、耳蜗电图等。希氏束电图的信号幅度仅1~10μV,它们在用AEV方法检测之前,几乎或完全淹没在很强的噪声中,这些噪声包括自发反应、外界干扰、仪器噪声。AEV方法要求噪声是随机的,并且其协方差为零,信号是周期或重复产生的,这样经过N平方次叠加,信噪比可提高N倍,使用AEV方法的关键是寻找叠加的时间基准点。

4.2 频域滤波方法频域滤波是数字滤波中常用的一种方法,是消除生物医学信号中噪声的另一种有效方法。当信号频谱与噪声频谱很小时,可用频域滤波的方法来消除干扰,频域滤波器可分为两类:FIR(Finite Impulse Response)滤波器,FIR滤波器的设计方法主要有:窗函数法,频率采样法;IIR(Infinite Impulse Response)滤波器,IIR滤波器的主要设计方法有:冲激响应不变法,双线性变换法。

4.3 自适应滤波方法自适应滤波器能够跟踪和适应系统或环境的动态变化,它不需要事先知道信号或噪声的特性,通过采用期望值和负反馈值进行综合判断的方法来改变滤波器的参数。自适应滤波器的设计有两种最优准则,一种准则是使滤波器的输出达到最大的信噪比,称为匹配滤波器;另一种准则是使滤波器的输出均方估计误差为最小,这就是维纳(Wiener)滤波器。维纳滤波器是从噪声中提取信号的一种有效的方法,它是根据全部过去和当前的观测数据来估计信号的当前值,维纳滤波器要求解着名的WienerHopf方程,它是期望存在情况下的线性最优滤波器。卡尔曼(Kalman)从状态空间模型出发,提出了基于状态空间模型的线性最优滤波器即卡尔曼滤波器。 Kalman滤波理论是Wiener滤波理论的发展,它最早用于随机过程的参数估计,后来很快在各最优滤波和最优控制问题中得到了广泛的应用。值得提出的Kalman滤波器提供了推导称作递推最小二乘滤波器的一大类自适应滤波器的统一框架,实际上广泛使用的最小二乘算法即是Kalman算法的一个特例。

4.4 混沌(Chaos)和分形(Fractal)方法混沌和分形理论是一种非线性动力学课题,混沌系统的最大特点是初值敏感性和参数敏感性,即所谓的蝴蝶效应。混沌学研究的是无序中的有序,许多现象即使遵循严格的确定性规则,但大体上仍是无法预测的,比如大气中的湍流、人心脏的跳动等。混沌事件在不同的时间标度下表现出相似的变化模式,与分形在空间标度下表现十分相象,但混沌主要讨论非线性动力系统的不稳、发散的过程。混沌与分形在脑电信号处理的应用中尤为引人注目。自本世纪二十年代发现脑电信号以来,人们对其已进行了大量的研究,然而由于脑电信号的随机性很强,始终难以找到其规律性,无法使脑电信号成为认识大脑思维以及某些属性的有用信息。究其原因是脑电信号是神经元动作电位的无规则的脑电活动,实际上只由少数独立的动力学变量控制着,因此可以用研究混沌动力学的方法来研究人脑的功能。

4.5 小波分析(Wavelet Analysis)方法小波分析是传统傅里叶变换的继承和发展。由于小波的多分辨分析(Multiresolution Analysis)具有良好的空间域和频率域局部化特性,对高频采用逐渐精细的时域或空域取样步长,可以聚焦到分析对象的任意细节,从这个意义上讲,它已被人们誉为数学显微镜。目前,在心电数据的压缩、生物医学信号的信噪分离、QRS波的综合检测、脑电图EEG的时频分析、信号的提取与奇异性检测等方面有了广泛的应用。

4.6 人工神经网络(Artificial Neural Networks)分析方法人工神经网络是

一种模仿生物神经元结构和神经信息传递机理的信号处理方法,是由大量简单的基本单元(神经元)相互广泛联接构成的自适应非线性动态系统,其特点是:①并行计算,因此处理速度快;②分布式存贮,因此容错能力较好;③自适应学习。生物医学工程工作者采用神经网络的方法来解释许多复杂的生理现象,例如心电和脑电的识别,心电信号的压缩和医学图像的识别和处理。神经网络在微弱生理电信号的检测和处理应用主要集中在对自发脑电EEG的分析和脑干听觉诱发电位的提取。

2. 物质信号传递的不同方式和主要生物学意义

生物细胞所接受的信号有多种多样,从这些信号的自然性质来说,可以分为物理信号、化学信号和生物学信号等几大类,它们包括光、热、紫外线、X-射线、离子、过氧化氢、不稳定的氧化还原化学物质、生长因子、分化因子、神经递质和激素等等。在这些信号中,最经常、最普遍、最广泛的信号应该说是化学信号。
生物体内有各种各样的,能够调节机体功能的生理活性物质,它们大多是在细胞内合成,并分泌出细胞的物质。这些物质就可以作为化学信号在细胞间传递信息。这些化学信号大部分是水溶性的,它们可以很容易地在体内随血液或体液运送,但是不能通过细胞膜,需要与细胞膜上的特殊受体结合,在经过几毫秒或者几分钟后被内化而进入细胞;有的是脂溶性的,特别是激素,它们可以穿越细胞膜进入细胞内,也可以与特殊的载体蛋白,如清蛋白结合在一起通过血液运送到身体的各个部位,还可以通过受体的作用到达所要去的位点。因此,它们在几小时后还能起作用。这些化学信号及其信号转导方式可以分为三类。
1,内分泌系统的激素
内分泌系统将来自环境的信号传达到生物体内的各种器官和细胞,在整体上起着综合调节生物体功能的作用。它产生的化学信号是激素。内分泌系统的细胞产生的激素释放到血液中,经过血流的运送到达靶细胞而发挥特别的作用。这样的传递方式叫内分泌作用。可见,这种方式有几个特点:A,低浓度——激素在血流中的浓度被稀释到只有10-8到10-10M。但是它依然能够起作用,而且低浓度对它们安全地发挥作用也是必须的;B,全身性——即激素随血流而扩散到全身,但是,只被有它的受体的细胞接纳和发挥作用;C,长时效——激素产生后经过漫长的运送过程才起作用;而且血流中微量的激素就足以维持长久的作用。
2,神经系统的神经递质
在神经系统中,神经细胞与其靶细胞之间形成一个叫突触的有限结构。突触是神经细胞胞体的延伸部分,神经细胞产生的神经递质在突触的终端释放出来。突触后膜上有特殊的受体,突触前面的细胞也有受体,以调节神经递质的释放。可见,这种方式有作用时间短、作用距离短和神经递质浓度很高等特点。
3,生长因子和细胞因子等的旁分泌系统或者自分泌系统
近年发现有一个介于上述二者之间的中间型方式,即某些细胞产生并分泌出细胞生命活动必需的生理活性物质,这些物质通过细胞外液的介导而作用于其产生细胞的邻近细胞。当这些物质作用于异种细胞时,叫旁分泌作用;作用于同种细胞时,叫自分泌作用。这样的信号分子起着局部的化学调节剂作用。

3. 一个完整的生物医学测量系统可以分为哪些部分

一个完整的生物信号测量系统一般包括以下四个部分:

1、生物信号的引导 (电极和传感器)
2、生物信号的放大 (数字和模拟电路)
3、生物信号的采集和采样 (A/D转换器)
4, 生物信号的记录与处理生物信号的记录与处理 (信息处理)

4. 生物中的信息分子有哪些

信号(信息)分子是指生物体内的某些化学分子, 既非营养物, 又非能源物质和结构物质,而且也不是酶,它们主要是用来在细胞间和细胞内传递信息, 如激素、神经递质、生长因子等统称为信号分子,它们的惟一功能是同细胞受体结合, 传递细胞信息。
从产生和作用方式来看可分为内分泌激素、神经递质、局部化学介导因子和气体分子等四类。
①激素是由内分泌细胞(如肾上腺、睾丸、卵巢、胰腺、甲状腺、甲状旁腺和垂体)合成的化学信号分子,一种内分泌细胞基本上只分泌一种激素,参与细胞通讯的激素有三种类型:蛋白与肽类激素、类固醇激素、氨基酸衍生物激素。
②神经递质是由神经末梢释放出来的小分子物质,是神经元与靶细胞之间的化学信使。由于神经递质是神经细胞分泌的,所以这种信号又称为神经信号。
③局部化学介质又称为旁分泌信号,指由细胞分泌的信息分子通过扩散而作用于邻近的靶细胞,调节细胞的生理功能。体内的局部化学介质包括组胺、花生四烯酸(AA)、生长因子等。

5. 关于生物,信号分子有哪些

人体中有几百种不同的信号分子,按照其分泌腺体或细胞种类,运载体以及作用的靶细胞位置。 种类分泌细胞运载体作用的靶细胞位置激素

旁分泌激素(局部介质)
(如组织胺、生长因子等) 旁分泌细胞细胞间液在众多相邻细胞间、非常有限范围内发生作用 内分泌激素
(如甲状腺激素、胰岛素等)内分泌腺细胞血液远距离的靶细胞神经激素
(如抗利尿激素、催产素等)下丘脑的神经分泌细胞 血液远距离的靶细胞神经递质
(如乙酰胆碱、C-氨基丁酸等)神经细胞突触间隙胞间液 直接作用在相邻的神经元或其他特殊的想邻细胞(如肌细胞) “第一信使”和“第二信使”一般将细胞外信号分子称为“第一信使”,激素、神经递质等是由细胞合成和释放的,通过扩散或体液运送,是人体信息传递的“第一信使”。“第一信使”与受体作用后在细胞内最早产生的信号物质称为“第二信使”。目前公认的“第二信使”有cAMP、cGMP、三磷酸肌醇(IP3)、等,功能是启动和协助细胞内信号的逐级放大。
亲水性和亲脂性信号分子
根据信号分子的溶解性可分为亲水性和亲脂性两类。亲水性信号分子的主要代表是神经递质、含氮类激素(除甲状腺激素)、局部介质等,它们不能穿过靶细胞膜,只能通过与细胞表面受体结合,再经信号转换机制,在细胞内产生“第二信使”(如cAMP)或激活膜受体的激酶活性(如蛋白激酶),跨膜传递信息,以启动一系列反应而产生特定的生物学效应。
亲脂性信号分子要穿过细胞质膜作用于细胞质或细胞核中的受体,与胞内受体结合形成激素-受体复合物,成为转录促进因子,作用于特异的基因调控序列,启动基因的转录和表达,主要代表是类固醇激素、甲状腺激素等 。

阅读全文

与生物医学信号包含哪些相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:723
乙酸乙酯化学式怎么算 浏览:1388
沈阳初中的数学是什么版本的 浏览:1334
华为手机家人共享如何查看地理位置 浏览:1026
一氧化碳还原氧化铝化学方程式怎么配平 浏览:866
数学c什么意思是什么意思是什么 浏览:1390
中考初中地理如何补 浏览:1278
360浏览器历史在哪里下载迅雷下载 浏览:684
数学奥数卡怎么办 浏览:1368
如何回答地理是什么 浏览:1004
win7如何删除电脑文件浏览历史 浏览:1037
大学物理实验干什么用的到 浏览:1466
二年级上册数学框框怎么填 浏览:1681
西安瑞禧生物科技有限公司怎么样 浏览:911
武大的分析化学怎么样 浏览:1230
ige电化学发光偏高怎么办 浏览:1319
学而思初中英语和语文怎么样 浏览:1627
下列哪个水飞蓟素化学结构 浏览:1408
化学理学哪些专业好 浏览:1471
数学中的棱的意思是什么 浏览:1036