1. 如何大量培养生活用品上的微生物
常用的接种方法有以下几种:
1)划线接种 这是最常用的接种方法。即在固体培养基表面作来回直线形的移动,就可达到接种的作用。常用的接种工具有接种环,接种针等。在斜面接种和平板划线中就常用此法。
2)三点接种 在研究霉菌形态时常用此法。此法即把少量的微生物接种在平板表面上,成等边三角形的三点,让它各自独立形成菌落后,来观察、研究它们的形态。除三点外,也有一点或多点进行接种的。
3)穿刺接种 在保藏厌氧菌种或研究微生物的动力时常采用此法。做穿刺接种时,用的接种工具是接种针。用的培养基一般是半固体培养基。它的做法是:用接种针蘸取少量的菌种,沿半固体培养基中心向管底作直线穿刺,如某细菌具有鞭毛而能运动,则在穿刺线周围能够生长。
4)浇混接种 该法是将待接的微生物先放入培养皿中,然后再倒入冷却至45°C左右的固体培养基,迅速轻轻摇匀,这样菌液就达到稀释的目的。待平板凝固之后,置合适温度下培养,就可长出单个的微生物菌落。
5)涂布接种 与浇混接种略有不同,就是先倒好平板,让其凝固,然后再将菌液倒入平板上面,迅速用涂布棒在表面作来回左右的涂布,让菌液均匀分布,就可长出单个的微生物的菌落。
6)液体接种 从固体培养基中将菌洗下,倒入液体培养基中,或者从液体培养物中,用移液管将菌液接至液体培养基中,或从液体培养物中将菌液移至固体培养基中,都可称为液体接种。
2. 微生物技术过程如何进行发酵条件的优化和代谢调控,从而实现代谢产物的大量生产
1,控制温度,它对微生物生长期很大作用
2,PH的调控 由于在生长过程中培养液会有PH的明显变化要控制好,看你得发酵种类
3,发酵过程中的溶氧(搅拌速度,发酵液粘度,温度也对溶氧影响)
4 ,CO2和呼吸商(RQ)RQ=OUR(摄氧率)/CER(co2释放率)
5,基质浓度,通气搅拌还有泡沫的控制
实际操作的看你得发酵要求还有你得菌种类型
3. 如何利用代谢调控提高微生物发酵产物的产量
一般改变微生物代谢调节的方法有如下几种:
第一种 是采用物理化学诱变,获得营养缺陷型
第二种方法是应用抗反馈调节突变法。
第三种就是控制发酵条件,改变细胞的渗透性。
一、应用营养缺陷型菌株以解除正常的反馈调节
这是氨基酸生产菌育种的最有效的办法。营养缺陷型是指某菌种失去合成某种物质的能力,即合成途径中某一步发生突变,使合成反应不能完成,最终产物不能积累到引起反馈调节的浓度,从而有利于中间产物的积累。例如,用高丝氨酸缺陷型生产菌进行赖氨酸发酵。一般在形成赖氨酸的过程中有3种产物生成,只有赖氨酸和苏氨酸都达到一定浓度时,才能形成反馈抑制,从高丝氨酸切断这两个分支后,不能形成苏氨酸,也就不能形成反馈抑制。最后使赖氨酸的大量积累,这是打破代谢调节的第一种方法。
在直线式的合成途径中,营养缺陷型突变株只能累积中间代谢物而不能累积最终代谢物。
在分支代谢途径中,通过解除某种反馈调节,就可以使某一分支途径的末端产物得到累积。
二、应用抗反馈调节的突变株解除反馈调节
抗反馈调节突变菌株,指对反馈抑制不敏感或对阻遏有抗性的组成型菌株,或兼而有之的菌株。在这类菌株中,因其反馈抑制或阻遏已解除,或是反馈抑制和阻遏已同时解除,所以能分泌大量的末端代谢产物。
例如,当把(钝齿棒杆菌)培养在含苏氨酸和异
亮氨酸的结构类似物AHV(α-氨基-β-羟基戊酸)的培养基上时,由于AHV可干扰该菌高丝氨酸脱氢酶、苏氨酸脱氢酶以及二羧酸脱水酶,所以抑制了该菌的正常生长。如果采用诱变(如用亚硝基胍作为诱变剂)后所获得的抗AHV突变株进行发酵,就能分泌较多的苏氨酸和异亮氨酸。这是因为,该突变株的高丝氨酸脱氢酶或苏氨酸脱氢酶和二羧酸脱水酶的结构基因发生了突变,故不再受苏氨酸或异亮氨酸的反馈抑制,于是有大量的苏氨酸和异亮氨酸的累积。如进一步再选育出甲硫氨酸缺陷型菌株,则其苏氨酸产量还可进一步提高,原因是甲硫氨酸合成途径上的两个反馈阻遏也被解除了。
三、控制细胞膜的渗透性
微生物的细胞膜对于细胞内外物质的运输具有高度选择性。 细胞内的代谢产物高浓度累积着,并自然地通过反馈阻遏限制了它们的进一步合成。采取生理学或遗传学方法,改变细胞膜的透性,使细胞内的代谢产物迅速渗漏到细胞外。这种解除末端产物反馈抑制作用的菌株,可以提高发酵产物的产量。
1.通过生理学手段控制细胞膜的渗透性在谷氨酸发酵生产中,生物素的浓度对谷氨酸的累积有着明显的影响,只有把生物素的浓度控制在亚适量情况下,才能分泌出大量的谷氨酸。
生物素影响细胞膜渗透性的原因,是由于它是脂肪酸生物合成中乙酰CoA羧化酶的辅基此酶可催化乙酰CoA的羧化并生成丙二酸单酰辅酶A,进而合成细胞膜磷脂的主要成分——脂肪酸。因此,控制生物素的含量就可以改变细胞膜的成分,进而改变膜的透性和影响谷氨酸的分泌。当培养液内生物素含量很高时,只要添加适量的青霉素也有提高谷氨酸产量的效果。其原因是青霉素可抑制细菌细胞壁肽聚糖合成中转肽酶的活性,结果引起其结构中肽桥间无法进行交联,造成细胞壁的缺损。这种细胞的细胞膜在细胞膨压的作用下,利于代谢产物的外渗,并因此降低了谷氨酸的反馈抑制和提高了产量。
2.通过细胞膜缺损突变而控制其渗透性应用谷氨酸产生菌的油酸缺陷型菌株,在限量添加油酸的培养基中,也能因细胞膜发生渗漏而提高谷氨酸的产量。这是因为油酸是一种含有一个双键的不饱和脂肪酸(十八碳烯酸),它是细菌细胞膜磷脂中的重要脂肪酸。油酸缺陷型突变株因其不能合成油酸而使细胞膜缺损。另一种可以利用石油发酵产生谷氨酸的(解烃棒杆菌)的甘油缺陷型突变株,由于缺乏a-磷酸甘油脱氢酶,故无法合成甘油和磷脂。其细胞内的磷脂含量不到亲株含量的一半,但当供应适量甘油(200μg/ml)时,菌体即能合成大量谷氨酸(72g/L),且不受高浓度生物素或油酸的干扰。
4. 如何利用代谢调控提高微生物发酵产物的产量
你说的代谢调控是控制温度,表面活性剂,C\N源,使微生物找到最佳发酵条件,提高产量么
5. 如何提高微生物次生代谢产物的产量
增加稳定期可以使菌种达到最佳状态,要使其释放次级代谢产物,可以通过调节PH、温度等外界条件使次级代谢产量增加。