❶ 古生物时代之后是什么时代
在生物演化史上称为“海洋藻类时代”和“海洋无脊椎动物时代”。起始于距今6亿年,延续了约1.7亿年。
植物仍以海生藻类为主,但很难保存为完好的化石。由于植物进化速度远较动物缓慢,早古生代植物界一直停留在藻类阶段。藻类的大量繁育不仅为海洋无脊椎动物提供了丰富的食物资源,而且通过叶绿素光合作用,放出氧气,为海洋无脊椎动物的发展,准备了有利的生活环境。
继元古宙末期埃迪卡拉后生裸露动物群之后,于早期,出现了地史上最早具钙质硬壳的小壳动物群,包括软舌螺、单板类、腹足类、腕足类等。这与当时海水富含钙质有关。由于发生了矿化事件,使得寒武纪保存的化石突然增多。这一时期称为“非三叶虫时代”。进入三叶虫时代后,在中国云南发现了距今5.7亿年的澄江动物群,主要由水母、三叶虫、金臂虫、非三叶虫节肢动物、蠕形动物、海绵、无铰腕足类、软舌螺和藻类等组成,是目前世界上保存最早的软体的多门类动物群,这一动物群的发现还表明后生动物在寒武纪开始前已经历了一段分化、辐射的历史过程。随后,腔肠动物、古杯类、软体动物(双壳、腹足、头足)、棘皮动物、牙形刺、笔石等相继出现。其中以三叶虫演化迅速、生态分异明显,分布遍及全球整个海域,在动物界中占绝对优势,因而称寒武纪为“三叶虫时代”。古杯类是地史上最早的造礁动物,生活于早寒武世,中寒武世早期绝灭,是生物史上第一个完全绝灭的造礁动物门类。
是自然环境有利于海洋无脊椎动物继续发展的时代,层孔虫、苔藓虫等先后出现,笔石、腕足类、鹦鹉螺等显着分异。树形笔石继续发展,一部分固着在海底生活,而大部分远运洋漂浮生活,遍及全球海域。到早奥陶世中期,正笔石类兴起、演化迅速,是奥陶纪的重要分带化石。腕足类出现了分异的第一个高峰期,在数量上占重要地位。鹦鹉螺开始出现于晚寒武世,到奥陶纪分异明显,种类繁多,个体较大,是营游泳生活的凶猛食肉动物。珊瑚最早出现于寒武纪,至中、晚奥陶世大量繁育,同层孔虫、苔藓虫等一起,是温暖浅海的重要造礁动物。海洋无脊椎动物新类群的出现和多样化,加剧了浅海陆棚区的生存竞争。
延续时间较短,生物界来源于奥陶纪,但有新的发展。其中最重要的生物事件是,三叶虫显着衰退,笔石向简化方向演变,单笔石兴起并大量发展。珊瑚以床板珊瑚和日射珊瑚为主,出现了特有的链珊瑚。腕足类出现了内部构造更为复杂的五房贝和展翼状外壳的石燕贝。鹦鹉螺显着减少但仍有代表。节肢动物中形体最大的板足鲎类最早出现于奥陶纪,到志留纪大量繁育,志留纪末,由于受加里东运动的影响,海水逐渐退去。部分生物为了适应新的生活环境,由海洋向陆地生活转变。
向陆地生活转变和发展
沼泽野蜓化石
由于志留纪末期大规模海退,陆地面积逐渐扩大,从滨海浅滩绿藻植物演化而来的陆生裸蕨植物最早出现于晚志留世,到早泥盆世开始大量生活在滨海沼泽低地,中泥盆世后期出现根、茎和叶分化的原始石松类和有节类,到晚泥盆世在自然选择的作用下,裸蕨迅速绝灭了。一般称志留纪末到中泥盆世为“裸蕨植物时代”。到石炭、二叠纪陆生植物进一步发展,出现了石松、节蕨、真蕨和原始裸子植物的种子蕨和科达类,这一时期被称为“蕨类植物时代”。从晚石炭世到二叠纪各类植物极度繁茂,由于适应不同的气候条件,逐渐形成明显的植物地理分区。
❷ 生物进化经历了哪几个时期
地球的生命史分为四个时期:
1)前寒武纪时期(自地球诞生到6亿年前)
前寒武纪(Precambrian)是地质年代中,对于显生宙之前数个宙(Eon)所使用的非正式名称,原本正式的名称是隐生宙(Cryptozoic eon,其后来被拆分成冥古宙、太古宙与元古宙三个时代)。1930年,G.H.乍得威克将地史时期划分为两个阶段——寒武纪以前称为隐生宙,寒武纪迄今称为显生宙——作为地质年代的最高级单位,其相应地层分别称为隐生宇和显生宇。由于在隐生宇即前寒武系上部不断发现软躯体动物化石,使其部分地层的划分具备了古生物的依据,而且所谓“隐生”,已逐渐不符合实际情况。1977年,国际地层委员会前寒武纪地层分会在开普敦第四次会议上,将前寒武纪分为太古宙和元古宙,其界线放在25亿年前,而隐生宙及显生宙这两个年代地质单位和年代地层单位,已逐渐弃而不用。
前寒武纪开始于大约45亿年前的地球形成时期,结束于约5亿4200万年前——大量肉眼可见的硬壳动物诞生之时。尽管前寒武纪占了地史中大约八分之七的时间,但人们对这段时期的了解相当少。这是因为前寒武纪少有化石记录,且其中多数的化石,如叠层石,只适合用作生物地层学研究。此外,许多前寒武纪时期的岩石已经严重变质,使其起源变得隐晦不明。而其他的不是已经腐蚀毁坏,就是还埋藏在显生宙地层底下。
2)古生代(距今约5.7亿年至2.3亿年前)
古生代(Paleozoic,符号PZ)是地质时代中的一个时代,开始于同位素年龄542±0.3百万年(Ma),结束于251±0.4Ma。古生代属于显生宙,上一个代是新元古代,下一个代是中生代。古生代是显生宙的第一个代,上一个代是元古宙的新元古代,下一个代是中生代。古生代包括寒武纪、奥陶纪、志留纪、泥盆纪、石炭纪、二叠纪。其中寒武纪、奥陶纪、志留纪又合称早古生代,泥盆纪、石炭纪、二叠纪又合称晚古生代。
古生代意为远古的生物时代,持续约3亿年。对动物界来说,这是一个重要时期。它以一场至今不能完全解释清楚的进化拉开了寒武纪的序幕。寒武纪动物的活动范围只限于海洋,但在古生代的廷续下,有些动物的活动转向干燥的陆地。古生代后期,爬行动物和类似哺乳动物的动物出现,古生代以迄今所知最大的一次生物绝灭宣吿完结。
早古生代称为无脊椎动物时代。 晚古生代称为鱼类及两栖类时代。
动物群以海生无脊椎动物中的三叶虫、软体动物和棘皮动物最繁盛。在奥陶纪、志留纪、泥盆纪、石炭纪,相继出现低等鱼类、古两栖类和古爬行类动物。鱼类在泥盆纪达于全盛。石炭纪和二叠纪昆虫和两栖类繁盛。古植物以海生藻类为主。
3)中生代(距今约2.5亿年~6500万年)
中生代(Mesozoic)是显生宙的三个地质时代之一,可分为三叠纪,侏罗纪和白垩纪三个纪。中生代最早是由意大利地质学家Giovanni Arino所建立,当时名为第二纪(Secondary),以相对于现代的第三纪。在希腊文中,中生代意为“中间的”+“生物”。中生代介于古生代与新生代之间。由于这段时期的优势动物是爬行动物,尤其是恐龙,因此又称为爬行动物时代。
中生代也是板块、气候、生物演化改变极大的时代。在中生代开始时,各大陆连接为一块超大陆-盘古大陆。盘古大陆后来分裂成南北两片,北部大陆进一步分为北美和欧亚大陆,南部大陆分裂为南美、非洲、印度与马达加斯加、澳洲和南极洲,只有澳洲没有和南极洲完全分裂。中生代的气候非常温暖,对动物的演化产生影响。在中生代末期,已见现代生物的雏形。
中生代的年代为2.51亿年前至6600万年前,开始于二叠纪-三叠纪灭绝事件,结束于白垩纪-第三纪灭绝事件为止,前后横跨1.8亿年。中生代可以分为以下三个纪:
三叠纪:2亿5220万年前到2亿130万年前侏罗纪:2亿130万年前到1亿4500万年前白垩纪:1亿4500万年前到6600万年前
中生代的上界限是二叠纪-三叠纪灭绝事件,灭绝了当时的90%到96%的海洋生物,与70%的陆生生物,也是地质年代中最严重的生物大灭绝事件,因此又称为大死亡。
中生代的下界限是白垩纪-第三纪灭绝事件,可能是由犹加敦半岛的希克苏鲁伯撞击事件造成,此次灭绝事件造成当时的50%物种消失,包含所有的非鸟类恐龙。
4)新生代(约6500万年前至今)
新生代(距今6500万年,Cenozoic Era)是地球历史上最新的一个地质时代 。随着恐龙的灭绝,中生代结束,新生代开始。新生代被分为三个纪:古近纪和新近纪和第四纪。总共包括七个世:古新世、始新世、渐新世、中新世、上新世、更新世和全新世。这一时期形成的地层称新生界。新生代以哺乳动物和被子植物的高度繁盛为特征,由于生物界逐渐呈现了现代的面貌,故名新生代,即现代生物的时代。
新生代有地球历史6500万年的地质时代。是继古生代、中生代之后最新的一个代。新生代形成的地层称新生界 。1760年,G.阿尔杜伊诺把岩石分成3个纪:第一纪为结晶岩;第二纪为含化石的成层岩石;第三纪是半胶结的层状岩石,常含海相贝壳。1829年,J.德努瓦耶研究巴黎盆地时,把地层之上的松散沉积层称为。第一纪、第二纪已废弃,第一纪大致相当,第二纪相当古生代和中生代。新生代包括古近纪、新近纪和第四纪,古近纪、又分为古新世、始新世、渐新世,新近纪又分为中新世、上新世;第四纪又分为更新世、全新世纪 。
新生代开始时,地球上的海、陆分布比现代大,古欧亚大陆比现代小;古中国和古印度为古地中海所隔,古土耳其和古波斯为古地中海中的岛屿,这些陆块尚未与古欧亚大陆连接;红海尚未形成,古阿拉伯半岛是古非洲的一角;古南美洲和古北美洲相距遥远,而古北美洲与古欧亚大陆接近,有时相连。
新生代开始后,地表各个陆块此升彼降,不断分裂,缓慢漂移,相撞接合,逐渐形成今天的海陆分布。印度与亚洲大陆结合发生在距今5000万年前的始新世;喜马拉雅山耸起则是200~300万年的事,与此同时或稍早,欧洲升起了阿尔卑斯山,美洲升起了落基山。
古近纪气候较此前的冷,晚始新世和渐新世南极大陆出现小型冰盖,中新世中期那里形成的冰盖已相当于现代的2/3,更新世初北半球出现格陵兰冰盖,其后200万年间曾有多次冰期,冰川曾见于几个大陆。
❸ 古生物学的生物的进化
古生物是地史时期的生物,也遵循达尔文进化论的原则。进化论所指明的进化方式──分支进化、阶段进化、辐射适应、趋异进化、趋同进化、平行进化、动态进化等同样适用于古生物。除此以外,古生物进化
有自己的规律和特点。比较重要的规律有:①不可逆律,为比利时古生物学家L.多洛所提出。它指出,无论是生物体或其器官,一经演变再不可能在以后生物界中恢复,一经消失也不可能再在后代或别处重现。例如,鱼类演化为陆生哺乳类后,一部分哺乳类又回到海洋成为鲸类,但鱼的鳍、鳃等都不能在鲸类中恢复,鲸类只能靠肺呼吸并以演变的四肢和尾起鳍的作用。根据不可逆律,在较老地层中已经绝灭的化石物种,在较新的地层中不会再出现,不同时代的地层中必具有不同的化石生物群。把层序律和不可逆律结合起来,就构成利用古生物学方法确定地层时代和划分地层的基本原理。②相关律,为法国古生物学家G.居维叶所提出。它指出,生物体的各部分发展是相互密切联系的,某部分发生变化,也会引起其他部分相应的变化。这是因为对环境的适应必然影响到许多方面。例如哺乳类对肉食适应会引起牙齿的分化(适应于撕咬)、上下颌强化、感觉敏锐、四肢强壮、趾端具爪等一系列相关的变化。根据相关律,应用比较解剖学的知识,可以从通常保存不完整的化石资料复原其整体,并可据以推断其生态习性,以恢复古环境。③重演律,为德国生物学家赫克尔所提出。它指出个体发育是系统发生的简短重演。根据重演律,可以从个体发育追索生物所属群类的系统发生,从而建立系谱,有助于正确分类。例如,将某些单体四射珊瑚从幼年期到成年期顺序切片观察,可看到内部构造初期为单带型,继之为双带型,最后变为三带型。这说明三带型四射珊瑚的系统发生经历了从单带型到双带型到三带型的过程。 研究古生物的地理分布。发展迅速,被广泛应用于古地理和古环境的重建、板块运动历史以至矿产形成分布的探讨。主要研究内容是各时代的古生物地理区系,全世界显生宙各纪的区系已初具轮廓。区系一般分为大区或域 (realm)、区(region)、分区或省(province),也有进一步分为亚省(subprovince)和地方中心 (endemic center)的。区系的划分根据各家不一,一般大区和区的划分比较注重纬度、温度控制和地理阻隔控制,而较低的区系单位中,生物群落的不同往往起重大作用,因此和古生态学相重叠,瓦伦丁(1973)把古生物地理学视为洲际一级和全球一级的古生态学。
古生物地理学除了研究区系外,还应研究古生物的扩散、分布、迁移、隔离、混合等现象,这方面工作正不断深入。与间断平衡论和分支系统学相结合,兴起了替代分化生物地理学,它认为生物的分布不是由起源中心向外扩散的过程,而是一个祖先类群由于地理隔离分支为两个姐妹类群的过程,分支点在系谱上代表祖先类群,在地理上代表阻隔。其分析方法与分支系统学一样,即寻找某两个地区之间的关系更近于与任何第三地区的关系,从而建立生物类群各分布地区间相互联系的密切程度(历史顺序)。 分子古生物学是20世纪90年代兴起的一个多学科交叉领域,它涉及古生物学、分子进化与分子系统学、地质学、地球化学等科学分支的理论与方法。
分子古生物学研究的内容包括分子古生物研究的基本概念、技术、方法、理论和原理以及国外的主要研究方向和进展,包括分子进化理论、分子数据的处理与分析方法、古DNA、古氨基酸、分子标记物、分子系统学、古生物与现代生物分子数据的综合研究等方面。近代生物学研究的发展及现代技术手段的提高促进了传统古生物研究领域的扩展,并带来了新的发展机遇。分子古生物学研究方向就是将现代生物学新理论和技术方法应用于古生物学研究的过程,如研究古蛋白质分子及其分解产物,确定古氨基酸的排列顺序,同时,也充分反映了当代古生物学研究的特点和目标,从分子水平上探索古生物进化、遗传及化学成分等。对氨基酸外消旋作用的测定已应用于绝对年龄的测定。 研究生物产生无机物晶体及不结晶的有机物、无机物物质以组成骨骼的过程与结果。一方面研究骨骼的矿物成分以及它们的形成机理,另一方面研究骨骼的微细构造(多角柱、交错薄片、珍珠层、均质层等)。其研究结果用于:①古生物的微细构造分类及其演化;②推断古海洋环境因素及其变迁史。
古生物化学、分子古生物学和生物矿物学的研究领域有局部重叠。 探索模拟古代生物的生理结构优点,为现代工艺设计提供有益借鉴。例如根据栉龙类的重叠牙序列已设计出一种二重钻头;鸭嘴龙类交错排列的多排牙齿(达400~500颗)不断替换,可用于研磨、破碎装备的设计等。
❹ 古生代分为那几个纪
古生代分为:寒武纪、奥陶纪、志留纪、泥盆纪、石炭纪、二叠纪。
1、寒武纪
寒武纪是现代生物的开始阶段,是地球上现代生命开始出现、发展的时期。寒武纪常被称为“三叶虫的时代”,这是因为寒武纪岩石中保存有比其他类群丰富的矿化的三叶虫硬壳。
2、奥陶纪
是古生代的第二个纪,开始于距今5亿年,延续了6500万年。
3、志留纪
早志留世到处形成海侵,中志留世海侵达到顶峰,晚志留世各地有不同程度的海退和陆地上升,表现了一个巨大的海侵旋回。
志留纪晚期,地壳运动强烈,古大西洋闭合,一些板块间发生碰撞,导致一些地槽褶皱升起,古地理面貌巨变,大陆面积显着扩大,生物界也发生了巨大的演变,这一切都标志着地壳历史发展到了转折时期。
4、泥盆纪
早期裸蕨繁茂,中期以后,蕨类和原始裸子植物出现。
无脊椎动物除珊瑚、腕足类和层孔虫等继续繁盛外,还出现了原始的菊石和昆虫。脊椎动物中鱼类(包括甲胄鱼、盾皮鱼、总鳍鱼等)空前发展,故泥盆纪又有“鱼类时代”之称。晚期甲胄鱼趋于绝灭,原始两栖类(迷齿类(Labyrinthodontia)(亦称坚头类)开始出现。
5、石炭纪
陆地面积不断增加,陆生生物空前发展。当时气候温暖、湿润,沼泽遍布。大陆上出现了大规模的森林,给煤的形成创造了有利条件。
6、二叠纪
二叠纪的地壳运动比较活跃,古板块间的相对运动加剧,世界范围内的许多地槽封闭并陆续地形成褶皱山系,古板块间逐渐拚接形成联合古大陆(泛大陆)。
陆地面积的进一步扩大,海洋范围的缩小,自然地理环境的变化,促进了生物界的重要演化,预示着生物发展史上一个新时期的到来。
寒武纪生命大爆发
1909年,美国古生物学家、史密森学会秘书查尔斯-沃尔科特(Charles Walcott)在加拿大不列颠哥伦比亚省的伯吉斯山口发现了伯吉斯页岩石,岩石块中含有化学记录历史上许多重要动物群中已知最古老的例证。
虽然伯吉斯页岩中以前从未记录过如此规模的复杂动物,但古生物学家对三叶虫和寒武纪其他动物的存在并不陌生,这让查尔斯-达尔文困惑不已。
寒武纪生命大爆发对科学家提出的挑战是,在达尔文所处的年代及其以后多年,在寒武纪岩层以下年代更久远的岩层中,并没有发现动物化石。对于达尔文的进化论来说,这是一个极为的不安事实,因为在化石记录中,结构简单的动物形式应该在结构复杂的动物形式之前出现。
在《物种起源》中,达尔文提出了这样的主张:“在这些跨度如此之大但却鲜为人知的时期,地球上遍布着活的生物。”但他坦言,“对于我们为什么没有发现这些原始时期的化石记录的问题,我不能给出一个令人满意的答案。”