导航:首页 > 生物信息 > 微生物宏基因文库的构建多少钱

微生物宏基因文库的构建多少钱

发布时间:2023-08-07 07:37:54

Ⅰ 肠道微生物基因组测序需要多少钱

肠道微生物基因组测序需要多少钱
全基因组测序,就是检测出全部30亿个碱基对是怎么排列的,从第一个到第30亿个,一个都不落下。它是检测人类所有基因组信息,不针对任何单个疾病或者因素的基因,但又囊括了之前所有单个基因检测要用到的信息。要根据基因组的大小决定的。而且选择测序的仪器也有区别。您如果自己购买仪器测序价格自然又有不同了。比如测一个5M的基因组,基本上用第二代测序仪器一个run即可完成,大概需要15万RMB(含税价格)。

Ⅱ 如何采用宏基因组进行水产动物肠道微生物的研究

1,宏基因组提取;提取的样品DNA必须可以代表特定环境中微生物的种类,除需严格遵循取样规则外,取样中应尽量避免对样本的干扰,缩短保存和运输的时间,使样品尽可能代表自然状态下的微生物原貌,获得高质量环境样品中的总DNA是宏基因组文库构建的关键之一。要采用合适的方法,既要尽可能地完全抽提出环境样品中的DNA,又要保持较大的片段以获得完整的目的基因或基因簇。所以总的提取总是在最大提取量和最小剪切力之间折中。应严格操作,谨防污染,并且保持DNA 片段的完整和纯度。为了更好地反映环境中的微生物种群并且提高阳性克隆的占有率,需要在克隆之前通过不同的方法对感兴趣的目的基因或基因组进行富集,常用的富集方法有稳定同位素探针、抑制性消减杂交、差异显示、噬菌体展示、 亲和捕获及DNA微阵列等技术。
2,测序分析:
采用Solexa进行宏基因组 DNA测序,首先对特定环境微生物种群全基因组DNA进行提取。在提取微生物种群的DNA后制备DNA文库,具体步骤如下:

(1)将DNA随机打断成200-500bp的片段;

(2)对DNA末端进行修复;

(3)将“A”碱基加入到DNA片段的3’末端;

(4)在DNA片段的末端加上接头;

(5)纯化连接产物;

(6)PCR扩增连上接头的DNA片段;

(7)检测测序文库。

Ⅲ 微生物基因建库怎么做

cDNA 文库的构建
1.1 cDNA 文库构建的基本原理与方法
cDNA 文库是指某生物某发育时期所转录的全部 mRNA 经反转录形成的 cDNA 片段与某种载体连接而形成的克隆的集合。经典 cDNA 文库构建的基本原理是用 Oligo(dT) 作逆转录引物,或者用随机引物,给所合成的 cDNA 加上适当的连接接头,连接到适当的载体中获得文库。其基本步骤包括:RNA 的提取(例如异硫氰酸胍法,盐酸胍—有机溶剂法,热酚法等等,提取方法的选择主要根据不同的样品而定),要构建一个高质量的 cDNA 文库,获得高质量的 mRNA 是至关重要的,所以处理 mRNA 样品时必须仔细小心。由于 RNA 酶存在所有的生物中,并且能抵抗诸如煮沸这样的物理环境,因此建立一个无 RNA 酶的环境对于制备优质 RNA 很重要。在获得高质量的 mRNA 后,用反转录酶 Oligo(dT) 引导下合成 cDNA 第1链, cDNA 第2链的合成(用 RNA 酶 H 和大肠杆菌 DNA 聚合酶 I,同时包括使用 T4 噬菌体多核苷酸酶和大肠杆菌 DNA 连接酶进行的修复反应),合成接头的加入、将双链 DNA 克隆到载体中去、分析 cDNA 插入片断,扩增 cDNA 文库、对建立的 cDNA 文库进行鉴定。这里强调的是对载体的选择,常规用的是 λ 噬菌体,这是因为 λ DNA 两端具有由12个核苷酸的粘性末端,可用来构建柯斯质粒,这种质粒能容纳大片段的外源 DNA。
1.2 cDNA 全长文库
经典 cDNA 文库的构建虽然高效、简便,但文库克隆的片段一般较小,单个克隆上的 DNA 片段太短,所能提供的基因信息很少,大多需要几个克隆才能覆盖一个完整的全基因的 cDNA。为了克隆到真正的 cDNA 全长,建立富含全长的 cDNA 文库具有重要意义。为此,必须克服仅用 mRNA 的 PolyA 尾合成以及由普通逆转录酶作用特点所导致的局限性。全长 cDNA 文库,是指从生物体内一套完整的 mRNA 分子经反转录而得到的 DNA 分子群体,是 mRNA 分子群的一个完整的拷贝。全长 cDNA 文库不仅能提供完整的 mRNA 信息,而且可以通过基因序列比对得到 mRNA 剪接信息,此外,还可以对蛋白质序列进行预测及进行体外表达和通过反向遗传学研究基因的功能等。目前所报道的对全长文库的构建一般按照美国 CLONTECH 公司的 SMART cDNA Library Construction Kit 方法或 GeneRacer 试剂盒 (Invitrogen,USA) 使用说明进行。判断一个 cDNA 文库中的 cDNA 序列是否是全长基因的 cDNA,主要方法有以下几种。
1.2.1 直接从序列上评价
5'端:如果有同源全长基因的比较,可以通过与其它生物已知的对应基因5'末端进行比较来判断。如果无同源基因的新基因,则首先判断编码框架是否完整,即在开放阅读框的第1个 ATG 上游有无同框架的终止密码子;其次,判断是否有转录起始点,一般加在5'帽结构后有一段富含嘧啶的区域,或者是 cDNA 5'序列与基因组序列中经过酶切保护的部分相同,则可以确定得到的 cDNA 的5'端是完整的。3'端:同样可以用其它生物已知的对应基因3'末端进行比较来判断,或编码框架的下游有终止密码子,或有1个以上的 PolyA 加尾信号,或无明显加尾信号的则也有 PolyA 尾。
1.2.2 用实验方法证实
可以通过引物延伸法确定5'端和3'端的长度,如:5'端 RACE,3'端 RACE,或者通过 Northern Blot 证实大小是否一致。
1.3 对 cDNA 文库的分析
对 cDNA 文库质量的评价主要有两个方面。第一方面为文库的代表性,cDNA 文库的代表性是指文库中包含的重组 cDNA 分子反映来源细胞中表达信息(即 mRNA 种类)的完整性,它是体现文库质量的最重要指标。文库的代表性好坏可用文库的库容量来衡量,它是指构建的原始 cDNA 文库中所包含的独立的重组子克隆数。库容量取决于来源细胞中表达出的 mRNA 种类和每种 mRNA 序列的拷贝数,1个正常细胞含10000~30000种不同的 mRNA,按丰度可分为低丰度、中丰度和高丰度三种,其中低丰度 mRNA 是指某一种在细胞总计数群中所占比例少于0.5%时。满足最低要求的 cDNA 文库的库容量可以用 Clack-Carbor 公式 N=Ln(1-P)/(1-1/n) 计算( P 为文库中任何一种 mRNA 序列信息的概率,通常设为99%;N 为文库中以 P 概率出现细胞中任何一种 mRNA 序列理论上应具有的最少重组子克隆数;n 为细胞中最稀少的 mRNA 序列的拷贝数;T 为细胞中表达出的所有 mRNA 的总拷贝数)。第二方面是重组 cDNA 片段的序列完整性。在细胞中表达出的各种 mRNA 片段的序列完整性。在细胞中表达出的各种 mRNA 尽管具体序列不同,但基本上都是由3部分组成,即5'端非翻译区,中间的编码区和3'端非翻译区。非翻译区的序列特征对基因的表达具有重要的调控作用,编码序列则是合成基因产物—蛋白质模板。因此,要从文库中分离获得目的基因完整的序列和功能信息,要求文库中的重组 cDNA 片段足够长以便尽可能地反应出天然基因的结构。
2 cDNA 文库构建的其它类型
2.1 均一化 cDNA 文库
它是指某一特定组织或细胞的所有表达基因均包含其中,且在 cDNA 文库中表达基因对应的 cDNA 的拷贝数相等或接近。WEISSMAN 早就提出了可以通过基因组 DNA 饱和杂交的原理将 cDNA 文库进行均一化的理论。但该理论一直以来都被认为不能应用于实际。其主要限制因素是难以提供足量的极低表达丰度的 cDNA 用于饱和杂交,从而可能会造成部分基因的 cDNA 的丢失。20年前,基于 DNA-RNA 杂交的研究就已经将基因的转录水平分为高中低3类。随后研究进一步表明,绝大多数基因是处于中等或低等表达丰度的,在单个细胞中含有近1~15个拷贝,而高丰度表达基因的转录产物在单个细胞中最高可达5000个左右拷贝,约占总表达量的25%。这种基因表达能力上的巨大差异成了获得一个具有完整代表性的 cDNA 文库的障碍,其表达量上的巨大差异更为大规模研究增添了困难。对单一组织的 cDNA 文库而言,高拷贝基因序列的大量存在给基因的筛选和鉴定带来不必要的浪费,尤其是在大规模的 EST 测序中。
均一化 cDNA 文库是克服基因转录水平上巨大差异给文库筛选和分析带来障碍的有效措施,有利于研究基因的表达和序列分析。现在,在构建均一化的 cDNA 文库中至少有2种主要的观点:一种是基于复性动力学的原理,高丰度的 cDNA 在退火条件下复性的速度快,而低丰度的 cDNA 复性要很长时间,从而可以通过控制复性时间来降低丰度;另一种是基于基因组 DNA 在拷贝数上具有相对均一化的性质,通过 cDNA 与基因组 DNA 饱和杂交而降低在文库中高拷贝存在的 cDNA 的丰度。第一种方法的掌握对技术的要求比较高,对多数人而言需要多次摸索才能找到最适条件;而后一种方法易于掌握,但有研究者根据复性动力学的原理也提出了其不利因素,即采用基因组 DNA 饱和杂交的方法会因为低拷贝的表达基因拷贝数少而无法被杂交上。目前已报到的均一化 cDNA 文库多是根据第二种原理构建的,常用策略有基于 PCR 技术利用 cDNA 多次复性 mRNA-cDNA 杂交等。有研究报道,针对各自选择的高表达靶序列进行分析后,均一化处理后文库的高丰度表达 cDNA 是处理前的0.3%~2.5%,基本满足节约筛选的要求。
均一化 cDNA 文库具有以下4方面的优点:第一,在经济上具有广泛的应用空间,可以节约大量试验成本。第二,增加克隆低丰度 mRNA 的机会,适用于分析各种发育阶段或各种组织的基因表达及突变检测。第三,与原始丰度的 mRNA 拷贝数相对应的 cDNA 探针与均一化的 cDNA 文库作杂交,可以估计出大多数基因的表达水平及发现一些组织特异的基因。而以往的文库构建,忽略了 mRNA 丰度的影响。第四,可以用于遗传图谱的制作和进行大规模的原位杂交,作为优化的文库系统还可以用于大规模的测序或芯片制作等研究。

2.2 差减 cDNA 文库 (Subtractive cDNA library)
差减文库也称扣除文库,使用两种遗传背景相同或大致相同但在个别功能或特性上不同的材料(如不同基因处理细胞系或植物的近等基因系等)提取 mRNA (或反转录后合成 cDNA),在一定条件下用大大过量不含目的基因的一方作为驱动子( Driver )与含有目的基因的试验方( Tester )进行杂交,选择性的祛除两部分共同基因杂交形成的复合物,往往进行多次的杂交—祛除过程,最后将含有相关目的基因的未杂交部分收集后,并连接到载体形成文库。消减杂交是构建差减 cDNA 文库的核心,差减文库是否构建成功很大程度上决定于差减杂交的效率。差减杂交的方法主要有(1)羟基磷灰石柱层析法 (HAP);(2)生物素标记、链亲和蛋白结合排除法;(3)限制性内切酶技术相结合的差减方法;(4)差减抑制杂交法 (SSH);(5)磁珠介导的差减法 (MAST),其中 SSH 法最为常用。
抑制性消减杂交技术 (Suppression Subtractive Hybridization,SSH) 是 DIATCHENKO 等人于1996年依据消减杂交和抑制 PCR 发展出来的一种分离差异表达基因的新方法,主要用于分离两种细胞或两种组织的细胞中的差异表达基因。它主要是利用抑制 PCR 对差减杂交后丰度一致的目的材料中两端连有不同接头的差异表达片段进行指数扩增,而两端连接上同一接头的同源双链片段仅呈线形扩增,从而达到富集差异表达基因的目的。因此应用该技术能够对两个有差异表达的材料(细胞或组织)高、中、低丰度目的基因都进行有效、快速、简便克隆。近年来已成功应用于植物发育、肿瘤与疾病、以及外界因子诱导组织细胞中相关的应答基因的分析和克隆。
2.3 固相 cDNA 文库构建
cDNA 的固相合成是人们早为熟知的技术,但局限之处 oligo(dT) 与纤维素胶粒或磁珠的结合比较牢固,将 cDNA 洗脱下来时得率不是很高,而且以后的反应步骤也不能都在介质上进行,这可能是该技术应用并不十分广泛的原因。
最近 THOMAS ROEDE 提出了一种新的 cDNA 文库固相合成方法( THOMAS ROEDE,1998),克服了以前文库构建中存在的缺点,所用的酶和试剂与传统方法完全相同,不同的是 cDNA 的合成和修饰均在固相支持物—磁珠上完成。cDNA 通过一个生物素固定在链霉素偶联的磁珠上,这样在反应过程中就可以简便而迅速的实现酶和缓冲液的更换,因此它将快速与高质量的文库构建结合在一起(构建文库只需1 d),并且构建的文库适合大多数的研究目的。
固相 cDNA 合成法的主要优点是可以简便 cDNA 合成的操作。在进行缓冲液更换时既没有 cDNA 的丢失之忧,也无其它物质污染之忧。另外,用此方法可以得到真实的代表性文库,它包含有短小的 cDNA,这是因为在克隆之前省去了分级分离的步骤。总之,固相法结合了传统的 cDNA 合成的优点并弥补了其不足。这种方法简便易行,可靠低廉,所建文库高质量,因此它可能会替代目前应用的 cDNA 文库操作方法。
另外,最近发展起来的微量 RNA 的 cDNA 构建,是使用 PCR 技术,在实验室条件下扩增的 mRNA 的 cDNA 量,其 PCR 检测的灵敏度远远大于反转录 PCR(RT-PCR) 法。微量 RNA 的 cDNA PCR 文库的构建可为有关微量活性物质遗传基因的研究提供方便。
3 cDNA 文库应用于分离新基因的方法
发现并分离克隆新基因始终是分子生物学研究的主要任务和目的,虽然 cDNA 文库的用途很多,但是,应用于分离新基因是其最重要的用途。前述的不管是哪种类型的 cDNA 文库,都可以用于分离新基因,只是使用的方法有差异。分离方法主要有两种:第一,对于非全长 cDNA 文库,即不管是经典的 cDNA 文库方法或差减法构建的 cDNA 文库,需要利用已经获得的新 cDNA 序列片段,通过 RACE 方法获得新基因的全长序列。第二,利用全长 cDNA 文库与目的基因片段作为探针的杂交筛选。
3.1 从非全长 cDNA 文库中筛选新基因
3.1.1 RACE 法
RACE 文库即快速扩增 cDNA 末端法( Rapid Amplification of cDNA End,RACE )只需知道 mRNA 内很短的一段序列即可扩增出其 cDNA 的5'(5' RACE )和3'端(3' RACE )。该法的主要特是利用一条根据已知序列设计的特异性引物和一条与 mRNA 的 PolyA (3' RACE )或加至第一链 cDNA 3'端的同聚尾(5' RACE )互补的通用引物,由于同聚体并非良好的 PCR 引物,同时为了便于 RACE 产物的克隆,可向同聚体引物的5'端内加入一内切酶位点。所用的 cDNA 模板可以使用多聚 dT 引物延伸合成(3',5'-RACE 均可)。当 RACE PCR 产物为复杂的混合物时,可取部分产物作模板,用另一条位于原引物内侧的序列作为引物与通用引物配对进行另一轮 PCR (巢式 PCR )。早在1988年,FROHMAN 等即用此方法成功地获得了4种 mRNA 的5'合3'末端序列。
迄今已有几种改良的 RACE 方法,通过修饰与优化,与最初的 FROHMAN 报道有所不同:(1) BARSON 等采用锁定寡聚脱氧胸腺嘧啶核苷酸引物“锁定”基因特异性序列的3'末端与其 Poly (A) 尾的连接处,进行第1条 cDNA 链的合成,消除了在合成第1条 cDNA 链时寡聚 (dT) RNA 模板 Poly (A) 尾任何部位结合而带来的影响。(2) EDWARDS 和 TROUTT 小组利用 T4 RNA 连接酶把寡核苷酸连接到单链 cDNA 的5'末端,然后用一个3'末端特异性引物和一个锚定引物就可以直接对锚定连接的 cDNA 进行体外 PCR 扩增和克隆。随后,BERTLING 等又用 DNA 连接酶代替 RNA 连接酶。这些方法都避免了在第2条 cDNA 链内同聚序列区互补而导致截断 cDNA 的产生。(3) MARUYAMA 等提出 cRACE 法,采用的引物为基因特异性的,所以非特异性 PCR 产物基本上不会产生。Clontech 等公司也根据 RACE 法的更新,相继推出了 RACE 的相应试剂盒,为克隆 cDNA 提供了方便的工具。最近 HUANG 等人即用 RACE 试剂盒克隆了一种含有类植物血凝素免疫受体 ITIM。
3.1.2 用 PCR 法从 cDNA 文库中快速克隆基因
通过对文库的筛选或适用简并引物进行 PCR 反应,常常只能获得不完整的 cDNA 片段。为了得到 cDNA 全长,常常要重新筛选文库。重新筛选文库工作量大,RACE 虽然为此提供可方便,但应用该方法需重新提取 mRNA 和反转录。而用 PCR 法从 cDNA 文库中快速克隆基因的方法,只需提取 λ 噬菌体 DNA,按保守序列设计 PCR 引物便可将未知片段进行克隆。特别是在基因的两端变异较大而中间某区域保守的情况下,用 PCR 法很容易获取 cDNA 的全长。同一转录产物,又是存在着不同的拼接方式,通过筛库的办法同时将不同拼接方式的克隆筛选出来可能性较小,而使用 PCR 扩增后,有利于观察到不同的拼接方式。另外,为研究基因在不同组织中表达情况,常根据差异显示法找出特异的 mRNA。
3.2 从全长 cDNA 文库中进行杂交筛选
3.2.1 标记探针 cDNA 文库筛选法
cDNA 文库通常涂抹到母盘培养基上,然后再把这些菌落的样品吸印到硝酸纤维素膜或尼龙膜上;这时加入标记的探针,如果出现杂交信号,那么从母盘上就可以把包含杂交信号的菌落分离、培养出来。以此筛选出阳性克隆,进行序列分析,以获得 cDNA 全长。该方法能避免 PCR 扩增的非特异性扩增或错配,是一种比较准确可靠的 cDNA 克隆方法。主要缺点是克隆过程需要一系列的酶促反应、产率低、费时长、工作量大。该方法适合于表达丰度高的基因的筛选分离。用于做标记探针的 DNA 片段可以是其它生物的基因片段,在这种情况下筛选出来的基因往往是已分离基因的同源基因;如果用于做标记探针的 DNA 片段是通过新分离蛋白质的氨基酸反推设计的 DNA 序列,或者是特异分子标记子 DNA 序列,那么可以筛选得到新功能基因。
3.2.2 反式 PCR
反式 PCR 克隆 cDNA 全长的基因原理是:双链 cDNA 合成后进行尾—尾连接,环化的 cDNA 用位于已知序列内的限制性内切酶酶切位点造成缺口或用 NaOH 处理使之变性,然后用2条基因特异性引物对重新线性化或变性的 cDNA 进行扩增。反式 PCR 的优势在于,它采用了2条基因特异性引物,因此不易产生非特异性扩增。该方法可以快速、高效地扩增 cDNA 或基因组中已知序列两侧位置的片段。
4 小结
随着生物及信息技术的迅速发展,寻找新基因、克隆新基因、进而研究基因的功能已成为功能基因组研究中的一项重要工作。在过去寻找新基因的方法中,以消减杂交、mRNA 差异显示,cDNA 的代表性差异显示分析法、差异消减展示等方法应用最广。这些方法在新基因的发现方面都各有其独特的优势,可寻找出一些差异表达序列,但这些差异表达序列大部分情况都是不完整的基因。目前,比较可行而且应用较多的方法主要还是 cDNA 文库的筛选。一方面 cDNA 文库只代表一定时期一定条件下正在表达的基因,是整个真核基因组中的少部分序列,因此 cDNA 克隆的复杂程度比直接从基因组克隆的要小得多;另一方面由于每个 cDNA 克隆只代表一种 mRNA 序列,因此在基因克隆过程中出现假阳性的概率比较低,所以 cDNA 文库的构建已成为当前分子生物学研究和基因工程操作的基础。本文涉及到的有关 cDNA 文库构建方法,是目前比较常用的,这些方法各有优缺点,研究者应根据自己的实际情况,选择合适的技术,已达到自己预期的目的。

Ⅳ 微生物测序该怎么选,16S or 宏基因组

一、16SrRNA

16SrRNA为核糖体的RNA的一个亚基,16SrDNA就是编码该亚基的基因。细菌rRNA(核糖体RNA)按沉降系数分为3种,分别为5S、16S和23S rRNA。16S rDNA是细菌染色体上编码 rRNA相对应的DNA序列,存在于所有细菌染色体基因中。该序列包含9个高变区和10个保守区,通过对某一段高变区序列(V4区或V3-V4区)进行PCR扩增后进行测序,得到1500bp左右的序列。对于16S测序而言,任何一个高变区或几个高变区,尽管变异性再高,对于某些物种来说,这些高变区也可能十分相近,而能够区分它们的特异性序列片段有可能不在我们的扩增区域内。换言之,非全长的可变区序列覆盖范围不够导至无法鉴定到种。

目前来说,16S比较可靠的是用来做菌群的群落分析,物种的组成,多样性分析等,但是由于16S测序本身的性质,想要注释到种水平目前准确性还有待商榷。由于16s是以菌为主体进行研究,想要研究具体的功能目前来说还比较困难。

2、宏基因组

宏基因组研究以环境中所有微生物基因组为研究对象,通过对环境样品中的全基因组DNA进行高通量测序,获得单个样品的饱和数据量,基于denovo组装进行微生物群落结构多样性,微生物群体基因组成及功能,特定环境相关的代谢通路等分析,从而进一步发掘和研究具有应用价值的基因及环境中微生物群落内部、微生物与环境间的相互关系。构建的环境微生物基因集,可为环境中微生物的研究、开发和利用提供基因资源库。

宏基因组测序又能做什么分析呢,首先16s能做的宏基因组都能做,有些还能做的更好,比如宏基因组就可以准确的在种水平上进行相应的注释。除此之外,由于宏基因组可以组装到比对到基因上,那么就可以基于基因水平进行更多的分析,如GO,KEGG功能分析,代谢相关关联分析,疾病关联分析等。对于菌群在疾病的发生发展的解释会更加的细致具体。

如果你有一些临床样本(口腔,鼻腔或粪便等),想了解研究菌群与疾病的关联,那么我们该选16S测序还是宏基因组测序呢? 首先就是研究经费得够,目前来说16S一个只要几百块钱,但是宏基因组测序一个样本需要3、4千,如果经费不够那就选择16S啦。其次和我们的研究目标是密切相关的,假设我们研究的是疾病与对照组间菌群直接的差异,那么16S测序完全够用,而且目前来说除了种水平外,其它的多个水平同样的样本16s注释的物种会更加丰富。当然如果需要研究关键的功能和基因,那么直接选择宏基因组测序即可。

Ⅳ 什么是宏基因啊!

“宏基因组(Metagenome)”是由Handelsman等1998年提出的新名词,其定义为“the genomes of the total microbiota found in nature”,即生境中全部微小生物遗传物质的总和,目前主要指环境样品中的细菌和真菌的基因组总和。宏基因组文库既包含了可培养的又包含了未能培养的微生物基因,避开了微生物分离培养的问题,极大地扩展了微生物资源的利用空间。
http://blog.sina.com.cn/s/blog_4aa320cb010005pp.html

阅读全文

与微生物宏基因文库的构建多少钱相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:699
乙酸乙酯化学式怎么算 浏览:1368
沈阳初中的数学是什么版本的 浏览:1314
华为手机家人共享如何查看地理位置 浏览:1007
一氧化碳还原氧化铝化学方程式怎么配平 浏览:844
数学c什么意思是什么意思是什么 浏览:1365
中考初中地理如何补 浏览:1256
360浏览器历史在哪里下载迅雷下载 浏览:667
数学奥数卡怎么办 浏览:1345
如何回答地理是什么 浏览:987
win7如何删除电脑文件浏览历史 浏览:1018
大学物理实验干什么用的到 浏览:1444
二年级上册数学框框怎么填 浏览:1656
西安瑞禧生物科技有限公司怎么样 浏览:811
武大的分析化学怎么样 浏览:1208
ige电化学发光偏高怎么办 浏览:1297
学而思初中英语和语文怎么样 浏览:1602
下列哪个水飞蓟素化学结构 浏览:1383
化学理学哪些专业好 浏览:1448
数学中的棱的意思是什么 浏览:1014