导航:首页 > 生物信息 > 辅助因子多为什么衍生物

辅助因子多为什么衍生物

发布时间:2023-08-13 13:49:57

A. 急求 生物化学 查锡良版 的重点!

糖类重点:
1、糖类中Glc大多是D型,构成蛋白质的氨基酸都是L型。D型存在,但不参与蛋白质合成。2、甲携来一本亮色书精组。
酶类重点:
3、大多数寡聚酶是胞内酶,而胞外酶一般是单体酶
4、酶的活性中心也称为活性部位,是指酶分子上直接与底物结合,并与催化作用直接相关的区域。
5、是指酶对参与反应的底物有严格的选择性,即一种酶仅能作用于一种底物,或一类分子结构相似的底物,发生某种特定类型的化学反应,产生特定的产物。
6、酶就是由细胞合成的,具有高效率、高度专一性、活性可调节的生物催化剂,在机体内行使催化功能。
7、酶的反应速率:单位时间、单位体积中底物的减少量或产物的增加量。
8、最适温度不是酶的特征常数,它与底物种类、作用时间、pH、离子强度 等因素有关
9、Michaels—Menten曲线:酶反应速度与底物浓度的关系曲线
10、米氏方程成立的前提:反应速度为初速度,因为此时反应速度与酶浓度呈正比关系,避免了反应产物以及其它因素的干扰;酶底物复合物处于稳态即ES浓度不发生变化;符合质量作用定律。
11、凡阻抑酶反应速率的化合物叫酶的抑制剂(inhibitor),其作用称为酶的抑制作用。
12、竞争性抑制:抑制剂具有与底物类似的结构,竞争酶的活性中心,并与酶形成可逆的EI复合物,阻止底物与酶结合。Km 升高vmax 不变
13、非竞争性抑制:底物和抑制剂可以同时与酶结合,但是,中间的三元复合物ESI不能进一步分解为产物,因此,酶的活性降低。Km 不变vmax 降低
14、 反竞争性抑制:酶只有在与底物结合后,才能与抑制剂结合。、Km 降低vmax 降低斜率不变
15
16、酶催化某一特定反应的能力来表示酶活力,国际单位(IU): 1μmoL变化量 / 分钟
17、每毫克酶蛋白所具有的酶活力。单位:U/mg蛋白质。量度酶纯度
18、酶的性质:高效性、酶在活性中心与底物结合、专一性、对反应条件敏感(最适温度、最适pH),容易失活、反应条件温和、酶活性受到调控、许多酶的活性还需要辅助因子的存在,作为辅
助因子的多为维生素或其衍生物
19、国际系统命名基本原则:明确标明酶的底物及催化反应的性质(底物为水时可略去不写)。
20、国际系统分类法及编号(EC编号)氧、转、水、裂、异、合
21、国际分类的盲区:忽略了酶的物种差异和组织差异
22、pH的影响:过酸过碱导致酶蛋白变性、影响底物分子解离状态、影响酶分子解离状态、影响酶的活性中心构象
23、米氏方程: 米氏常数:
24、. 解读Km
(1) Km即是米氏常数,是酶反应初速度为Vmax一半时底物的浓
度。
当v=Vmax/2时,Km=[S]( Km的单位为浓度单位)
(2) 在一定条件下,可以使用它来表示酶与底物的亲和力。
一个酶的Km越大,意味着该酶与底物的亲和力越低;反之,Km越小,
该酶与底物的亲和力越高。
(3) 是酶在一定条件下的特征物理常数,不同的酶有不同的
Km值,通过测定Km的数值,可鉴别酶。
(4) Km可以帮助判断体内一个可逆反应进行的方向。
如果酶对底物的Km值小于对产物的Km值,则反应有利于正反应。否则
,有利于逆反应。
25、基本原则:将米氏方程变化成相当于y=ax+b的直线方程。双倒数作图法(Lineweaver-Burk法)米氏方程的双倒数形式:
激素重点:
1、动物而言,分泌激素的细胞被称为内分泌细胞,受激素作用的细胞被称为靶细胞。
2、激素的高度特异性由受体决定。
4、受体的性质:高度专一性,与配体结合的可逆性、高亲和性、饱和性、可产生强大的生物学效应。
5、调解受体数目的因素:激素浓度的提高和激素长时间与靶细胞接触都可引起受体数目的下调。
6、细胞膜受体的跨膜区一般富含疏水氨基酸,常形成a螺旋。膜受体可分为:(1)G蛋白偶联受体(GPCR或7TM)(2)离子通道受体(水溶性通道)(3)酶受体(受体和配体结合后,酶活性被激活)(4)无酶活性但直接与细胞质内的酪氨酸蛋白质激酶相联系的受体(5)其他受体
7、激素的细胞内受体至少含有两个活性部位:一个与激素结合,一个与DNA上特殊的激素反应元件(HRE)碱基序列结合。
8、G蛋白(鸟苷酸结合蛋白)G蛋白是一个界面蛋白,处于细胞膜的内侧, G蛋白与激素受体偶连,它作为一种中间接受体,在受体和效应器之间传递信息. 所有的G蛋白与GDP结合的构象不同于与GTP结合的构象。与GTP结合的G蛋白才有活性。
9、三聚体G蛋白中α能与激素受体、腺苷酸环化酶、GTP、氟化物等结合
10、小分子G蛋白中:Ras(参与生长因子信号传递),Ran(帮助蛋白进出细胞核),Rho(调节肌动蛋白细胞骨架)Rab,ARF,起始因子、延伸因子、终止因子
11、一旦α亚基结合GTP,它与β和γ亚基立即解离,其活性被激活,通常由α亚基去激活效应器。
12、G蛋白偶联受体的信号转导:受体 → G蛋白 → 效应器 → 第二信使 → 蛋白激
酶 → 靶酶或靶蛋白 → 终止
13、 AC系统的信号终止:HR*→H + R cAMP 被磷酸二酯酶水解 G蛋白的GTP酶
磷蛋白磷酸酶
14、PLC系统:G 蛋白-Gplc-β 或Gq; 效应器- PLC –β; 第二信使-DG, IP3 ,Ca2+;PKC 和钙调蛋白
15、钙调蛋白的结构与功能:CaM是一种对热稳定的酸性蛋白,由148个氨基酸残基组成,它存在于所有的真核细胞,在进化上具有高度的保守性,在三维结构上像一个哑铃,一段7圈长的α-螺旋将两个球叶相连,每一个球叶具有两个α-螺旋-环-α-螺旋这种结构模体,每一个α-螺旋-环-α-螺旋能结合一个钙离子。
功能:
(1) 作为糖原磷酸化酶的δ亚基
(2)直接激活其他蛋白
(3)通过依赖CaM蛋白质激酶间接激活其他蛋白
16、PKC系统的信号终止:
I. HR*→H + R
II. G 蛋白的 GTP酶
III. 第二信使的降解Li+ -IP3→IP2→IP→I→PI→PIP2
IV. 磷蛋白磷酸酶
17、嗅觉信号传导系统 Golf 蛋白
气味 → 嗅觉受体 → Golf 蛋白→ AC → cAMP →打开离子通道(Na+,Ca2+内流)→ 膜去极化→神经传导
18、RTK 系统
一般性质:
(1)通过该系统发挥作用的激素主要是一些生长因子
(2)受体具有潜在的酪氨酸蛋白激酶的活性
(3)受体具有高度保守的结构
(4)一般会激活特定基因的表达,是将胞外信息转导到核内的最重
要途径。
(5)酪氨酸残基的脱磷酸化由专门的蛋白质酪氨酸磷酸酶催化完成
。磷酸酶的作用是逆转由激酶引发的反应,其中某些磷酸酶也
作为受体(如CD45抗原)定位在细胞膜上。
(6)该系统与细胞的癌变有密切联系
蛋白质重点:
1、所有氨基酸及具有游离α-氨基的肽与茚三酮反应都产生蓝紫色物质,只有脯氨酸和羟脯氨酸与茚三酮反应产生黄色物质。
2、Sanger 反应
2.4一二硝基氟苯(DNFB)
DNP-氨基酸,黄色,层析法鉴定,被Sanger用来测定多肽的
NH2末端氨基酸
3、双缩脲:至少两个肽键。
4、酰胺平面的存在,使得肽链中的任何一个氨基酸残基只有2个角度可以旋转。
5、Mb;一条肽链,非共价结合一分子血红素辅基。血红素由原卟啉和Fe2+组成。Fe2+可以形成6个配位键
6、Hb: 成人: HbA: α2β2 98% ,
HbA2: α2δ2 2%
胎儿: HbF α2γ2
早期胚胎: α2ε2
四条肽链 正协同效应

接近于球体,4个亚基分别在四面体的四个角上,每个亚基上有一个血红素辅基
血红蛋白上有CO2和2,3-BPG (2,3-二磷酸甘油酸)结合部位,因此,血红蛋白还能运输CO2 。
增加CO2的浓度、降低pH能显着提高血红蛋白亚基间的协同效应,降低血红蛋白对O2的亲和力,促进O2的释放,反之,高浓度的O2也能促使血红蛋白释放H+ 和CO2 。产生波尔效应的原因是H+和CO2能够与Hb特定位点结合而促进Hb从R态转变为T态。
BPG是血红蛋白的负效应物。
BPG(2,3-二磷酸甘油酸)通过与它的两个β亚基形成盐键
稳定了血红蛋白的脱氧态的构象,因而降低脱氧血红蛋白的氧
亲和力。BPG进一步提高了血红蛋白的输氧效率。在组
织中,PO2低,BPG降低血红蛋白的氧亲和力,加大血红蛋白
的卸氧量。(1)高山适应和肺气肿的生理补偿变化;BPG升高。
(2)血库储血时加入肌苷可防止BPG下降。
核酸重点:
1、影响DNA的Tm值的因素
DNA均一性 均一性高,变性的温度范围越窄,据此可分析DNA的均一性 。
G-C含量
介质中离子强度高,Tm高

结构:
T3,T4,肾上腺素,去甲肾上腺素
葡萄糖,半乳糖,甘露糖,核糖,阿拉伯糖,木糖,果糖。NAG(N-乙酰葡萄胺)
B-D-吡喃葡萄糖。蔗糖(葡萄糖-a-1,4-果糖)
甘油磷脂的结构通式 磷脂酰胆碱 磷脂酰乙醇胺 磷脂酰肌醇
神经鞘氨醇 神经酰胺 鞘磷脂的结构通式
天然固醇的通式 20个氨基酸
嘌呤 嘧啶 AMP ADP ATP GMP GDP GTP TMP TDP TTP UMP UDP UTP CMP CDP CTP GMP GDP GTP (c d)
蛋白质:1、肽就是氨基酸之间通过α-氨基和α-羧基缩合以酰胺键或肽键相连的聚合物,它包括寡肽、多肽和蛋白质。
2、构成肽的每一个氨基酸单位被称为氨基酸残基
3、多肽链中氨基酸的连接方式和排列顺序,包括二硫键的位置和数目称为蛋白质的一级结构(primary structure)。
4、蛋白质的二级结构(secondary structure)指多肽链的主链骨架本身(不包括R基团)在空间上有规律的折叠和盘绕,它是由氨基酸残基非侧链基团之间的氢键决定的。
5、结构模体: 又称功能模体 ,表示具有特定功能的或作为一个独立结构域一部分的相邻的二级结构的聚合体,
6、蛋白质的四级结构内容包括亚基的种类、数目、空间排布以及亚基之间的相互作用。
7、当蛋白质溶液在某一定pH值时,使某特定蛋白质分子上所带正负电荷相等,成为两性离子,在电场中既不向阳极也不向阴极移动,此时溶液的pH值即为该蛋白质的等电点。
8、蛋白质受到某些理化因素的作用,其高级结构受到破坏、生物活性随之丧失的现象称为变性。变性的实质:次级键(有时包括二硫键)被破坏,天然构象解体。变性不涉及一级结构的破坏
9、蛋白质的变性作用如果不过于剧烈,则是一种可逆过程,变性蛋白质通常在除去变性因素后,可缓慢地重新自发折叠成原来的构象,恢复原有的理化性质和生物活性,这种现象成为复性
10、核苷是由戊糖和碱基通过β-N糖苷键形成的糖苷。 核苷酸是核苷的戊糖羟基的磷酸酯。
酶:11、常用酶催化某一特定反应的能力来表示酶量,用酶的活力表示
12、酶催化一定化学反应的能力称酶活力,酶活力通常以最适条件下酶所催化的化学反应的速度来确定。国际单位(IU): 1μmoL变化量 / 分钟
13、酶的比活力:每毫克酶蛋白所具有的酶活力。单位:U/mg蛋白质。
14、酶的转换数:一个酶分子在底物饱和时每单位时间(如每秒钟)所能转换的底物分子数。
酶的反应速率:单位时间、单位体积中底物的减少量或产物的增加量。单位:浓度/单位时间
15、凡阻抑酶反应速率的化合物叫酶的抑制剂(inhibitor),其作用称为酶的抑制作用。
16、竞争性抑制:抑制剂具有与底物类似的结构,竞争酶的活性中心,并与酶形成可逆的EI复合物,阻止底物与酶结合。Km 升高vmax 不变
17、非竞争性抑制:底物和抑制剂可以同时与酶结合,但是,中间的三元复合物ESI不能进一步分解为产物,因此,酶的活性降低。Km 不变vmax 降低
18、反竞争性抑制:酶只有在与底物结合后,才能与抑制剂结合。、Km 降低vmax 降低斜率不变
19辅酶(coenzyme):与酶蛋白结合较松,可透析除去。辅基(prosthetic group):与酶蛋白结合较紧。
20、酶的活性中心也称为活性部位,是指酶分子上直接与底物结合,并与催化作用直接相关的区域。
21、专一性是指酶对参与反应的底物有严格的选择性,即一种酶仅能作用于一种底物,或一类分子结构相似的底物,发生某种特定类型的化学反应,产生特定的产物。
糖类:22、糖是指多羟基醛或多羟基酮以及它们的缩合物和某些衍生物。
单糖:多羟醛或多羟酮,不能被水解成更小分子的糖。
多糖:由多分子单糖或单糖的衍生物聚合而成。
变旋现象:一个有旋光性的溶液放置后,其比旋光度改变的现象称变旋。

23、在各种旋光异构体之中,互为镜像的一对异构体称为对映异构体;
一个或一个以上的手性C原子构型相反,但并不呈镜像关系的一对异构体称为非对映异构体;
只有一个手性C原子的构型不同的一对异构体称为差向异构体,如D-葡萄糖与D-甘露糖,D-葡萄糖与D-半乳糖就互为差向异构体。
脂类:24、脂类的概念:不溶或微溶于水而易溶于乙醚、氯仿、苯等非极性有机溶剂的化合物,一般由醇和脂肪酸组成。简单脂:脂肪酸与醇类形成的酯。
25、异戊二烯类脂不含脂肪酸
26、脂肪酸由一条长链的烃基(尾)和一个末端羧基(头)组成。烃基不含双键(或三键)的为饱和脂肪酸,含一个或多个双键(或三键)的为不饱和脂肪酸。
27、蜡:高级脂酸与高级一元醇生成的脂,一般为固体,不溶于水
维生素:27重要的水溶性维生素及相应辅酶
1 维生素C
2 维生素B1:焦磷酸硫胺素(TTP)
3 维生素pp:尼克酰胺腺嘌呤二核苷酸(NAD+)、尼克酰胺腺嘌呤二核苷酸磷酸(NADP+)
4 维生素B2:黄素单核苷酸(FMN) 黄素腺嘌呤二核苷酸(FAD)
5 泛酸: 辅酶 A(CoA)
6 叶酸: 四氢叶酸(FH4)
7 生物素
8 硫辛酸
9维生素B6:磷酸吡哆醛、磷酸吡哆胺
10 维生素B12
28、主要脂溶性维生素的辅酶形式及主要功能
维生素 辅酶 功能
1. 维生素A 11-顺视黄醛视循环
2. 维生素D 1,2-二羟胆钙甾醇调节钙、磷代谢
3. 维生素E 保护膜脂质,抗氧化剂
4. 维生素K 促进血液凝固
激素:29、激素的定义:激素是由特定的组织产生并分泌到血流之中,通过血液的运输到达特定器官或组织,而引发这些器官或组织产生特定的生理生化反应的一类化学物质。
30、受体的定义:存在于细胞中的一种特殊成份。能够识别并结合来源于细胞外被称为配体的信号分子。受体主要是蛋白质,特别是糖蛋白,也有糖脂。
31、G蛋白(鸟苷酸结合蛋白)G蛋白是一个界面蛋白,处于细胞膜的内侧, G蛋白与激素受体偶连,它作为一种中间接受体,在受体和效应器之间传递信息.
核酸:32、核酸一级结构的概念:DNA分子中各脱氧核苷酸之间的连接方式(3´-5´磷酸二酯键)和排列顺序叫做DNA的一级结构,简称为碱基序列。一级结构的走向的规定为5´→3´。不同的DNA分子具有不同的核苷酸排列顺序,因此携带有不同的遗传信息。一级结构的表示方式:
33、DNA的二级结构主要是各种形式的螺旋,特别是B-型双螺旋,此外还有A-型双螺旋、Z-型双螺旋、三链螺旋和四链螺旋等
34、B型双螺旋结构:1)DNA由两条呈反平行的多聚核苷酸链组成,两条链相互缠绕形成右手双螺旋;
2) 组成右手双螺旋的两条链是互补的,它们通过特殊的碱基对结合在一起,碱基配对规则是一条链上的A总是与另一条链的T,G总是和C以氢键配对。其中AT碱基对有二个氢键, GC碱基对有3个氢键;
3) 碱基对位于双螺旋的内部,并垂直于暴露在外的脱氧核糖磷酸骨架, 糖环平面与双螺旋纵轴平行. 碱基对之间通过疏水键和范德华力相互垛叠在一起 ,对双螺旋的稳定起一定的作用;
4) 双螺旋的表面含有明显的大沟和小沟,其宽度分别为2.2nm和 1.2nm;
5) 双螺旋的其它常数包括相邻碱基对距离为0.34nm,并相差约36°。螺旋的直经为2nm,每一转完整的螺旋含有10个碱基对,其高度为3.4nm。
35、构成RNA的三级结构的主要元件有假节结构、“吻式”发夹结构和发夹环突触结构(等三种形式。tRNA则可形成倒L型三级结构
36、tRNA的结构
70-90bp,分子量在25kd左右,沉降系数4S左右 有较多稀有碱基 3’末端为…CCA-OH 5’末端大多为pG…或pC… 二级结构是三叶草形 倒L形的三级结构
二级结构特征:单链、三叶草叶形、四臂四环
三级结构 特征: 在二级结构基础上进一步折叠扭曲形成倒L型
37、mRNA的结构(DNA的转录产物,蛋白质的翻译模板)
原核生物多为多顺反子;真核生物多为单顺反子,5′-端具有帽子,3′-端具有多聚腺苷酸尾巴。;出现在mRNA分子上最多的二级结构部件也是茎环结构。mRNA分子的二级结构,特别是两端的二级结构对于翻译有影响,而某些mRNA借助于末端特殊的二级结构对基因的表达进行调控。
mRNA的结构特点:
38、核酸的变性是指核酸受到加热、极端的pH或离子强度的降低等因素或特殊的化学试剂的作用,其双螺旋区的氢键断裂,变成单链的过程,其中并不涉及共价键断裂。
39、变性因素 :热变性;酸碱变性(pH小于4或大于11);变性剂(尿素、盐酸胍、甲醛)
40、 变性后的理化性质 : 260nm吸收值升高。粘度降低,浮力密度升高。二级结构改变,部分失活。
41、DNA的变性发生在一个很窄的温度范围内,通常把热变性过程中A260 达到最大值一半时的温度称为该DNA的熔解温度,用Tm表示。 DNA的Tm一般在82—95℃之间
42、核酸的复性:在一定条件下,变性DNA 单链间碱基重新配对恢复双螺旋结构,伴有A260减小(减色效应),DNA的功能恢复。
42、热变性DNA在缓慢冷却时可以复性,快速冷却不能复性。 DNA片段越大,复性越慢 DNA浓度越大,复性越快。复性速度可用Cot衡量。
43、核酸分子杂交:不同来源的DNA单链间或单链DNA与RNA之间只要有碱基配对的区域,在复性时可形成局部双螺旋区,称核酸分子杂交(hybridization)制备特定的探针(probe)通过杂交技术可进行基因的检测和定位研究。
44、原核生物中存在着一类能识别外源DNA双螺旋中4-8个碱基对所组成的特异的具有二重旋转对称性的回文序列,并在此序列的某位点水解DNA双螺旋链,产生粘性末端或平末端,这类酶称为限制性内切酶

B. 公卫助理医师考试《生物化学》维生素知识点

2017年公卫助理医师考试《生物化学》维生素知识点

2017年公卫执业助理医师考试马上就要开始了,为了方便考生更好的复习生物化学科目为僧俗的知识。下面是我为大家带来的关于维生素的知识,欢迎阅读。

一、定义

维生素是机体必需的多种生物小分子营养物质。1894年荷兰人Ejkman用白米养鸡观察到脚气病现象,后来波兰人Funk从米糠中发现含氮化合物对此病颇有疗效,命名为vitamine,意为生命必须的胺。后来发现并非所有维生素都是胺,所以去掉词尾的e,成为Vitamin。

维生素有以下特点:

1.是一些结构各异的生物小分子;

2.需要量很少;

3.体内不能合成或合成量不足,必需直接或间接从食物中摄取;

4.主要功能是参与活性物质(酶或激素)的合成,没有供能和结构作用。水溶性维生素常作为辅酶前体,起载体作用,脂溶性维生素参与一些活性分子的构成,如VA构成视紫红质,VD构成调节钙磷代谢的激素。

二、分类

维生素的结构差异较大,一般按溶解性分为脂溶性和水溶性两大类。

脂溶性维生素 不溶于水,易溶于有机溶剂,在食物中与脂类共存,并随脂类一起吸收。不易排泄,容易在体内积存(主要在肝脏)。包括维生素A(A1,A2)、D(D2,D3)、E(α,β,γ,δ)、K(K1,K2,K3)等。

水溶性维生素 易溶于水,易吸收,能随尿排出,一般不在体内积存,容易缺乏。包括B族维生素和维生素C。

三、命名

维生素虽然是小分子,但结构较复杂,一般不用化学系统命名。早期按发现顺序及来源用字母和数字命名,如维生素A、维生素AB2等。同时还根据其功能命名为“抗…维生素”,如抗干眼病维生素(VA)、抗佝偻病维生素(VD)等。后来又根据其结构及功能命名,如视黄醇(VA1)、胆钙化醇(VD3)等。

四、人体获取维生素的途径

1.主要由食物直接提供 维生素在动植物组织中广泛存在,绝大多数维生素直接来源于食物。少量来自以下途径:

2.由肠道菌合成 人体肠道菌能合成某些维生素,如VK、VB12、吡哆醛、泛酸、生物素和叶酸等,可补充机体不足。长期服用抗菌药物,使肠道菌受到抑制,可引起VK等缺乏。

3.维生素原在体内转变 能在体内直接转变成维生素的物质称为维生素原。植物食品不含维生素A,但含类胡萝卜素,可在小肠壁和肝脏氧化转变成维生素A。所以类胡萝卜素被称为维生素A原。

4.体内部分合成 储存在皮下的7-脱氢胆固醇经紫外线照射,可转变成VD3。因此矿工要补照紫外线。人体还可利用色氨酸合成尼克酰胺,所以长期以玉米为主食的人由于色氨酸不足,容易发生糙皮病等尼克酰胺缺乏症。

五、有关疾病

机体对维生素的需要量极少,一般日需要量以毫克或微克计。维生素缺乏会引起代谢障碍,出现维生素缺乏症。过多也会干扰正常代谢,引起维生素过多症。因水溶性维生素容易排出,所以维生素过多症只见于脂溶性维生素,如长期摄入过量维生素A、D会中毒。

一、维生素A

维生素A又称抗干眼醇,有A1、A2两种,A1是视黄醇,A2是3-脱氢视黄醇,活性是前者的一半。肝脏是储存维生素A的场所。

植物中的类胡萝卜素是VA前体,一分子β胡萝卜素在一个氧化酶催化下加两分子水,断裂生成两分子VA1。这个过程在小肠粘膜内进行。类胡萝卜素还包括α、γ胡萝卜素、隐黄质、番茄红素、叶黄素等,前三种加水生成一分子VA1,后两种不生成VA1。

维生素A与暗视觉有关。维生素A在醇脱氢酶作用下转化为视黄醛,11-顺视黄醛与视蛋白上赖氨酸氨基结合构成视紫红质,视紫红质在光中分解成全反式视黄醛和视蛋白,在暗中再合成,形成一个视循环。维生素A缺乏可导致暗视觉障碍,即夜盲症。食用肝脏及绿色蔬菜可治疗。全反式视黄醛主要在肝脏中转变成11-顺视黄醛,所以中医认为“肝与目相通”。

维生素A的作用很多,但因缺乏维生素A的动物极易感染,所以研究很困难。已知缺乏维生素A时类固醇激素减少,因为其前体合成时有一步羟化反应需维生素A参加。另外缺乏维生素A时表皮黏膜细胞减少,角化细胞增加。有人认为是因为维生素A与细胞分裂分化有关,有人认为是因为维生素A与粘多糖、糖蛋白的合成有关,可作为单糖载体。维生素A还与转铁蛋白合成、免疫、抗氧化等有关。

维生素A过量摄取会引起中毒,可引发骨痛、肝脾肿大、恶心腹泻及鳞状皮炎等症状。大量食用北极熊肝或比目鱼肝可引起中毒。

二、维生素D

又称钙化醇,是类固醇衍生物,含环戊烷多氢菲结构。可直接摄取,也可由维生素D原经紫外线照射转化。植物油和酵母中的麦角固醇转化为D2(麦角钙化醇),动物皮下的7-脱氢胆固醇转化为D3(胆钙化醇)。

维生素D与动物骨骼钙化有关。钙化需要足够的钙和磷,其比例应在1:1到2:1之间,还要有维生素D的存在。

维生素D3先在肝脏羟化形成25-羟维生素D3,然后在肾再羟化生成1,25-(OH)2-D3。第二次羟化受到严格调控,平时只产生无活性的24位羟化产物,只有当血钙低时才有甲状旁腺素分泌,使1-羟化酶有活性。1,25-(OH)2-D3是肾皮质分泌的一种激素,作用于肠粘膜细胞和骨细胞,与受体结合后启动钙结合蛋白的合成,从而促进小肠对钙磷的吸收和骨内钙磷的动员和沉积。

食物中维生素D含量少,同时又缺乏紫外线照射的人易发生骨折。肝胆疾病、肾病、或某些药物也会抑制羟化。摄入过多也会引起中毒,发生迁移性钙化,导致肾、心、胰、子宫及滑膜粘蛋白钙化。高血钙也会导致肾结石,而骨骼却因钙被抽走而疏松软化。

三、维生素E

又称生育酚,含有一个6-羟色环和一个16烷侧链,共有8种其色环的取代基不同。α生育酚的活性最高。

存在于蔬菜、麦胚、植物油的非皂化部分,对动物的生育是必需的。缺乏时还会发生肌肉退化。生育酚极易氧化,是良好的脂溶性抗氧化剂。可清除自由基,保护不饱和脂肪酸和生物大分子,维持生物膜完好,延缓衰老。

维生素E很少缺乏,毒性也较低。早产儿缺乏会产生溶血性贫血,成人回导致红细胞寿命短,但不致贫血。

四、维生素K

天然维生素K有K1、K2两种,都由2-甲基-1,4-萘醌和萜类侧链构成。人工合成的K3无侧链。K1存在于绿叶蔬菜及动物肝脏中,K2由人体肠道细菌合成。

维生素K参与蛋白质谷氨酸残基的γ-羧化。凝血因子Ⅱ、Ⅶ、Ⅸ、Ⅹ肽链中的谷氨酸残基在翻译后加工过程中,由蛋白羧化酶催化,成为γ-羧基谷氨酸(Gla)。这两个羧基可络合钙离子,对钙的输送和调节有重要意义。有关凝血因子与钙结合,并通过钙与磷脂结合形成复合物,发挥凝血功能。这些凝血因子称为维生素K依赖性凝血因子。

缺乏维生素K时常有出血倾向。新生儿、长期服用抗生素或吸收障碍可引起缺乏。

一、硫胺素(VB1)

由一个取代的噻唑环和一个取代的嘧啶环组成,因噻唑环含硫,嘧啶环有氨基取代而得名。他就是Funk发现的vitamine。

硫胺素与ATP反应,生成其活性形式:硫胺素焦磷酸(TPP),即脱羧辅酶。其分子中氮和硫之间的碳原子性质活泼,易脱氢。生成的负碳离子有亲核催化作用。羧化辅酶作为酰基载体,是α酮酸脱羧酶的辅基,也是转酮醇酶的`辅基,在糖代谢中起重要作用。缺乏硫胺素会导致糖代谢障碍,使血液中丙酮酸和乳酸含量增多,影响神经组织供能,产生脚气病。主要表现为肌肉虚弱、萎缩,小腿沉重、下肢水肿、心力衰竭等。可能是由于缺乏TPP而影响神经的能源与传导。

硫胺素在糙米、油菜、猪肝、鱼、瘦肉中含量丰富。但生鱼中含有破坏B1的酶,咖啡、可可、茶等饮料也含有破坏B1的因子。

二、核黄素(VB2)

核黄素是异咯嗪与核醇的缩合物,是黄素蛋白的辅基。它有两种活性形式,一种是黄素单核苷酸(FMN),一种是黄素腺嘌呤二核苷酸(FAD)。这里把核黄素看作核苷,即把异咯嗪看作碱基,把核醇看作核糖。

异咯嗪的N1、N10能可逆地结合一对氢原子,所以可作为氧化还原载体,构成多种黄素蛋白的辅基,在三羧酸循环、氧化磷酸化、α酮酸脱羧、β氧化、氨基酸脱氨、嘌呤氧化等过程中起传递氢和电子的作用。

主要从食物中摄取,如谷类、黄豆、猪肝、肉、蛋、奶等,也可由肠道细菌合成。冬季北方缺少阳光,植物合成V-B2也少,常出现口角炎。缺乏V-B2还可引起唇炎、舌炎、贫血等。

三、泛酸(VB3)

也叫遍多酸,广泛存在,极少缺乏。由一分子β丙氨酸与一分子羧酸缩合而成。

泛酸可构成辅酶A,是酰基转移酶的辅酶。也可构成酰基载体蛋白(CAP),是脂肪酸合成酶复合体的成分。

四、吡哆素(VB6)

包括吡哆醇、吡哆醛和吡哆胺3种,可互相转化。吡哆素是吡啶衍生物,活性形式是磷酸吡哆醛和磷酸吡哆胺,是转氨酶、氨基酸脱羧酶的辅酶。磷酸吡哆醛的醛基作为底物氨基酸的结合部位,醛基的邻近羟基和对位氮原子还参与催化部位的构成。在转氨反应中,磷酸吡哆醛结合氨基酸,释放出相应的α酮酸,转变为磷酸吡哆胺,再结合α酮酸释放氨基酸,又变成磷酸吡哆醛。

缺乏V-B6可引起周边神经病变及高铁红细胞贫血症。因为5-羟色胺、γ-氨基丁酸、去甲肾上腺素等神经递质的合成都需要V-B6(氨基酸脱羧反应),而血红素前体的合成也需要V-B6。肉、蛋、蔬菜、谷类中含量较多。新生婴儿易缺乏。

五、尼克酰胺(VPP)

尼克酰胺和尼克酸分别是吡啶酰胺和吡啶羧酸,都是抗糙皮病因子,又称VPP。其活性形式有两种,尼克酰胺腺嘌呤二核苷酸(NAD)和尼克酰胺腺嘌呤二核苷酸磷酸(NADP)。在体内先合成去酰胺NAD,再接受谷氨酰胺提供的氨基成为NAD,再磷酸化则成为NADP。

NAD和NADP是脱氢辅酶,分别称为辅酶Ⅰ和辅酶Ⅱ。二者利用吡啶环的N1和N4可逆携带一个电子和一个氢原子,参与氧化还原反应。辅酶Ⅰ在分解代谢中广泛接受还原能力,最终传给呼吸链放出能量。辅酶Ⅱ则只从葡萄糖及葡萄糖酸的磷酸酯获得还原能力,用于还原性合成及羟化反应。需要尼克酰胺的酶多达百余种。

人体能用色氨酸合成尼克酸,但合成率极低(60:1),而且需要B1、B2、B6,所以仍需摄取。抗结核药异烟肼的结构与尼克酰胺类似,两者有拮抗作用,长期服用异烟肼时应注意补充尼克酰胺。花生、豆类、肉类和酵母中含量较高。

尼克酸或烟酸肌醇有舒张血管的作用,可用于冠心病等,但可降低cAMP水平,使血糖及尿酸升高,有诱发糖尿病及痛风的风险。长期使用大量尼克酸可能损害肝脏。

六、生物素(biotin)

由杂环与戊酸侧链构成,又称维生素H,缺乏可引起皮炎。在生鸡蛋清中有抗生物素蛋白(avidin),能与生物素紧密结合,使其失去活性。

生物素侧链羧基可通过酰胺键与酶的赖氨酸残基相连。生物素是羧基载体,其N1可在耗能的情况下被二氧化碳羧化,再提供给受体,使之羧化。如丙酮酸羧化为草酰乙酸、乙酰辅酶A羧化为丙二酰辅酶A等都由依赖生物素的羧化酶催化。

花生、蛋类、巧克力含量最高。

以上六种维生素都与能量代谢有关。下面两种维生素与生血有关。

七、叶酸(folic acid,FA)

又称维生素M,由蝶酸与谷氨酸构成。活性形式是四氢叶酸(FH4),即蝶呤环被部分还原。四氢叶酸是多种一碳单位的载体,分子中的N5,N10可单独结合甲基、甲酰基、亚氨甲基,共同结合甲烯基和甲炔基。因此在嘌呤、嘧啶、胆碱和某些氨基酸(Met、Gly、Ser)的合成中起重要作用。缺乏叶酸则核酸合成障碍,快速分裂的细胞易受影响,可导致巨红细胞贫血(巨大而极易破碎)。

叶酸容易缺乏,特别是孕妇。叶酸分布广泛,肉类中含量丰富。苯巴比妥及口服避孕药等药物干扰叶酸吸收与代谢。

八、钴胺素(VB12)

是一个抗恶性贫血的维生素,存在于肝脏。分子中含钴和咕啉。咕啉类似卟啉,第六个配位可结合其他集团,产生各种钴胺素,包括与氢结合的氢钴胺素、与甲基结合的甲基钴胺素、与5’-脱氧腺苷结合的辅酶B12等。

一些依赖辅酶B12的酶类催化1,2迁移分子重排反应,即相邻碳原子上氢原子与某一基团的易位反应。例如在丙酸代谢中,催化甲基丙二酰辅酶A转变为琥珀酰辅酶A的变位酶就以辅酶B12为辅助因子。

甲基钴胺素可作为甲基载体,接受甲基四氢叶酸提供的甲基,用于合成甲硫氨酸。甲硫氨酸可作为通用甲基供体,参与多种分子的甲基化反应。因为甲基四氢叶酸只能通过这个反应放出甲基,所以缺乏钴胺素时叶酸代谢障碍,积累甲基四氢叶酸。缺乏钴胺素可导致巨红细胞贫血。

胃粘膜能分泌一种粘蛋白,可与V-B12结合,促进吸收,称为内因子。缺乏内因子时易被肠内细菌及寄生虫夺去,造成缺乏。素食者也易缺乏。

九、抗坏血酸(V-C)

是烯醇式L-古洛糖酸内酯,有较强的酸性。容易氧化,是强力抗氧化剂,也可作为氧化还原载体。

抗坏血酸还参与氨基酸的羟化。胶原中脯氨酸和赖氨酸的羟化都需要抗坏血酸作为酶的辅因子。缺乏抗坏血酸会影响胶原合成及结缔组织功能,使毛细血管脆性增高,发生坏血病。

肾上腺皮质激素的合成也需要V-C参加羟化。V-C可还原铁,促进其吸收;保护A、E及某些B族维生素免遭氧化。

五、辅酶Q

又称泛醌,广泛存在于线粒体中,与细胞呼吸链有关。泛醌起传递氢的作用。

六、硫辛酸

是酵母和一些微生物的生长因子,可以传递氢。有氧化型和还原型。

例题:

(一)A型题

l,下列关于维生素的叙述中,正确的是

A.维生素是一类高分子有机化合物

B.维生素是构成机体组织细胞的原料之一

C.酶的辅酶或辅基都是维生素

D.引起维生素缺乏的唯一原因是摄人量不足

E. 维生素在机体内不能合成或合成量不足

2,脂溶性维生素

A. 是一类需要量很大的营养素 B,易被消化道吸收

C. 体内不能储存,余者由尿排出

D,过少或过多都可能引起疾病

E. 都是构成辅酶的成分

3,维生素A除从食物中吸收外,还可在体内由

A. 肠道细菌合成 . B.肝细胞内氨基酸转变生成

C. β-胡萝卜素转变而来 D.由脂肪酸转变而来

E,由叶绿素转变而来

参考答案

1.E 2. D 3. C

;

C. 辅酶I的辅酶I (NAD)—维生素B3衍生物

上世纪糙皮病肆虐,仅1915年1至10月,造成美国南加利福尼亚州1306人死忘。1916年,美国南部超过10万人患此病,美洲大陆被恐惧笼罩。直到1937年,Conrad Elvehjem发现烟酸(Nicotinic aid,Na)与烟酰胺(Nicotinamide,Nam)可以治愈糙皮病,数以万计的生命幸免于难。烟酸在体内可快速转化成烟酰胺,因此统称为维生素B3,又称维生素PP,是人体必需的13种维生素之一,对机体生理功能有着重要意义。随着对维生素B3药理功效的深入研究,发现摄入的维生素B3在人体肝脏中转化为细胞氧化还原反应中必不可少一种关键物质——辅酶I(NAD),继而发挥一系列生理功能 。在揭开辅酶I(NAD)神秘面纱过程中,4位诺贝尔奖获得者作出了重大贡献。1904年Sir Arthur Harden发现酵母中存在一种重要的辅助因子可以促进发酵,将其命名为辅酶I。困于当时的技术,辅酶I(NAD)未能得到分离纯化,限制了进一步的深入研究。直到20年代,Hans von Euler-Chelpin成功从酵母提取物中分离出辅酶I(NAD),并发现其二核苷酸的基本结构,大大加速了它的研究进展。30年代,Otto Warburg和Christian发现了辅酶I(NAD)可以将氢离子转移到其它分子物质上,在氧化还原反应中具有重要作用,正式拉开辅酶I(NAD)生理功能研究的序幕。随后几十年,大量研究揭示了辅酶I(NAD)及其代谢物在细胞功能方面具有重要作用。哺乳动物体内许多重要信号通路需要辅酶I参与,如DNA修复过程的聚腺苷二磷酸核糖化〔poly( ADPribosyl) ation〕、免疫应答和g蛋白偶联过程的单ADP核糖基化(mono-ADP-ribosylation)、细胞内钙信号中环ADP核糖和烟酸腺嘌呤二核苷酸磷酸(辅酶II) 的合成。此外,辅酶I(NAD)和它的衍生物在转录调控方面有着重要作用,它是酵母和哺乳动物体内的沉默信息因子2(Sir2)蛋白家族发挥去乙酰化活性的必须底物 。

阅读全文

与辅助因子多为什么衍生物相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:721
乙酸乙酯化学式怎么算 浏览:1387
沈阳初中的数学是什么版本的 浏览:1333
华为手机家人共享如何查看地理位置 浏览:1025
一氧化碳还原氧化铝化学方程式怎么配平 浏览:865
数学c什么意思是什么意思是什么 浏览:1388
中考初中地理如何补 浏览:1276
360浏览器历史在哪里下载迅雷下载 浏览:683
数学奥数卡怎么办 浏览:1366
如何回答地理是什么 浏览:1003
win7如何删除电脑文件浏览历史 浏览:1035
大学物理实验干什么用的到 浏览:1464
二年级上册数学框框怎么填 浏览:1680
西安瑞禧生物科技有限公司怎么样 浏览:902
武大的分析化学怎么样 浏览:1229
ige电化学发光偏高怎么办 浏览:1318
学而思初中英语和语文怎么样 浏览:1625
下列哪个水飞蓟素化学结构 浏览:1407
化学理学哪些专业好 浏览:1470
数学中的棱的意思是什么 浏览:1035