导航:首页 > 生物信息 > 生物固氮需要哪些要素

生物固氮需要哪些要素

发布时间:2023-08-16 09:14:04

㈠ 试述细菌固氮作用机制和必要条件

生物固氮是固氮微生物特有的一种生理功能,这种功能是在固氮酶的催化作用下进行的。
固氮酶是一种能够将分子氮还原成氨的酶。
固氮酶是由两种蛋白质组成的:一种含有铁,叫做铁蛋白,另一种含有铁和钼,叫做钼铁蛋白。
只有铁蛋白和钼铁蛋白同时存在,固氮酶才具有固氮的作用。
生物固氮过程可以用下面的反应式概括表示。
N2+6H++nMg-ATP+6e-(酶)→2NH3+nMg-ADP+nPi分析上面的反应式可以看出,分子氮的还原过程是在固氮酶的催化作用下进行的。
有三点需要说明:第一,ATP一定要与镁(Mg)结合,形成Mg-ATP复合物后才能起作用;
第二,固氮酶具有底物多样性的特点,除了能够催化N2还原成NH3以外,还能催化乙炔还原成乙烯(固氮酶催化乙炔还原成乙烯的化学反应,常被科学家用来测定固氮酶的活性)等;
第三,生物固氮过程中实际上还需要黄素氧还蛋白或铁氧还蛋白参与,这两种物质作为电子载体能够起到传递电子的作用。
铁蛋白与Mg-ATP结合以后,被黄素氧还蛋白或铁氧还蛋白还原,并与钼铁蛋白暂时结合以传递电子。
铁蛋白每传递一个e-给钼铁蛋白,同时伴随有两个Mg-ATP的水解。
在这一催化反应中,铁蛋白反复氧化和还原,只有这样,e-和H+才能依次通过铁蛋白和钼铁蛋白,最终传递给N2和乙炔,使它们分别还原成NH3和乙烯。

㈡ 生物固氮原理示意图

生物固氮原理简介 生物固氮是固氮微生物特有的一种生理功能,这种功能是在固氮酶的催化作用下进行的。固氮酶是一种能够将分子氮还原成氨的酶。固氮酶是由两种蛋白质组成的:一种含有铁,叫做铁蛋白,另一种含有铁和钼,叫做钼铁蛋白。只有铁蛋白和钼铁蛋白同时存在,固氮酶才具有固氮的作用。生物固氮过程可以用下面的反应式概括表示。

N2 + 6H+ + nMg-ATP +6e-2NH3+nMg-ADP+nPi

分析上面的反应式可以看出,分子氮的还原过程是在固氮酶的催化作用下进行的。有三点需要说明:第一,ATP一定要与镁(Mg)结合,形成Mg-ATP复合物后才能起作用;第二,固氮酶具有底物多样性的特点,除了能够催化N2还原成NH3以外,还能催化乙炔还原成乙烯(固氮酶催化乙炔还原成乙烯的化学反应,常被科学家用来测定固氮酶的活性)等;第三,生物固氮过程中实际上还需要黄素氧还蛋白或铁氧还蛋白参与,这两种物质作为电子载体能够起到传递电子的作用。

铁蛋白与Mg-ATP结合以后,被黄素氧还蛋白或铁氧还蛋白还原,并与钼铁蛋白暂时结合以传递电子。铁蛋白每传递一个e-给钼铁蛋白, 同时伴随有两个Mg-ATP的水解。在这一催化反应中,铁蛋白反复氧化和还原,只有这样,e-和H+才能依次通过铁蛋白和钼铁蛋白,最终传递给N2和乙炔,使它们分别还原成NH3和乙烯。
固氮微生物的类型 固氮生物都属于个体微小的原核生物,所以,固氮生物又叫做固氮微生物。根据固氮微生物的固氮特点以及与植物的关系,可以将它们分为自生固氮微生物、共生固氮微生物和联合固氮微生物三类。

自生固氮微生物在土壤或培养基中生活时,可以自行固定空气中的分子态氮,对植物没有依存关系。常见的自生固氮微生物包括以圆褐固氮菌为代表的好氧性自生固氮菌、以梭菌为代表的厌氧性自生固氮菌,以及以鱼腥藻、念珠藻和颤藻为代表的具有异形胞的固氮蓝藻(异形胞内含有固氮酶,可以进行生物固氮)。

共生固氮微生物只有和植物互利共生时,才能固定空气中的分子态氮。共生固氮微生物可以分为两类:一类是与豆科植物互利共生的根瘤菌,以及与桤木属、杨梅属和沙棘属等非豆科植物共生的弗兰克氏放线菌;另一类是与红萍(又叫做满江红)等水生蕨类植物或罗汉松等裸子植物共生的蓝藻。由蓝藻和某些真菌形成的地衣也属于这一类。

有些固氮微生物如固氮螺菌、雀稗固氮菌等,能够生活在玉米、雀稗、水稻和甘蔗等植物根内的皮层细胞之间。这些固氮微生物和共生的植物之间具有一定的专一性,但是不形成根瘤那样的特殊结构。这些微生物还能够自行固氮,它们的固氮特点介于自生固氮和共生固氮之间,这种固氮形式叫做联合固氮。

豆科植物的根瘤 根瘤菌属中有十几种根瘤菌,这些根瘤菌与豆科植物具有特殊的互利共生关系,也就是一种根瘤菌只能在一种或若干种豆科植物的根上形成根瘤。根据每种根瘤菌只能在特定的一种或若干种豆科植物上结瘤的现象,人们把根瘤菌及其豆科寄主分成不同的族,这些族也叫做互接种族。一种豆科植物的根瘤菌只能使同一个互接种族内的其他豆科植物结瘤。形成互接种族的原因是,豆科植物的根毛能够分泌一类特殊的蛋白质,根瘤菌细胞的表面存在着多糖物质,只有同族豆科植物根毛分泌的蛋白质与同族根瘤菌细胞表面的多糖物质才能产生特异性结合。

常见的互接种族及所含的豆科植物有:

苜蓿族:包括苜蓿属和草木犀属植物;

三叶草族:只有三叶草属一个属;

豌豆族:包括豌豆属、蚕豆属、山黧豆属、兵豆属和鹰嘴豆属植物;

四季豆族:包括四季豆属中四季豆等植物;

大豆族:只有大豆属一个属;

豇豆族:包括豇豆、花生、绿豆、赤豆等植物;

紫云英族:只有黄芪属一个属(包括紫云英、沙打旺等)。

当豆科植物的根系在土壤中生长时,会刺激同一互接种族的根瘤菌在根系附近大量繁殖。豆科植物对根瘤菌的这种影响,在土壤中可以达到2~3 cm的距离。这样,根系附近的、与该种豆科植物同族的根瘤菌就会不断地繁殖并聚集到根毛的顶端。聚集在根毛顶端的根瘤菌分泌一种纤维素酶,将根毛顶端的细胞壁溶解掉。随后,根瘤菌从根毛顶端侵入到根的内部,并形成感染丝(感染丝是指根瘤菌排列成行,外面包有一层黏液状的物质)。根瘤菌就这样不断地进入根内,并且大量繁殖。在根瘤菌侵入的刺激下,根细胞分泌一种纤维素,将感染丝包围起来,形成一条分支或不分支的纤维素鞘,这样的结构叫做侵入线(图2-4)。侵入线不断地向内延伸,一直到达根的内皮层。根的内皮层处的薄壁细胞受到根瘤菌分泌物的刺激,不断进行细胞分裂,从而使该处的组织膨大,最终形成根瘤。

氮循环简介 氮素在自然界中有多种存在形式,其中,数量最多的是大气中的氮气,总量约3.9×1015 t。除了少数原核生物以外,其他所有的生物都不能直接利用氮气。目前,陆地上生物体内储存的有机氮的总量达1.1×1010~1.4×1010 t。这部分氮素的数量尽管不算多,但是能够迅速地再循环,从而可以反复地供植物吸收利用。存在于土壤中的有机氮总量约为3.0×1011 t,这部分氮素可以逐年分解成无机态氮供植物吸收利用。海洋中的有机氮约为5.0×1011 t,这部分氮素可以被海洋生物循环利用。

构成氮循环的主要环节是:生物体内有机氮的合成、氨化作用、硝化作用、反硝化作用和固氮作用。

植物吸收土壤中的铵盐和硝酸盐,进而将这些无机氮同化成植物体内的蛋白质等有机氮。动物直接或间接以植物为食物,将植物体内的有机氮同化成动物体内的有机氮。这一过程叫做生物体内有机氮的合成。动植物的遗体、排出物和残落物中的有机氮被微生物分解后形成氨,这一过程叫做氨化作用。在有氧的条件下,土壤中的氨或铵盐在硝化细菌的作用下最终氧化成硝酸盐,这一过程叫做硝化作用。氨化作用和硝化作用产生的无机氮,都能被植物吸收利用。在氧气不足的条件下,土壤中的硝酸盐被反硝化细菌等多种微生物还原成亚硝酸盐,并且进一步还原成分子态氮,分子态氮则返回到大气中,这一过程叫做反硝化作用。

大气中的分子态氮被还原成氨,这一过程叫做固氮作用。没有固氮作用,大气中的分子态氮就不能被植物吸收利用。地球上固氮作用的途径有三种:生物固氮、工业固氮(用高温、高压和化学催化的方法,将氮转化成氨)和高能固氮(如闪电等高空瞬间放电所产生的高能,可以使空气中的氮与水中的氢结合,形成氨和硝酸,氨和硝酸则由雨水带到地面)。据科学家估算,每年生物固氮的总量占地球上固氮总量的90%左右,可见,生物固氮在地球的氮循环中具有十分重要的作用。

根瘤菌菌剂的自制和使用 根瘤菌菌剂可以购买,也可以自制。下面介绍两种简易的自制方法。

①干根瘤法。豆科作物处于开花期时,根瘤菌的繁殖和固氮能力最旺盛。这时,选择生长健壮的植株,小心地连根挖起(尽量不要损伤根瘤)。挑选根瘤呈粉红色的、个大、数多的植株,剪去枝叶和细根后,挂在通风背阴处备用。也可以在收获豆科作物时进行选留,只是拌种时的用量应比盛花期留取的要多一些。第二年播种前,将根瘤取下,放在罐内捣碎,加上无菌水或冷开水搅拌均匀后,就可以拌种了。一般每公顷的豆种用75~150株的根瘤即可。

②鲜根瘤法。预先在苗圃中种植同种豆科作物。大田播种时,从苗圃内生长健壮的豆科植株上选取个大和呈粉红色的新鲜根瘤,放在罐内捣碎,加上无菌水或冷开水搅拌均匀后就可以拌种了。这种方法只需要少量新鲜根瘤(每公顷的豆种可用75~150个根瘤)。

使用根瘤菌菌剂时应注意以下几点。第一,根瘤菌对不同种甚至不同品种的豆科作物都有选择性。所以,所用的根瘤菌菌剂一定要和豆科作物属于同一互接种族,否则就没有增产效果。第二,太阳光中的紫外线对根瘤菌具有较强的杀伤力,所以,干鲜根瘤、自制或购买的根瘤菌菌剂以及拌好的豆种,一定要放在阴凉处,避免阳光直射。第三,拌种要均匀,不要擦伤种皮。第四,拌种时,不能同时拌入农药。第五,拌种时,每公顷的豆种如果加入75~150 g钼酸铵,会有更好的增产效果。多年种植某种豆科作物的农田,如果继续种植这种豆科作物,也应接种根瘤菌。这是因为土壤中原有根瘤菌的结瘤能力和固氮能力往往下降,即使能够结瘤,固氮能力也不高。

需要指出的是,根瘤菌的固氮能力,不仅取决于根瘤菌菌种的质量(人工培育的根瘤菌的固氮能力,一般比野生的根瘤菌的固氮能力高几倍),而且取决于土壤条件和栽培措施。因此,人们不仅要进行根瘤菌拌种,而且要加强农田管理并适时适量地施用磷、钾肥料和微量元素肥料(如硼肥、钼肥、铁肥等),只有这样才能更好地发挥根瘤菌的固氮能力。

自生固氮菌菌剂的使用 我国推广使用的自生固氮菌菌剂,主要由圆褐固氮菌和棕色固氮菌制成。这些自生固氮菌菌剂,对于小麦、水稻、棉花和玉米等农作物都有一定的增产效果。施用方式主要有基施(和农家肥拌匀后,以基肥的形式施用)、追施(和潮湿的肥土混合均匀,堆放三五天并拌入一些稀粪水后,浇在农作物的根部并覆盖土壤)和拌种(注意要在阴凉处拌种,拌种时不能拌入农药,并且在阴凉处晾干后再播种)。

多年的生产实践表明,农田中使用自生固氮菌菌剂的增产效果不很稳定。为此,目前科学家对于自生固氮菌的增产作用还有争论,有的认为是自生固氮菌的固氮作用起到了增产作用,有的则认为主要是自生固氮菌分泌的生长素起到了增产作用。可以肯定的是,单纯施用自生固氮菌菌剂不能满足农作物对氮素营养的全部需要,自生固氮菌菌剂的施用只能是提供农作物氮素营养和促进农作物生长的一种补充措施。

㈢ 植物固氮需要什么条件通常在什么环境下发生

生物固氮作用
生物固氮作用(biological nitrogen fixatio):大气中的氮被原还为氨的过程。生物固氮只发生在少数的细菌和藻类中。

估计全球每年生物固氮作用所固定的氮(N2)约达17500万吨,其中耕地土壤约有4400万吨,超过了每年施入土壤4000万吨肥料氮素(工业固氮)的量(Burris,1977)。因此,生物固氮作用有很大潜力。

固氮微生物种类:到1982年固氮微生物达70多个属,大多数是原核微生物(细、放、蓝细菌),也有真菌。根据固氮微生物与高等植物以及其他生物关系,分为二个类型。

1.自生固氮微生物——在土壤中或培养基中,独自生活时能固定了氨态氮。在进行固氮作用时对植物或其它生物没有明显的依存关系。

有好气性、厌气性、兼厌气性有化能自养异养,光能自养、异养型生固氮微生物。

2.共生固氮微生物――二种微生物紧密地生长在一起时,由固氮的共生菌进行分子态氮的还原作用。

自生固氮微生物生物固氮作用的条件:

1、防氧保护系统(好气性固定微生物需具备之);

2、能量和电子供体,以及传递电子的电子载体系统;

3、固氮酶催化系统;

4、氨、氨基酸同化成蛋白质系统;

共生固氮微生物生物固氮作用的条件则更复杂。

---------------------------------

生物固氮系统

具有生物固氮能力的仅限于原核生物,即细菌和蓝绿藻。有些固氮微生物,如蓝绿藻自生于陆地或水域生态系统中,其他则群生于寄生植物的根际,其中对高等植物最为重要的有与豆科植物或结瘤的非豆科植物共生的固氮微生物。在陆地生态系统中主要有三种固氮体系,即共生固氮、联合固氮和自生固氮体系。三种固氮体系中,能源和固氮能力都存在明显差异。共生体系由于固氮微生物直接从寄主植物获得碳水化合物作为固氮能源,其固氮能力最强。豆科(Leguminosae)植物近2000个种中约有15%具有共生固氮系统,其中近300种豆科植物中有90%与根瘤菌共生形成根瘤。如大豆、蚕豆、三叶草、苜蓿与根瘤菌的共生,是农业中最重要的共生体系。在森林和林地中有8个科23个属的植物与固氮微生物形成共生体系。如赤杨属(Alnus)和蓟木属(Ceanothus)与放线菌之间形成结瘤共生体系。这些非豆科植物是缺氮土壤的先锋植物。

豆科植物根上的根瘤是由于根瘤菌侵入根部后形成的,根瘤是固氮的场所。根瘤菌侵入寄主的过程很复杂。在根瘤菌入侵寄主根毛或表皮细胞之前,土壤中的根瘤菌是一种不能运动的小球菌(图5-19)。由于植物根分泌物(氨基酸、维生素)的影响,这些小球菌产生鞭毛,具有移动侵入寄主的能力。根瘤菌在根表面分泌某种未知物质(分子)使根毛弯曲。这种物质的分泌受到根释放成分(如类黄酮)的促进。此后,根瘤菌分泌酶溶解根毛细胞壁,根瘤菌随即由此处侵入根毛,根毛形成侵染丝(infectionthread)。根瘤菌在侵染丝中大量繁殖随侵染丝进入皮层。根瘤菌被释放到皮层细胞质中,刺激细胞的分裂和生长形成根瘤(root nole)(图5-19)。根瘤中大部分为含有根瘤菌的四倍体细胞,只有少部分为未被侵染的二倍体细胞。成熟根瘤中的根瘤菌失去鞭毛而成为不能移动的类菌体(bacteriod),一个典型的根瘤细胞中通常含有数千个类菌体,这些类菌体在细胞内聚成一个个小群体,每个小群体有数个类菌体组成(大豆根瘤中为4~6个)。每群体外面有一层膜包着,此膜称为类菌体外周膜(peribacteroid membrane),在此膜与类菌体之间的空间称为类菌体外周空间(peribacteriodspace)。在类菌体外周膜以外的细胞质中存在着豆血红蛋白(leghemoglobin)。此蛋白含有红色的血红素基团(hemegroup)。据认为豆血红蛋白的作用是为类菌体在严格控制的条件下供应氧。因为类菌体的呼吸作用需要氧,但过多的氧则会抑制催化氮素固定的固氮酶的活性。

根瘤中的固氮作用只在类菌体内进行。寄主植物向类菌体供给碳水化合物,主要形式是蔗糖。类菌体利用这些糖进行呼吸作用,产生电子和ATP,将N2还原成NH4+。

2.固氮的生物化学与生理学

生物固氮的总反应式如下:

N2+8e+16MgATP+16H2O→2NH3+H2+16MgADP+16Pi+8H+

催化此反应的酶是固氮酶。固氮酶是多功能的氧化还原酶,除了还原N2以外,还能还原多种类型的底物,如乙炔、氰化物、氧化亚氮、联氨、叠氮化物和H+等。用气相色谱仪能很容易测定乙炔还原成乙烯的产生量,这为研究固氮酶活性提供了极为简单的方法。该法对生物固氮研究取得重大进展发挥了作用。

固氮酶由铁钼蛋白(Fe-Moprotein)和铁蛋白(Fe-protein)组成。这两个蛋白单独存在时都不呈现固氮酶活性,只有两者聚合构成复合体时才有催化氮还原的功能。铁钼蛋白由分子量分别为51kD和60kD的2个α亚基和2个β亚基组成的四聚体(α2β2),分子量约为220~245kD。每分子铁钼蛋白含有两个钼原子,28个铁原子。铁蛋白的分子量在59~73kD之间,由两个分子量同为30kD的亚基组成(γ2)。铁蛋白含有4个铁原子。在氮还原为NH4+的过程中,固氮酶中的Fe和Mo都发生氧化还原反应,如图5-20所示。类菌体利用碳水化合物进行呼吸作用产生NADH或NADPH和ATP。已经查明,固氮的天然电子传递体(供体)有铁氧还蛋白、黄素氧还蛋白等。固氮生物体内存在着ATP和二价的金属离子(如Mg2+)是固氮不可缺少的条件。只有在Mg2+的作用下,ATP才可以与Fe蛋白结合,而且必需有Fe-Mo蛋白的参与才发生ATP水解反应。Fe蛋白将电子传递给Fe-Mo蛋白的同时伴随着ATP水解产生ADP。Fe-Mo蛋白最后将电子传递给N2和质子,产生2分子NH3和1分子H2。

固氮酶对氧敏感,其催化反应需在厌氧下进行。除了专性厌氧的生物外,氧对其他固氮生物的固氮酶有损伤作用,但这些生物通过呼吸作用产生固氮必需的ATP又需要氧,所以高效率的固氮作用一般是在微氧下进行的。不同固氮生物避免氧对固氮酶伤害的机制各异。如具有异形胞的蓝藻的固氮功能主要在异形胞中进行,这种细胞外有一层防氧进入的糖脂组成的外膜,缺少水光解放氧的PSⅡ,其中戊糖磷酸途径的两种酶活性较低,而超氧物歧化酶和脱氢酶活性都比较强,使异形胞保持了一个微氧环境。豆科植物的根瘤中类菌体有一层类菌体周膜,瘤内皮层内侧细胞排列紧密并形成间隙,两者对于保持类菌体的低氧环境十分重要。此外,根瘤细胞内的豆血红蛋白也部分地控制着类菌体氧气的需求。在非豆科植物共生固氮体系中,在与放线菌共生的瘤中有囊泡存在,这种囊泡可能与蓝藻的异形胞一样具有防氧功能。很明显,共生体系中的根瘤本身就是一个良好的氧保护系统。

在类菌体内合成的NH3(很可能是NH4+)要从类菌体内运出来,才能参与寄主植物中的代谢。在含类菌体细胞的细胞质中,NH4+转化成谷酰胺、谷氨酸、天冬酰胺和酰脲。这些物质由转移细胞分泌到木质部,运输到植物的其他部分。

由于生物固氮的重要性,有关控制生物固氮的环境与遗传因素的研究受到重视。研究表明,凡是能增加植物光合作用能力的因素,如合适的水分、温度、强光照和高CO2水平等都可以促进固氮作用。豆科植物与固氮生物的遗传因素也影响固氮作用的速率和产量。例如其中一个遗传因素是豆科植物的结瘤能力,它依赖于根瘤菌与寄主植物之间的由遗传控制的识别过程。为提高结瘤能力,科学工作者正在进行改造根瘤菌基因以及选择合适的寄主品种的研究工作。另外一个遗传因素是固氮酶在还原N2的同时还原H+。由总反应式可见,固氮酶催化的反应中有1/4的电子用于还原H+产生H2。而H2被还原后逸出进入大气,这个过程使能量白白浪费。不过,大多数根瘤菌和自生固氮细菌均含有氢化酶,该酶将H2氧化成H2O,这一过程推动由ADP和Pi合成ATP的反应。有研究表明,与具有较高氢化酶活性的根瘤菌共生的豆科植物(如大豆)的产量比与无氢化酶活性的根瘤共生的稍高。可能是前者减少了能量的浪费。基于这种认识,通过基因工程技术可能会获得具有更高活性的氢化酶的根瘤菌并增加豆类产量。此外,用基因工程技术将固氮基因导入非豆科植物根,促使这些植物固氮的工作也获得了一定的进展。

植物的不同生长阶段会影响生物固氮作用。如大豆、花生、木豆,通过生物固氮固定的氮素中90%在生殖阶段中进行,而10%在营养生长过程中进行。奇怪的是,几种豆类的生物固氮提供的氮素仅为其一生所需总氮量的1/4至1/2,其余主要在营养生长阶段从土壤中吸收NO3-或NH4+。不过,多施氮肥并不能增产。原因是植物对氮肥吸收增加反而使生物固氮能力下降。硝酸盐肥料的影响有几个方面:抑制根瘤菌与根毛的接触,中止侵染丝的形成;根瘤生长缓慢,抑制已成熟根瘤的固氮作用;当增施NO3-和NH4+时,加速根瘤的衰老。

阅读全文

与生物固氮需要哪些要素相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:740
乙酸乙酯化学式怎么算 浏览:1406
沈阳初中的数学是什么版本的 浏览:1353
华为手机家人共享如何查看地理位置 浏览:1045
一氧化碳还原氧化铝化学方程式怎么配平 浏览:886
数学c什么意思是什么意思是什么 浏览:1411
中考初中地理如何补 浏览:1300
360浏览器历史在哪里下载迅雷下载 浏览:703
数学奥数卡怎么办 浏览:1388
如何回答地理是什么 浏览:1025
win7如何删除电脑文件浏览历史 浏览:1058
大学物理实验干什么用的到 浏览:1487
二年级上册数学框框怎么填 浏览:1701
西安瑞禧生物科技有限公司怎么样 浏览:976
武大的分析化学怎么样 浏览:1250
ige电化学发光偏高怎么办 浏览:1339
学而思初中英语和语文怎么样 浏览:1653
下列哪个水飞蓟素化学结构 浏览:1425
化学理学哪些专业好 浏览:1488
数学中的棱的意思是什么 浏览:1059