① 生物进化的历程是怎样的拜托各位了 3Q
生命的起源 大约在46亿年前,地球刚刚形成。那时候地球的温度很高,地面上的环境与现在 完全不同:天空中赤日炎炎,电闪雷鸣,地面上火山喷发,熔岩横溢。从火山喷出的气体,如水蒸 气、氨、甲烷等,构成了原始的大气层。与现在的大气成分明显不同的是:当时的大气中没有游离 的氧。这些气体在高温、紫外线以及雷电等自然条件下的长期作用下,形成了许多简单的有机物。 后来,地球的温度逐渐降低,原始大气中的水蒸气凝结成雨降落到地面上,这些有机物又随着雨水 进入湖泊和河流,最终汇集到原始的海洋中。 原始的海洋,就像一盆稀薄的热汤,其中所含的有机物,不断地相互作用,经过极其漫长的岁 月,逐渐形成了原始的生命。所以,可以说原始的海洋是生命的摇篮。 生物进化的历程 原始的生命,又经过极其漫长的历程,才逐渐进化成为现在这样丰富多采的 生物界。概括地说,原始生命由于营养方式的不同,一部分进化成为具有叶绿素(能自养)的原始 藻类,另一部分进化成为没有叶绿素(不能自养)的原始单细胞运动。这些藻类和原始单细胞动物 就分别进化成为各种各样的植物和动物(下图)。 动植物进化的历程示意图 植物进化的历程大致是:生活在海洋中的原始藻类,经过极其漫长的年代,逐渐进化成为适应 陆地生活的原始的苔藓植物和蕨类植物,使原来的不毛之地开始披上了绿装。但是,它们的生殖还 都需要有水的环境,后来,一部分原始的蕨类植物进化成为原始的种子植物,包括原始的裸子植物 和被子植物,它们的生殖完全脱离了水的限制,更加适应陆地生活。 动物进化的历程大致是:生活在海洋中的原始单细胞动物,经过极其漫长的年代,逐渐进化成 为种类繁多的原始的无脊椎动物,包括腔肠动物、扁形动物、线形动物、软体动物和环节动物等, 这几类动物的结构越来越复杂,但是,它们大都需要生活在有水的环境中。后来发展到了原始的节 肢动物,它们有外骨胳和分节的足,比如昆虫等,对陆地环境的适应能力较强,脱离了水生环境。 地球上最早出来的脊堆动物是古代的鱼类。以后,经过极其漫长的年代,某些鱼类进化成为原 始的两栖类,某些两栖类进化成原始的爬行类,某些爬行类又进化成为原始的鸟类和哺乳类。各类 动物的结构逐渐变得复杂,生活环境逐渐由水中到陆地,最终完全适应了陆上生活。 总之,生物的进化历程可以概括为:由简单到复杂,由低等到高等,由水生到陆生。 人类的出现 人类是从哪里来的?我们知道,人体具有体温恒定、胎生、哺乳等哺乳动物的基 本特征,这说明人类与哺乳运动有着较近的亲缘关系。而在哺乳动物中,类人猿与人类的亲缘关系 要算是最近的了。例如,类人猿中的黑猩猩,无论是在血型、骨胳(下图)、内脏器官的结构和功 人和黑猩猩的骨骼 能上,还是在面部表情和行为上,都与人类很相似。此外,人类学家的研究也充分证明了人类和类 人猿是近亲,二者有着共同的原始祖先。 原来,人类和类人猿都起源于森林古猿。最初,森林古猿在茂密的森林里过着树上生活(图)。 后来,地球上的一些地区,气候变得干燥了,森林减少了。在这些地区生活的森林古猿,被迫下到 地面上来寻找食物,经过漫长的年代,它们就逐渐进化成现代的人类。那么,其他地区的森林古猿 呢?他们仍然生活在森林里,经过漫长的年代,有的绝灭了,有的就逐渐进化成了现在的类人猿。 下到地面上生活的那部分森林古猿,逐渐能够直立行 走,而前肢则能够用树枝、石块等来获取食物、防御敌害 (右图)。在运用这些天然工具的过程中,它们逐渐学会 了制造简单的工具。久而久之,人类祖先的双手变得越来 越灵巧,大脑也越来越发达。在这个过程中,它们还产生 了语言和意识,逐渐形成了社会。就这样,经过极其漫长 的岁月,古猿逐步进化成为人。
② 生物进化的演变过程
一切生命形态发生、发展的演变过程。“进化”一词来源于拉丁文evolution,原义为“展开”,一般用以指事物的逐渐变化、发展,由一种状态过渡到另一种状态。1762年,瑞士学者邦尼特最先将此词应用于生物学中。
进化思想的发展 古代人们在栽培植物和驯养动物的生产实践中,积累了关于生物的形态、构造和生活习性的知识,注意到生物机体的变化以及生物与环境的关系,逐步形成了朴素的生物进化思想。古希腊的亚里士多德通过对他那个时代有关动物的知识的系统整理,把540种动物按性状的异同分为有血的和无血的两大群,每群之下又分为若干类。他进一步提出生物等级即生物阶梯的观念,认为自然界所有生物形成一个连续的系列,即从植物一直到人逐渐变得完善起来的直线系列。中国战国时期汇集的《尔雅》一书记载了生物类型的变化;汉初的《淮南子》一书,不仅对动植物作了初步分类,而且提出各类生物是由其原始类型发展而来的。
近代科学诞生以前,进化思想发展缓慢,当时广为流行的是神创论和物种不变论。这种观点直到18世纪仍在生物学中占统治地位,其代表人物是瑞典植物学家C.von 林耐(1707~1778)。他所提出的分类系统虽然有助于揭示生物物种之间的历史联系,但他却把物种看作是上帝创造的不可改变的产物。随着生产和科学的发展,积累了许多新的与物种不变相矛盾的事实。在大量事实的影响下,甚至像林耐这样坚定的神创论者,在晚年也不得不承认由于杂交的结果能产生新种。和林耐的观点相反,法国学者G.L.L.布丰(1707~1788)相信物种是变化的,现代的动物是少数原始类型的后代。他把有机体与居住环境联系起来,认为气候、食物和人的驯养等因素可引起动物性状的变异。1809年,另一位法国学者J.-B.de拉马克(1744~1829)在其《动物学哲学》中,用环境作用的影响、器官的用进废退和获得性的遗传等原理解释生物进化过程,创立了第一个比较严整的进化理论。1859年C.R.达尔文发表《物种起源》一书,论证了地球上现存的生物都由共同祖先发展而来,它们之间有亲缘关系,并提出自然选择学说以说明进化的原因,从而创立了科学的进化理论,揭示了生物发展的历史规律。
19世纪80年代以来,以A.魏斯曼(1834~1914)为代表的新达尔文主义,把种质论和自然选择学说相结合,丰富了达尔文的进化理论。20世纪30年代以来,以T.杜布尚斯基(1906~1975)等人为代表的综合进化论综合了细胞遗传学、群体遗传学以及古生物学等学科的成就,进一步发展了以自然选择为核心的进化理论。60年代末,日本学者木村资生等人提出中性学说,又在分子水平上揭示了进化的某些特征,补充、丰富了进化论。
进化的进步性 地球上的生命,从最原始的无细胞结构生物进化为有细胞结构的原核生物,从原核生物进化为真核单细胞生物,然后按照不同方向发展,出现了真菌界、植物界和动物界。植物界从藻类到裸蕨植物再到蕨类植物、裸子植物,最后出现了被子植物。动物界从原始鞭毛虫到多细胞动物,从原始多细胞动物到出现脊索动物,进而演化出高等脊索动物——脊椎动物。脊椎动物中的鱼类又演化到两栖类再到爬行类,从中分化出哺乳类和鸟类,哺乳类中的一支进一步发展为高等智慧生物,这就是人。
生物界的历史发展表明,生物进化是从水生到陆生、从简单到复杂、从低等到高等的过程,从中呈现出一种进步性发展的趋势。一般说来,进化过程的进步具有如下特征:
①在生物界的前进运动中,可以看到不同层次的形态结构的逐步复杂化和完善化;与此相应,生理功能也愈益专门化,效能亦逐步增高。
②从总体上看,遗传信息量随着生物的进化而逐步增加。
③内环境调控的不断完善及对环境分析能力和反应方式的发展,加强了机体对外界环境的自主性,扩大了活动范围。
生物进化的道路是曲折的,表现出种种特殊的复杂情况。除进步性发展外,生物界中还存在特化和退化现象。特化不同于全面的生物学的完善化,它是生物对某种环境条件的特异适应。这种进化方向有利于一个方面的发展却减少了其他方面的适应性,如马由多趾演变为适于奔跑的单蹄。当环境条件变化时,高度特化的生物类型往往由于不能适应而灭绝,如爱尔兰鹿,由于过分发达的角对生存弊多利少,以至终于灭绝。对寄生或固着生活方式的适应,也可使机体某些器官和生理功能趋向退化。如有一种深海寄生鱼,雄体寄生在雌体上,雄体消化器官退化,唯有精巢特别膨大,以保证种族繁衍。
有些研究者对进化的进步性表示怀疑,认为进步性不是进化的基本特征,也不是进化的本质。科学研究证明,进化不全都引起进步,进化过程中也有退化,但从有机界总的进化过程看,进步性发展是进化的主流和本质。
进化的方式 生物界各个物种和类群的进化,是通过不同方式进行的。物种形成(小进化)主要有两种方式:一种是渐进式形成,即由一个种逐渐演变为另一个或多个新种;另一种是爆发式形成,即多倍化种形成,这种方式在有性生殖的动物中很少发生,但在植物的进化中却相当普遍,世界上约有一半左右的植物种是通过染色体数目的突然改变而产生的多倍体。物类形成(大进化)常常表现为爆发式的进化过程,从而使旧的类型和类群被迅速发展起来的新生的类型和类群所替代。
渐进进化是达尔文进化论的一个基本概念。达尔文认为,在生存斗争中,由适应的变异逐渐积累就会发展为显着的变异而导致新种的形成。因为“自然选择只能通过累积轻微的、连续的、有益的变异而发生作用,所以不能产生巨大的或突然的变化,它只能通过短且慢的步骤发生作用”。与达尔文的主张相反,早期遗传学家如荷兰的H.de弗里斯等相信,新种可由大的不连续变异即突变直接产生,并把这种方式看作是进化变化的主要源泉,认为自然选择对生物的进化不起积极作用。现代进化论坚持达尔文的渐变论思想和自然选择的创造性作用,强调进化是群体在长时期的遗传上的变化,认为通过突变(基因突变和染色体畸变)或遗传重组、选择、漂变、迁移和隔离等因素的作用,整个群体的基因组成就会发生变化,造成生殖隔离,演变为不同物种。20世纪70年代以来,一些古生物学者根据化石记录中显示出的进化间隙,提出间断平衡学说,代替传统的渐进观点。他们认为物种长期处于变化很小的静态平衡状态,由于某种原因,这种平衡会突然被打断,在较短时间内迅速成为新种。
生物的进化既包含有缓慢的渐进,也包含有急剧的跃进;既是连续的,又是间断的。整个进化过程表现为渐进与跃进、连续与间断的辩证统一。
原始单细胞动物---1.(无脊椎)---腔肠动物---扁形动物---线形动物---软体动物---环节动物---节肢动物---棘皮动物---2.(有脊椎)---原始鱼类---原始两栖类---原始爬行类---原始鸟类,原始哺乳类.
③ 概括下生物进化的过程,
大约在66亿年前,银河系内发生过一次大爆炸,其碎片和散漫物质经过长时间的凝集,大约在46亿年前形成了太阳系。作为太阳系一员的地球也在46亿年前形成了。接着,冰冷的星云物质释放出大量的引力势能,再转化为动能、热能,致使温度升高,加上地球内部元素的放射性热能也发生增温作用,故初期的地球呈熔融状态。高温的地球在旋转过程中其中的物质发生分异,重的元素下沉到中心凝聚为地核,较轻的物质构成地幔和地壳,逐渐出现了圈层结构。这个过程经过了漫长的时间,大约在38亿年前出现原始地壳,这个时间与多数月球表面的岩石年龄一致。
生命的起源与演化是和宇宙的起源与演化密切相关的。生命的构成元素如碳、氢、氧、氮、磷、硫等是来自“大爆炸”后元素的演化。资料表明前生物阶段的化学演化并不局限于地球,在宇宙空间中广泛地存在着化学演化的产物。在星际演化中,某些生物单分子,如氨基酸、嘌呤、嘧啶等可能形成于星际尘埃或凝聚的星云中,接着在行星表面的一定条件下产生了象多肽、多聚核苷酸等生物高分子。通过若干前生物演化的过渡形式最终在地球上形成了最原始的生物系统,即具有原始细胞结构的生命。至此,生物学的演化开始,直到今天地球上产生了无数复杂的生命形式。
38亿年前,地球上形成了稳定的陆块,各种证据表明液态的水圈是热的,甚至是沸腾的。现生的一些极端嗜热的古细菌和甲烷菌可能最接近于地球上最古老的生命形式,其代谢方式可能是化学无机自养。澳大利亚西部瓦拉伍那群中35亿年前的微生物可能是地球上最早的生命证据。
原始地壳的出现,标志着地球由天文行星时代进入地质发展时代,具有原始细胞结构的生命也开始逐渐形成。但是在很长的时间内尚无较多的生物出现,一直到距今5.4亿年前的寒武纪,带壳的后生动物才大量出现,故把寒武纪以后的地质时代称为显生宙
太古代[前震旦纪(18亿年前到45亿年前)]和元古代[震旦纪(5亿7千万年前到18亿年前)]
太古宙(Archean)是最古老的地史时期。从生物界看,这是原始生命出现及生物演化的初级阶段,当时只有数量不多的原核生物,他们只留下了极少的化石记录。从非生物界看,太古宙是一个地壳薄、地热梯度陡、火山—岩浆活动强烈而频繁、岩层普遍遭受变形与变质、大气圈与水圈都缺少自由氧、形成一系列特殊沉积物的时期;也是一个硅铝质地壳形成并不断增长的时期,又是一个重要的成矿时期。
元古宙(Proterozoic)初期地表已出现了一些范围较广、厚度较大、相对稳定的大陆板块。因此,在岩石圈构造方面元古代比太古代显示了较为稳定的特点。早元古代晚期的大气圈已含有自由氧,而且随着植物的日益繁盛与光合作用的不断加强,大气圈的含氧量继续增加。元古代的中晚期藻类植物已十分繁盛,明显区别于太古代。
震旦纪(Sinian period)是元古代最后期一个独特的地史阶段。从生物的进化看,震旦系因含有无硬壳的后生动物化石,而与不含可靠动物化石的元古界有了重要的区别;但与富含具有壳体的动物化石的寒武纪相比,震旦系所含的化石不仅种类单调、数量很少而且分布十分有限。因此,还不能利用其中的动物化石进行有效的生物地层工作。震旦纪生物界最突出的特征是后期出现了种类较多的无硬壳后生动物,末期又出现少量小型具有壳体的动物。高级藻类进一步繁盛,微体古植物出现了一些新类型,叠层石在震旦纪早期趋于繁盛,后期数量和种类都突然下降。再从岩石圈的构造状况来看,震旦纪时地表上已经出现几个大型的、相对稳定的大陆板块,之上已经是典型的盖层沉积,与古生界相似。因此,震旦纪可以被认为是元古代与古生代之间的一个过渡阶段。
古生代开始
藻类和无脊椎动物时代
寒武纪(5亿7千万年前到5亿1千万年前 三叶虫时代
寒武纪(Cambrian period)是古生代的第一个纪,开始于距今5.4亿年,延续了4000万年。寒武纪是生物界第一次大发展的时期,当时出现了丰富多样且比较高级的海生无脊椎动物,保存了大量的化石,从而有可能研究当时生物界的状况,并能够利用生物地层学方法来划分和对比地层,进而研究有机界和无机界比较完整的发展历史。
比较着名的有早寒武世云南的澄江动物群、加拿大中寒武世的布尔吉斯页岩生物群。寒武纪的生物界以海生无脊椎动物和海生藻类为主。无脊椎动物的许多高级门类如节肢动物、棘皮动物、软体动物、腕足动物、笔石动物等都有了代表。其中以节肢动物门中的三叶虫纲最为重要,其次为腕足动物。此外,古杯类、古介形类、软舌螺类、牙形刺、鹦鹉螺类等也相当重要。抛开牙形石不说,高等的脊索动物还有许多其他代表,如我国云南澄江动物群中的华夏鳗、云南鱼、海口鱼等,加拿大布尔吉斯页岩中的皮开虫,美国上寒武统的鸭鳞鱼。
奥陶纪(5亿1千万年前到4亿3千8百万年前
原始的脊椎动物出现
奥陶纪(Ordovician period)是古生代的第二个纪,开始于距今5亿年,延续了6500万年。奥陶纪是地史上海侵最广泛的时期之一。在板块内部的地台区,海水广布,表现为滨海浅海相碳酸盐岩的普遍发育,在板块边缘的活动地槽区,为较深水环境,形成厚度很大的浅海、深海碎屑沉积和火山喷发沉积。奥陶纪末期曾发生过一次规模较大的冰期,其分布范围包括非洲,特别是北非、南美的阿根廷、玻利维亚以及欧洲的西班牙和法国南部等地。
奥陶纪的生物界较寒武纪更为繁盛,海生无脊椎动物空前发展,其中以笔石、三叶虫、鹦鹉螺类和腕足类最为重要,腔肠动物中的珊瑚、层孔虫,棘皮动物中的海林檎、海百合,节肢动物中的介形虫,苔藓动物等也开始大量出现。
奥陶纪中期,在北美落基山脉地区出现了原始脊椎动物异甲鱼类——星甲鱼和显褶鱼,在南半球的澳大利亚也出现了异甲鱼类。植物仍以海生藻类为主。
裸蕨植物和鱼类时代
志留纪(4.38亿年前到4.1亿年前) 笔石的时代,陆生植物和有颌类出现
志留纪(Silurian period)是早古生代的最后一个纪。本纪始于距今4.35亿年,延续了2500万年。由于志留系在波罗的海哥德兰岛上发育较好,因此曾一度被称为哥德兰系。
志留系三分性质比较显着。一般说来,早志留世到处形成海侵,中志留世海侵达到顶峰,晚志留世各地有不同程度的海退和陆地上升,表现了一个巨大的海侵旋回。志留纪晚期,地壳运动强烈,古大西洋闭合,一些板块间发生碰撞,导致一些地槽褶皱升起,古地理面貌巨变,大陆面积显着扩大,生物界也发生了巨大的演变,这一切都标志着地壳历史发展到了转折时期。
志留纪的生物面貌与奥陶纪相比,有了进一步的发展和变化。海生无脊椎动物在志留纪时仍占重要地位,但各门类的种属更替和内部组分都有所变化。如笔石动物保留了双笔石类,新兴的单笔石类也很繁盛;腕足动物内部的构造变得比较复杂,如五房贝目、石燕贝目、小嘴贝目得到了发展;软体动物中头足纲、鹦鹉螺类显着减少,而双壳纲、腹足纲则逐步发展;三叶虫开始衰退,但蛛形目和介形目大量发展;节肢动物中的板足鲎,也称“海蝎”在晚志留世海洋中广泛分布;珊瑚纲进一步繁盛;棘皮动物中海林檎类大减,海百合类在志留纪大量出现。
脊椎动物中,无颌类进一步发展,有颌的盾皮鱼类和棘鱼类出现,这在脊椎动物的演化上是一重大事件,鱼类开始征服水域,为泥盆纪鱼类大发展创造了条件。
植物方面除了海生藻类仍然繁盛以外,晚志留世末期,陆生植物中的裸蕨植物首次出现,植物终于从水中开始向陆地发展,这是生物演化的又一重大事件。
志留纪:
生命在海洋中生,在海洋中发展壮大。在4亿多年前的志留纪,水域中的生物千姿百态,热闹非凡,植物已发展到大海藻,动物发展到低等的脊椎动物鱼类。而陆地上的生命却十分罕见,几乎到处是童山秃岭,一片荒凉。 末期,由于地壳剧烈运动,地球表面普遍出现了海退现象,不少水域变成了陆地,有的海底崛起了高山。沧海巨变,对水中的生物产生了巨大的影响。
圆口类很象鱼,但缺乏成对的胸、腹鳍、特别是嘴巴上没有上下颌,所以又叫"无颌类"。古代的无颌类,都是些体外披着硬骨片的"甲胄鱼"。古代的无颌类,从奥陶纪出现以后,在志留纪很繁盛。但因为无颌,生活方式落后,仅能以流入中内的水中夹杂的食物为食,所以在生存斗争中,它们敌不过新兴的有颌鱼类而日趋衰落了。
泥盆纪(4.1亿年前到3.6亿年前) 鱼类的时代
泥盆纪(Devonian period)是晚古生代的第一个纪,开始于距今4.1亿年,延续了约5500万年。泥盆纪古地理面貌较早古生代有了巨大的改变。表现为陆地面积的扩大,陆相地层的发育,生物界的面貌也发生了巨大的变革。陆生植物、鱼形动物空前发展,两栖动物开始出现,无脊椎动物的成分也显着改变。
腕足类在泥盆纪发展迅速,志留纪开始出现的石燕贝目成为泥盆纪的重要化石。此外,穿孔贝目、扭月贝目、无洞贝目和小嘴贝目在划分和对比泥盆纪地层中也极为重要。
泡沫型和双带型四射珊瑚相当繁盛。早泥盆世以泡沫型为主,双带型珊瑚开始兴起;中、晚泥盆世以双带型珊瑚占主要地位。
鹦鹉螺类大大减少,菊石中的棱菊石类和海神石类繁盛起来。
正笔石类大部分绝灭,早泥盆世残存少量单笔石科的代表。
竹节石类始于奥陶纪,泥盆纪一度达到最盛,泥盆纪末期绝灭。其中以薄壳型的塔节石类最繁盛,光壳节石类也十分重要。
牙形石演化到泥盆纪又进入一个发展高峰,这个时期以平台型分子大量出现为特征。
昆虫类化石最早也发现于泥盆纪。
泥盆纪是脊椎动物飞越发展的时期,鱼类相当繁盛,各种类别的鱼都有出现,故泥盆纪被称为 “鱼类的时代”。早泥盆世以无颌类为多,中、晚泥盆世盾皮鱼相当繁盛,它们已具有原始的颚,偶鳍发育,成歪形尾。
早泥盆世裸蕨植物较为繁盛,有少量的石松类植物,多为形态简单、个体不大的草本类型;中泥盆世裸蕨植物仍占优势,但原始的石松植物更发达,出现了原始的楔叶植物和最原始的真蕨植物;晚泥盆世到来时,裸蕨植物濒于灭亡,石松类继续繁盛,节蕨类、原始楔叶植物获得发展,新的真蕨类和种子蕨类开始出现。
进入 蕨类植物和两栖动物的时代
石炭纪 两栖动物的时代
石炭纪(Carboniferous period)开始于距今约3.55亿年至2.95亿年,延续了6000万年。石炭纪时陆地面积不断增加,陆生生物空前发展。当时气候温暖、湿润、沼泽遍布,大陆上出现了大规模的森林,给煤的形成创造了有利条件。
石炭纪又是地壳运动非常活跃的时期,因而古地理的面貌有着极大的变化。这个时期气候分异现象又十分明显,北方古大陆为温暖潮湿的聚煤区,冈瓦纳大陆却为寒冷的大陆冰川沉积环境。气候分带导致了动、植物地理分区的形成。
石炭纪的海生无脊椎动物与泥盆纪比较起来,有了显着的变化。浅海底栖动物中仍以珊瑚、腕足类为主。早石炭世晚期的浮游和游泳的动物中,出现了新兴的筳类,菊石类仍然繁盛,三叶虫到石炭纪已经大部分绝灭,只剩下几个属种。
最早发现于泥盆纪的昆虫类,在石炭纪得到进一步的繁盛,已知石炭、二叠纪的昆虫就达1300种以上。陆生脊椎动物进一步繁盛,两栖动物占到了统治地位。早石炭世一开始,两栖动物蓬勃发展,主要出现了坚头类(也称迷齿类),同时繁盛的还有壳椎类。
早石炭世的植物面貌与晚泥盆世相似,古蕨类植物延续生长,但只能适应于滨海低地的环境;晚石炭世植物进一步发展,除了节蕨类和石松类外,真蕨类和种子蕨类也开始迅速发展。裸子植物中的苛达树是一种高大的乔木,成为造煤的重要材料之一。
二叠纪 重要的成煤期
二叠纪(Permian period)是古生代的最后一个纪,也是重要的成煤期。二叠纪开始于距今约2.95亿年,延至2.5亿年,共经历了4500万年。二叠纪的地壳运动比较活跃,古板块间的相对运动加剧,世界范围内的许多地槽封闭并陆续地形成褶皱山系,古板块间逐渐拚接形成联合古大陆(泛大陆)。陆地面积的进一步扩大,海洋范围的缩小,自然地理环境的变化,促进了生物界的重要演化,预示着生物发展史上一个新时期的到来。
二叠纪是生物界的重要演化时期。海生无脊椎动物中主要门类仍是筳类、珊瑚、腕足类和菊石,但组成成分发生了重要变化。节肢动物的三叶虫只剩下少数代表,腹足类和双壳类有了新的发展。二叠纪末,四射珊瑚、横板珊瑚、筳类、三叶虫全都绝灭;腕足类大大减少,仅存少数类别。
脊椎动物在二叠纪发展到了一个新阶段。鱼类中的软骨鱼类和硬骨鱼类等有了新发展,软骨鱼类中出现了许多新类型,软骨硬鳞鱼类迅速发展。两栖类进一步繁盛。爬行动物中的杯龙类在二叠纪有了新发展;中龙类游泳于河流或湖泊中,以巴西和南非的中龙为代表;盘龙类见于石炭纪晚期和二叠纪早期;兽孔类则是二叠纪中、晚期和三叠纪的似哺乳爬行动物,世界各地皆有发现。
早二叠世的植物界面貌与晚二叠世相似,仍以节蕨、石松、真蕨、种子蕨类为主。晚二叠世出现了银杏、苏铁、本内苏铁、松柏类等裸子植物,开始呈现中生带的面貌。
古生代到此结束....中生代开始啦!!!
中生代是裸子植物和爬行动物的时代!
三叠纪 爬行动物和裸子植物的崛起
三叠纪(Triassic period)是中生代的第一个纪。始于距今2.5亿年至2.03亿年,延续了约5000万年。海西运动以后,许多地槽转化为山系,陆地面积扩大,地台区产生了一些内陆盆地。这种新的古地理条件导致沉积相及生物界的变化。从三叠纪起,陆相沉积在世界各地,尤其在中国及亚洲其它地区都有大量分布。古气候方面,三叠纪初期继承了二叠纪末期干旱的特点;到中、晚期之后,气候向湿热过渡,由此出现了红色岩层含煤沉积、旱生性植物向湿热性植物发展的现象。植物地理区也同时发生了分异。
生物变革方面,陆生爬行动物比二叠纪有了明显的发展。古老类型的代表(如无孔亚纲和下孔亚纲)基本绝灭,新类型大量出现,并有一部分转移到海中生活。原始哺乳动物在三叠纪末期也出现了。由于陆地面积的扩大,淡水无脊椎动物发展很快,海生无脊椎动物的面貌也为之一新。菊石、双壳类、有孔虫成为划分与对比地层的重要门类,而筳及四射珊瑚则完全绝灭。
爬行动物在三叠纪崛起,主要由槽齿类、恐龙类、似哺乳的爬行类组成。典型的早期槽齿类表现出许多原始的特点,且仅限于三叠纪,其总体结构是后来主要的爬行动物以至于鸟类的祖先模式;恐龙类最早出现于晚三叠世,有两个主要类型:较古老的蜥臀类和较进化的鸟臀类。海生爬行类在三叠纪首次出现,由于适应水中生活,其体形呈流线式,四肢也变成桨形的鳍;似哺乳爬行动物亦称兽孔类,四肢向腹面移动,因此更适于陆地行走。
原始的哺乳动物最早见于晚三叠世,属始兽类,所见到的化石都是牙齿和颌骨的碎片。
三叠纪时,晚二叠世幸存的齿菊石类大量繁盛起来,中、晚三叠世的大部分菊石有发达的纹饰,有许多科是三叠纪所特有的。菊石的迅速演化为划分和对比地层创造了极重要的条件。
双壳类也有明显变化,晚古生代的种类只有很少数继续存在,产生了许多新种类,并且数量相当繁多。尤其在晚三叠世,一些种属的结构类型变得复杂,个体也往往比较大。由于三叠纪的环境与古生代不同,非海相双壳类逐渐繁盛起来。
裸子植物的苏铁、本内苏铁、尼尔桑、银杏及松柏类自三叠纪起迅速发展起来。其中除本内苏铁目始于三叠纪外,其它各类植物均在晚古生代就开始有了发展,但并不占重要地位。二叠纪的干燥性气候延续到了早、中三叠世,到了中三叠世晚期植物才开始逐渐繁盛。晚三叠世时,裸子植物真正成了大陆植物的主要统治者。
朱罗纪 爬行动物和裸子植物的时代
侏罗纪(Jurassic period)是中生代的第二个纪,始于距今2.03亿年,结束于1.35亿年,共经历了6800万年。
生物发展史上出现了一些重要事件,引人注意。如恐龙成为陆地的统治者,翼龙类和鸟类出现,哺乳动物开始发展等等。陆生的裸子植物发展到极盛期。淡水无脊椎动物的双壳类、腹足类、叶肢介、介形虫及昆虫迅速发展。海生的菊石、双壳类、箭石仍为重要成员,六射珊瑚从三叠纪到侏罗纪的变化很小。棘皮动物的海胆自侏罗纪开始占领了重要地位。
侏罗纪时爬行动物迅速发展。槽齿类绝灭,海生的幻龙类也绝灭了。恐龙的进化类型——鸟臀类的四个主要类型中有两个繁盛于侏罗纪,飞行的爬行动物第一次滑翔于天空之中。鸟类首次出现,这是动物生命史上的重要变革之一。恐龙的另一类型——蜥臀类在侏罗纪有两类最为繁盛:一类是食肉的恐龙,另一类是笨重的植食恐龙。海生的爬行类中主要是鱼龙及蛇颈龙,它们成为海洋环境中不可忽视的成员。
三叠纪晚期出现的一部分最原始的哺乳动物在侏罗纪晚期已濒于绝灭。早侏罗世新产生了哺乳动物的另一些早期类型——多瘤齿兽类,它被认为是植食的类型,至新生代早期绝灭。而中侏罗世出现的古兽类一般被认为是有袋类和有胎盘哺乳动物的祖先。
软骨硬鳞鱼类在侏罗纪已开始衰退,被全骨鱼代替。发现于三叠纪的最早的真骨鱼类到了侏罗纪晚期才有了较大发展,数量增多,但种类较少。
侏罗纪的菊石更为进化,主要表现在缝合线的复杂化上,壳饰和壳形也日趋多样化,可能是菊石为适应不同海洋环境及多种生活方式所致。侏罗纪的海相双壳类很丰富,非海相双壳类也迅速发展起来,它们在陆相地层的划分与对比上起了重要作用。
侏罗纪是裸子植物的极盛期。苏铁类和银杏类的发展达到了高峰,松柏类也占到很重要的地位。
白垩纪 爬行动物和裸子植物由极盛走向衰灭
白垩纪(Cretaceus period)是中生代的最后一个纪,始于距今1.35亿年,结束于距今6500万年,其间经历了7000万年。无论是无机界还是有机界在白垩纪都经历了重要变革。
剧烈的地壳运动和海陆变迁,导致了白垩纪生物界的巨大变化,中生代许多盛行和占优势的门类(如裸子植物、爬行动物、菊石和箭石等)后期相继衰落和绝灭,新兴的被子植物、鸟类、哺乳动物及腹足类、双壳类等都有所发展,预示着新的生物演化阶段——新生代的来临。
爬行类从晚侏罗世至早白垩世达到极盛,继续占领着海、陆、空。鸟类继续进化,其特征不断接近现代鸟类。哺乳类略有发展,出现了有袋类和原始有胎盘的真兽类。鱼类已完全的以真骨鱼类为主。
白垩纪的海生无脊椎动物最重要的门类仍为菊石纲,菊石在壳体大小、壳形、壳饰和缝合线类型上远较侏罗纪多样。海生的双壳类、六射珊瑚、有孔虫等也比较繁盛。淡水无脊椎动物以软体动物的双壳类、腹足类和节肢动物的介形类、叶肢介类为主。
早白垩世仍以裸子植物中的苏铁类、本内苏铁类、银杏类和松柏类为主,真蕨类仍然繁盛。从早白垩世晚期兴起的被子植物到晚白垩世得到迅速发展,逐渐取代了裸子植物而居统治地位。
中生代(三叠纪-侏罗纪-白垩纪):[/b2]地球历史的中生代,被称为"裸子植物时代"。但是,在真正的陆生植物--裸子植物--兴盛的时候,真正的陆生脊椎动物--爬行动物--也发展起来了。因此,从动物的角度来看,中生代双可称为"爬行动物时代"。 爬行动物到中生代成了当时最繁荣昌盛的脊椎动物,它们形态各异,各成系统,霸占一方,到处是"龙"的天下。向海洋发展的,如鱼龙;向天空发展的,如飞龙;向陆地发展的,如各式各样的恐龙。 2亿多年前的三迭纪早期以后,有些陆生爬行动物又返回海洋,先后形成了各具特色的鱼龙、蛇颈龙等,其中,一些还是当时海洋中显赫一时的大动物。 爬行类由爬行到飞行的种类也不少,如喙嘴龙,翼手龙等。上天不容易,由爬行到飞行不是一下子形成的,而是经过了漫长的岁月,是一代代有利于飞行的变异积累的结果。
新生代开始啦!!它是被子植物和哺乳动物的时代!!
第三纪 被子植物的时代
中生代(三叠纪-侏罗纪-白垩纪): 地球历史的中生代,被称为"裸子植物时代"。但是,在真正的陆生植物--裸子植物--兴盛的时候,真正的陆生脊椎动物--爬行动物--也发展起来了。因此,从动物的角度来看,中生代双可称为"爬行动物时代"。 爬行动物到中生代成了当时最繁荣昌盛的脊椎动物,它们形态各异,各成系统,霸占一方,到处是"龙"的天下。向海洋发展的,如鱼龙;向天空发展的,如飞龙;向陆地发展的,如各式各样的恐龙。 2亿多年前的三迭纪早期以后,有些陆生爬行动物又返回海洋,先后形成了各具特色的鱼龙、蛇颈龙等,其中,一些还是当时海洋中显赫一时的大动物。 爬行类由爬行到飞行的种类也不少,如喙嘴龙,翼手龙等。上天不容易,由爬行到飞行不是一下子形成的,而是经过了漫长的岁月,是一代代有利于飞行的变异积累的结果。
第四纪 劳动创造了人类
④ 生物的进化过程是什么
地球上的生命,从最原始的无细胞结构状态进化为有细胞结构的原核生物,从原核生物进化为真核单细胞生物,然后按照不同方向发展,出现了真菌界、植物界和动物界。
植物界从藻类到裸蕨植物再到蕨类植物、裸子植物,最后出现了被子植物。
动物界从原始鞭毛虫到多细胞动物,从原始多细胞动物到出现脊索动物,进而演化出高等脊索动物──脊椎动物。脊椎动物中的鱼类又演化到两栖类再到爬行类,从中分化出哺乳类和鸟类,哺乳类中的一支进一步发展为高等智慧生物,这就是人 。
(4)进化过程怎么保留的原有生物扩展阅读:
生物进化差异性产生原因:
多细胞生物既有时间上的分化,又有空间上的分化。在个体的细胞数目大量增加的同时,分化程度越来越复杂,细胞间的差异也越来越大,而且同一个体的细胞由于所处位置不同而在细胞间出现功能分工,头与尾、背与腹、内与外等不同空间的细胞表现出明显的差别。
胚胎发育不仅需要将分裂产生的细胞分化成具有不同功能的特异的细胞类型, 同时,要将一些细胞组成功能和形态不同的组织和器官,最后形成一个具有表型特征个体。
⑤ 生物进化历史
(1)生命的起源
一般认为生命是由化学物质从无机到有机演化而来的。原始大气富含甲烷、氨、二氧化碳、水汽等,这些气体在外界高能(紫外线、闪电、高温)的作用下,首先合成氨基酸、脂肪酸等小分子有机化合物。这些小分子有机化合物,在适当的条件下,可以进一步结合成更复杂的蛋白质、核酸等大分子有机物质,经过进一步演化,终于产生了能够不断地进行自我更新的、结构非常复杂的多分子体系,由此产生了原始生命。当非细胞形态的原始生命在地球上出现时,由于大气中仍然缺氧,因此,它们一定是厌氧和异养类型。地球约形成于距今46亿年,从澳大利亚发现的距今35亿年的瓦拉翁纳群中的丝状细菌化石表明,生命的起源亦即化学演化过程,应发生在地球形成后约11亿年。生命的产生是地球演化史上的一次最大的飞跃,使得地球历史从化学演化阶段推向生物演化阶段。
(2)原核生物的出现
最初的生命应是非细胞形态的生命,为了保证有机体与外界正常的物质交换,原始生命在演化过程中,形成了细胞膜,出现了细胞结构的原核生物。细胞是生命的结构单元、功能单元和生殖单元,细胞的产生是生命史上的一次重大的飞跃。当前,地球上发现最早具细胞结构的可靠化石是瓦拉翁纳群中的丝状细菌化石。
(3)藻菌生态系统的形成
地球上最早出现的异养型原核生物细菌,经过不断地分化和发展,终于又出现了能够进行光合作用、从无机物合成有机养料的自养型原核生物蓝藻。蓝藻和细菌作为早期生物界的合成者和分解者,组成物质循环的两个基本环节,形成了一个完整的生态系统。从异养到自养是早期生物演化的另一次重大的飞跃。
蓝藻是最早出现的放氧生物,使得地球上原始大气中氧气浓度不断增加,形成含氧大气层。在高空出现的臭氧层,吸收了太阳的紫外辐射,改变了整个生态环境,为喜氧生物提供了有利的生活环境。于是生物便由厌氧转入喜氧,提高了能量代谢的效能。在加拿大甘弗林组中,发现了完好的距今约20亿年的细菌和蓝藻化石。
(4)真核生物的出现
从原核到真核是生物演化从简单到复杂的转折点,最早具细胞的生物是单细胞原核生物。原核细胞没有核膜,没有细胞器,结构简单。真核细胞具有核膜,整个细胞分化为细胞核和细胞质两部分。细胞核内具有染色体,成为遗传中心,细胞质内进行蛋白质合成,成为代谢中心。由于细胞结构的复化,增强了变异性,使得真核生物能够向高级体制发展。现已发现距今约13亿年的美国加利福尼亚的贝克泉组的白云岩中的原核蓝藻和真核绿藻。绿藻还发现于距今约10亿年的澳大利亚的苦泉组。绿藻是最早具有真核的生物。
(5)动物的出现
随着真核生物的出现,动、植物开始分化和发展。动物的出现,形成了一个新的三极生态系统。绿色植物(真核植物和原核蓝藻)通过叶绿素光合作用制造食物,是自然界的生产者;细菌和真菌是自然界的分解者;动物是自然界的消费者。地史上最早的动物化石是距今6~7亿年澳大利亚的伊迪卡拉动物群,其中以腔肠动物的似水母类、海鳃类、环节动物和少量节肢动物为主,还有一部分分类位置未定的疑难化石,很可能代表地史上曾短暂出现而又迅速绝灭的类群。从动物的分化水平看,伊迪卡拉动物群已是较后期的类型,不是动物的原始代表。这标志着后生动物在早已出现,并经历了一段相当长的分化演变过程。
(6)洋藻类和无脊椎动物时代
在生物演化史上称为“海洋藻类时代”和“海洋无脊椎动物时代”。起始于距今6亿年,延续了约1.7亿年。
植物仍以海生藻类为主,但很难保存为完好的化石。由于植物进化速度远较动物缓慢,早古生代植物界一直停留在藻类阶段。藻类的大量繁育不仅为海洋无脊椎动物提供了丰富的食物资源,而且通过叶绿素光合作用,放出氧气,为海洋无脊椎动物的发展,准备了有利的生活环境。
继元古宙末期伊迪卡拉后生裸露动物群之后,于早期,出现了地史上最早具钙质硬壳的小壳动物群,包括软舌螺、单板类、腹足类、腕足类等。这与当时海水富含钙质有关。由于发生了矿化事件,使得寒武纪保存的化石突然增多。这一时期称为“非三叶虫时代”。进入三叶虫时代后,在中国云南发现了距今5.7亿年的澄江动物群,主要由水母、三叶虫、金臂虫、非三叶虫节肢动物、蠕形动物、海绵、无铰腕足类、软舌螺和藻类等组成,是目前世界上保存最早的软体的多门类动物群,这一动物群的发现还表明后生动物在寒武纪开始前已经历了一段分化、辐射的历史过程。随后,腔肠动物、古杯类、软体动物(双壳、腹足、头足)、棘皮动物、牙形刺、笔石等相继出现。其中以三叶虫演化迅速、生态分异明显,分布遍及全球整个海域,在动物界中占绝对优势,因而称寒武纪为“三叶虫时代”。古杯类是地史上最早的造礁动物,生活于早寒武世,中寒武世早期绝灭,是生物史上第一个完全绝灭的造礁动物门类。
是自然环境有利于海洋无脊椎动物继续发展的时代,层孔虫、苔藓虫等先后出现,笔石、腕足类、鹦鹉螺等显着分异。树形笔石继续发展,一部分固着在海底生活,而大部分远运洋漂浮生活,遍及全球海域。到早奥陶世中期,正笔石类兴起、演化迅速,是奥陶纪的重要分带化石。腕足类出现了分异的第一个高峰期,在数量上占重要地位。鹦鹉螺开始出现于晚寒武世,到奥陶纪分异明显,种类繁多,个体较大,是营游泳生活的凶猛食肉动物。珊瑚最早出现于寒武纪,至中、晚奥陶世大量繁育,同层孔虫、苔藓虫等一起,是温暖浅海的重要造礁动物。海洋无脊椎动物新类群的出现和多样化,加剧了浅海陆棚区的生存竞争。
延续时间较短,生物界来源于奥陶纪,但有新的发展。其中最重要的生物事件是,三叶虫显着衰退,笔石向简化方向演变,单笔石兴起并大量发展。珊瑚以床板珊瑚和日射珊瑚为主,出现了特有的链珊瑚。腕足类出现了内部构造更为复杂的五房贝和展翼状外壳的石燕贝。鹦鹉螺显着减少但仍有代表。节肢动物中形体最大的板足鲎类最早出现于奥陶纪,到志留纪大量繁育,志留纪末,由于受加里东运动的影响,海水逐渐退去。部分生物为了适应新的生活环境,由海洋向陆地生活转变。
(7)向陆地生活转变和发展
由于志留纪末期大规模海退,陆地面积逐渐扩大,从滨海浅滩绿藻植物演化而来的陆生裸蕨植物最早出现于晚志留世,到早泥盆世开始大量生活在滨海沼泽低地,中泥盆世后期出现根、茎和叶分化的原始石松类和有节类,到晚泥盆世在自然选择的作用下,裸蕨迅速绝灭了。一般称志留纪末到中泥盆世为“裸蕨植物时代”。到石炭、二叠纪陆生植物进一步发展,出现了石松、节蕨、真蕨和原始裸子植物的种子蕨和科达类,这一时期被称为“蕨类植物时代”。从晚石炭世到二叠纪各类植物极度繁茂,由于适应不同的气候条件,逐渐形成明显的植物地理分区。
陆生植物发展之后,与植物存在着密切关系的昆虫大量繁育,它们相互依存,相互制约,平行发展。最早的昆虫类是最原始的无翅类型,最早的无翅类化石出现于。出现了现知最早的有翅昆虫,当时最繁盛的昆虫是现已绝灭的古网翅类。昆虫区系发生显着的变化,直翅类明显缩小,许多现代类型开始出现。
(8)鱼类的出现和发展
鱼类包括有颌类和无颌类。无颌类包括头甲鱼形类和鳍甲鱼形类。头甲鱼形类包括现生的七鳃鳗和盲鳗以及古生代有甲胄的种类;鳍甲鱼形类包括已绝灭的异甲鱼和花麟鱼。无颌类最早的类群是异甲类。发现于北美落基山区中奥陶统的异甲鱼,是脊椎动物最早的化石代表。晚志留世出现了从无颌类分化出来的最早具颌的棘鱼类和盾皮鱼类。有了上下颌,就不仅是被动摄食微小有机物,而可主动追捕大的食物了。硬骨鱼类包括总鳍鱼类、肺鱼类和辐鳍鱼类,最早出现于晚志留世晚期,与棘鱼类有共同的祖先。盾皮鱼类最早出现于晚志留世,一直生存到早石炭世,以泥盆纪最繁盛。软骨鱼类出现于早泥盆世晚期,可能与盾皮鱼类有共同的祖先。泥盆纪时鱼类极为繁盛,故被称为“鱼类时代”。硬骨鱼类在现代鱼类中占绝对优势,被称为“水中的主人”。从侏罗纪起,软骨鱼类出现了,如鲨鱼和鳐,还有生活在深海里的银鲛。
(9)两栖类的出现
总鳍鱼在晚泥盆世时登陆, 是陆生脊椎动物的最早类型。脊椎动物在登上陆地的过程中首先要解决呼吸和行动问题总鳍鱼已具有原始肺的构造,肉质偶鳍可以在地上爬行。最早的两栖类代表是发现于格陵兰和北美晚泥盆世的迷齿类鱼石螈(Ichthyostega),具明显的从总鳍鱼类向两栖类过渡的中间类型性质。石炭——二叠纪是两栖类最繁盛的时期,被称为“两栖动物时代”。残存下来的现代两栖类有蝾螈、青蛙等。
(10)裸子植物和爬行运动
裸子植物虽在石炭——二叠纪时已开始出现,但最繁盛的时期是,故中生代被称为“裸子植物时代”。这一时期的植物群以苏铁、本内苏铁和松柏类为主。北半球还有较多的银杏类,南半球则以松柏类占优势。从蕨类植物演化到裸子植物,标志着从孢子繁植转化为种子繁殖。裸子植物用种子繁殖适于陆上生活和传播,扩大了生存空间,形成了地球上的广大森林,为爬行动物的发展,提供了有利的生活环境。
石炭——二叠纪时,从两栖动物迷齿类演化出来的蜥螈形类,坚持陆生方向,很可能是爬行动物的祖先。经过长期演化,产生了能够适应干旱陆地环境的羊膜卵。于是,爬行动物诞生了。从两栖类水中产卵、水中受精发展到爬行动物的体内受精和产生羊膜卵,是脊椎动物演化史上的一次重大飞跃。
陆生爬行动物中以恐龙(Dinosaur)为主要代表。恐龙最早出现于中三叠世,分蜥臀类和鸟臀类两大支系,是中生代占绝对优势的陆地脊椎动物。由于爬行动物大量繁殖,除绝大部分在陆地上生活外,有的重返水域成为水生爬行动物,如开始的鱼龙类、和的蛇颈龙类。有的向空中发展成为飞翔的爬行动物,叫翼龙类,如德国侏罗系中发现的喙嘴龙 (Rhamphorhyn-chus),靠前肢的两张翼膜飞翔。由喙嘴龙分化出另一类飞翔爬行动物叫翼指龙(Ptercdactylus),主要生活在晚侏罗世到白垩纪。
爬行动物是中生代地球上占绝对优势的脊椎动物,故称中生代为“爬行动物时代”或“龙的时代”。到白垩纪末期,全球出现了显着的地质事件,使地表自然环境发生巨大变化。由于恐龙不能适应当时迅速变化的环境,随同整个爬行动物的大衰退,无论陆生的、水生的或飞翔的恐龙,到白垩纪末都相继绝灭了。爬行动物中残留并延续至今天的,仅有喙头蜥类、鳄类、龟鳖类和有鳞类(蛇和蜥蜴)。
对恐龙的绝灭尚有不同的解释。不少人认为恐龙的集群绝灭与地外成因的灾变事件有关,如超新星爆发、小天体撞击地球等。
(11)鸟类的出现和发展
鸟类是从爬行动物分化出来的一个旁支。鸟类的脑和神经系统发达,心脏分隔完全,是恒温的脊椎动物。从变温的爬行动物转化为恒温的鸟类,是脊椎动物演化史上的一次重大飞跃。恒温动物(鸟类和哺乳动物)的体温相对稳定,不受外界气温的影响,增强了对气候环境的适应性,扩大了地理分布范围。
鸟类最早的化石代表是德国晚侏罗世的始祖鸟(Ar-chaeopteryx),它是由爬行动物向鸟类过渡的中间类型,是鸟类的最早代表。此外,1986年在美国得克萨斯州发现一新的鸟化石,命名为 Protoavis,意为“原始的鸟”。其时代为三叠纪,比始祖鸟早,但比始祖鸟更接近现代鸟类。因此有人认为始祖鸟可能是鸟类系统演化中的一个旁支。有关鸟类的起源和早期发展有待深入研究。
(12)被子植物和哺乳动物
早白垩世晚期出现了被子植物,中、晚白垩世很快繁育起来,新生代时极为繁盛,代替了裸子植物,成为植物界中最高级的类群,开创了被子植物时代。关于被子植物的起源迄今尚无定论。
被子植物有比裸子植物更进步的内部构造和完善的生殖器官。被子植物的迅速发展和更广泛的地理分布,为依赖植物为生的动物界提供了丰富的食物资源,促进了昆虫、鸟类和哺乳动物的大发展。人类生活也与被子植物的发展密切相关。
最早的哺乳动物是从三叠纪的似哺乳爬行动物中分化出来的。进入新生代,由于板块的分离或聚合,气候的分化,被子植物的迅速发展和广泛分布,促使哺乳动物迅速分化、辐射,得到了空前发展,取代了爬行动物,在地球上居于优势。从而脊椎动物的演化又进入了一个更高级的阶段——哺乳动物时代。从爬行动物的变温、卵生发展为哺乳动物的恒温、胎生和哺乳,以及高度发达的神经系统和感觉器官,是脊椎动物演化史上的一次重大飞跃。
一般认为中生代的古兽类是白垩纪和新生代有袋类和有胎盘类的共同祖先。白垩纪时,有袋类广泛分布于世界各大陆,第三纪繁盛于南美,而现代仅生活在澳大利亚。有胎盘类是比有袋类更高等的哺乳动物。最早的有胎盘类是白垩纪出现的小型食虫类。新生代后得到空前发展,分化、辐射出许多分支。其中一支为适合于飞行生活的翼手类和蝙蝠,是从古新世一类树栖生活的食虫类演化而来的。另一支是适应于海洋生活的鲸类,保留了从陆生祖先继承来的肺呼吸,是一种进化趋同的现象。啮齿类包括现生的松鼠、河狸、家鼠等,是兽类中演化最成功的一类,无论在种类、数量、分布地区,在兽类中都占优势地位。食肉类又分为古食肉类、新食肉类和鳍脚类。古食肉类大量辐射发生在古新世和始新世。始新世末期新食肉类繁盛起来,如现生的猫、虎、狗等。新食肉类出现不久,海生鳍脚类(海狮、海豹、海象)开始出现。
最原始的哺乳动物主要是食虫的。古老的有蹄动物踝节类也是从原始食虫类演化而来的,是由食虫发展到食草过程中最原始的一个分支,是后来大多数有蹄动物,包括马、貘、犀等奇蹄类和猪、牛、羊等偶蹄类的共同祖先。
象的祖先可能由早期的踝节类演化而来。最早的象是发现于北非晚始新世到早渐新世的始祖象(Moerither-ium),体形大小如猪,第二对门齿还没有形成象类特有的大门牙。古乳齿象(Palaeomastodon)是始祖象的直接后裔,它的身体比始祖象增大了约一倍,上门牙伸长,第四纪开始多数绝灭,少数生活到早更新世。真象类是从乳齿象演化出来的,又分为剑齿象类和真象类。中国象类化石很多,如甘肃早更新世的剑齿象化石被命名为黄河古象,真象化石有广泛分布于华北和东北晚更新世的猛犸象。象类演化趋势是个体增大、鼻长和大象牙的不断增长。今天残存的仅有非洲象和印度象。
奇蹄类中以马的演化研究的最清楚。马的最早代表是始新世早期的始马(Hyracotherium),大小如现代的狐狸,前足有4个脚趾,后足有5个脚趾。渐新世出现了中马(Mesohippus),前、后足只有3个脚趾,都着地。始马和中马都生活在森林里。中新世出现了草原古马(Mery-chippus),前、后足都只有3个脚趾,只中间1个趾着地,两侧的已经退化。从草原古马开始,马类才进化到草原奔驰生活。到上新世,开始出现单趾马,命名为上新马(Pliohippus)。到第四纪出现了现代马 (Equus)。马类的演化趋势是,个体增大,腿和脚伸长,侧趾退化,中趾加强,前臼齿臼齿化,颊齿齿冠增高。
偶蹄类从始新世开始出现,经过渐新世、中新世和上新世大量发展,从更新世到现在,在食草动物中无论在种类上和数量上都占优势地位。偶蹄类分为猪形类、骆驼类和反刍类。猪形类出现于始新世早期,都是些小形偶蹄类,如始新世的双锥齿兽,戈壁猪形兽等。从渐新世到上新世体形变大。更新世出现了与现代野猪相似的猪。骆驼出现于始新世晚期,也是小形的偶蹄类。从始新世的始驼,经过渐新世的鹿驼,到中新世和上新世的原驼,一直发展到现代亚洲的真驼和南美的羊驼。反刍类包括鼷鹿、鹿、长颈鹿、牛、羊、羚羊等。这一类的主要特征是消化系统复杂,能很好地加工和消化粗糙的草类。鼷鹿是最原始的反刍类。在中国发现的鹿化石很多,有中新世的皇冠鹿、上新世的上新鹿、更新世的四不象鹿和大角鹿等。
(13)从猿到人
人类在动物界中的近亲是类人猿(简称猿)。现代的类人猿有长臂猿、猩猩、大猩猩和黑猩猩。类人猿无论在外貌和面部表情上,还是身体内部的结构上都与人相似。类人猿中又以黑猩猩与人最接近。
根据化石资料,从猿到人经过森林古猿(Dryopithe-cus)、腊玛古猿(Ramapithecus)、南方古猿(Australo-pithecus)、人(Homo)4个阶段。森林古猿在渐新世晚期中新世中期繁荣于欧、亚、非洲大陆,是现生各种猿类的祖先。腊玛古猿大约在1500万年前由一种森林古猿演化而来, 生存在距今 1500~800万年前。这种化石最早(1932)发现于印度西瓦立克山,以后在非洲、欧洲和中国云南均有发现。一般认为腊玛古猿是从猿到人过渡阶段的早期代表,是最早的人科成员。但近年来新发现的化石却增加了腊玛古猿是人科的怀疑,有人认为是一种进步的猿类。南方古猿化石最早(1924)发现于南非,南方古猿大约生存于距今300~100万年前,它的原始类型可能是从猿到人的过渡阶段晚期的代表。由南方古猿再进一步发展成现代人。从猿到人的演化过程中,劳动起着重要的作用。由于劳动使身体的姿势由半直立变为直立。劳动和语言又促进了脑的发展,而脑的发展又加速了从猿到人的转变。
(14)人类的发展
人类发展的过程一般分为 4个阶段:早期猿人阶段、晚期猿人阶段、早期智人阶段和晚期智人阶段。
早期猿人阶段。出现于更新世早期,以坦桑尼亚距今 175万年的“能人”(Homo habilis)为代表。这一阶段的人类已具人的基本特点,但还有许多原始性。能直立行走,还能制造简单的砾石工具。外貌像猿,但脑量达700毫升,比现代猿大。
晚期猿人(直立人)阶段。出现于更新世中期,以北京猿人(Homo erectus pekinensis)和爪哇猿人(Homo ercetus Java)为代表。与北京猿人大致同时的还有蓝田猿人(Homo erectus lantianensis)和海德堡人(Homo erectus heidelber ensis)等。这一时期的猿人,身体形态已有明显的进步性,身体像人,脑颅像猿,但脑量较大,在715~1225毫升之间,直立行走的姿势已与现代人接近。在文化上已能制造较进步的石器,并开始用天然火。比早期猿人分布范围更广泛。
早期智人(古人)阶段。古人生存于距今10~20万年至5万年前,广泛分布于亚、非、欧洲的许多地区,以德国的尼安德特人(Homo sapiens neanderthalensis)为代表。中国发现的古人化石有广东的马坝人、湖北的长阳人、山西的丁村人。古人的脑量已达现代人的水平,制造石器,靠渔猎生活,能人工取火。丁村人在石器打制技术上比北京猿人有了显着提高,加工更加精细。
晚期智人(新人)阶段。出现于近5万年内,以法国的克罗马侬人(Homo sapiens sapiens)为代表。在中国有北京周口店的山顶洞人,内蒙的河套人,广西的柳江人,四川的资阳人。新人在形态上已非常像现代人,在文化上已有雕刻与绘画的艺术,并出现了装饰品。新人分布范围比古人更广泛。新人化石不仅发现于亚、欧、非洲的广大地区,在大洋洲和美洲也有发现。在新人阶段,现代人种包括黄种、白种、黑种和棕种,开始分化和形成,广泛分布于世界各地。柳江人是现代黄种人的祖先,克罗马侬人是现代欧洲白种人的祖先。