导航:首页 > 生物信息 > 生物酶和激素对植物哪个好

生物酶和激素对植物哪个好

发布时间:2022-03-14 20:38:30

‘壹’ 植物激素与动物激素的区别,相同点与不同点

相同点:动物激素和植物激素在机体内都是含量很少的,也都能调节生理活动,能调节发育;如生长素调节植物生长与发育,生长激素调节动物的生长与发育。

植物激素和动物激素的区别:

1、产生部位:植物激素无专门的分泌器官,由植物体的一定部位产生;动物激素由专门的内分泌腺分泌,如甲状腺、胰岛、性腺等。

2、作用部位:植物激素不作用于特定器官;动物激素分泌进入血液并随血液循环至全身,作用于靶器官、靶细胞。

(1)生物酶和激素对植物哪个好扩展阅读:

植物激素的作用

1、低浓度的生长素有促进器官伸长的作用。

从而可减少蒸腾失水。超过最适浓度时由于会导致乙烯产生,生长的促进作用下降,甚至反会转为抑制。不同器官对生长素的反应不同,根最敏感,芽次之,茎的敏感性最差。

生长素能促进细胞伸长的主要原因,在于它能使细胞壁环境酸化、水解酶的活性增加,从而使细胞壁的结构松弛、可塑性增加,有利于细胞体积增大。

2、生长素还能促进RNA和蛋白质的合成,促进细胞的分裂与分化。生长素具有两重性,不仅能促进植物生长,也能抑制植物生长。低浓度的生长素促进植物生长,过高浓度的生长素抑制植物生长。

‘贰’ 酶和激素有何区别

1、制造源不同。
酶是由活细胞产生的、对其底物具有高度特异性和高度催化效能的蛋白质或RNA。
激素是由内分泌细胞产生的一类具有高效能信息传递作用的化学物质。
2、作用不同。
酶是一类生物催化剂,它们支配着生物的新陈代谢、营养和能量转换等许多催化过程,与生命过程关系密切的反应大多是酶催化反应。
素的种类较多而数量极微,它既非机体的能量来源又非组成机体的结构物质,但通过传递信息,在协调新陈代谢、生长发育等生理过程方面充当了重要的角色,无怪乎科学家们称之为“第一信使”。
3、机理不同。
酶的催化机理和一般化学催化剂基本相同,也是先和反应物(酶的底物)结合成络合物,通过降低反应的能来提高化学反应的速度。
激素分泌后直接进入血液,随血液循环到达一定的组织细胞才发挥作用,这种细胞叫靶细胞,靶细胞上有具特殊立体构型的物质(激素受体)与相应的激素结合,并识别激素所携带的信息,把它转化为细胞内一系列复杂的化学反应,从而产生特定的生理效应。
参考资料来源:搜狗网络-酶
参考资料来源:搜狗网络-激素

‘叁’ 高中生物常考的几种激素包括植物激素,生理作用,最好有题......

植物激素有5大类:即生长素(auxin)、赤霉素(GA)、细胞分裂素(CTK)、脱落酸(abscisic acid,ABA)、乙烯(ethyne,ETH)。

生长素
Charles.D.Darwin在1880年研究植物向性运动时,只有各种激素的协调配合,发现植物幼嫩的尖端受单侧光照射后产生的一种影响,能传到茎的伸长区引起弯曲。1928年荷兰F.W.温特从燕麦胚芽鞘尖端分离出一种具生理活性的物质,称为生长素,它正是引起胚芽鞘伸长的物质。1934年荷兰F.克格尔等从人尿得到生长素的结晶,经鉴定为吲哚乙酸。促进橡胶树漆树等排出乳汁。在植物中,则吲哚乙酸通过酶促反应从色氨酸合成。十字花科植物中合成吲哚乙酸的前体为吲哚乙腈,西葫芦中有相当多的吲哚乙醇,也可转变为吲哚乙酸。已合成的生长素又可被植物体内的酶或外界的光所分解,因而处于不断的合成与分解之中。

生长素在低等和高等植物中普遍存在。

生长素在低等和高等植物中普遍存在。生长素主要集中在幼嫩、正生长的部位,如禾谷类的胚芽鞘,它的产生具有“自促作用”,双子叶植物的茎顶端、幼叶、花粉和子房以及正在生长的果实、种子等;衰老器官中含量极少。

用胚芽鞘切段证明植物体内的生长素通常只能从植物的上端向下端运输,而不能相反。这种运输方式称为极性运输,能以远快于扩散的速度进行。但从外部施用的生长素类药剂的运输方向则随施用部位和浓度而定,如根部吸收的生长素可随蒸腾流上升到地上幼嫩部位。

低浓度的生长素有促进器官伸长的作用。从而可减少蒸腾失水。超过最适浓度时由于会导致乙烯产生,生长的促进作用下降,甚至反会转为抑制。不同器官对生长素的反应不同,根最敏感,芽次之,茎的敏感性最差。种子中较高的脱落酸含量是种子休眠的主要原因。生长素能促进细胞伸长的主要原因,在于它能使细胞壁环境酸化、水解酶的活性增加,从而使细胞壁的结构松弛、可塑性增加,有利于细胞体积增大。生长素还能促进RNA和蛋白质的合成,促进细胞的分裂与分化。生长素具有双重性,不仅能促进植物生长,也能抑制植物生长。低浓度的生长素促进植物生长,过高浓度的生长素抑制植物生长。2,4-D曾被用做选择性除草剂。

吲哚乙酸可以人工合成。生产上使用的是人工合成的类似生长素的物质如吲哚丙酸、吲哚丁酸、萘乙酸、2,4-D、4-碘苯氧乙酸等,可用于防止脱落、促进单性结实、疏花疏果、插条生根、防止马铃薯发芽等方面。愈伤组织容易生根;反之容易生芽。

赤霉素
1926年日本黑泽在水稻恶苗病的研究中,发现感病稻苗的徒长和黄化现象与赤霉菌(Gibberellafujikuroi)有关。1935年薮田和住木从赤霉菌的分泌物中分离出了有生理活性的物质,定名为赤霉素(GA)。从50年代开始,英、美的科学工作者对赤霉素进行了研究,现已从赤霉菌和高等植物中分离出60多种赤霉素,分别被命名为GA1,GA2等。以后从植物中发现有十多种细胞分裂素,赤霉素广泛存在于菌类、藻类、蕨类、裸子植物及被子植物中。商品生产的赤霉素是GA3、GA4和GA7。GA3又称赤霉酸,是最早分离、鉴定出来的赤霉素,分子式为C19H22O6。即6-呋喃氨基嘌呤。

高等植物中的赤霉素主要存在于幼根、幼叶、幼嫩种子和果实等部位,由甲羟戊酸经贝壳杉烯等中间物合成。后证明其中含有一种能诱导细胞分裂的成分,赤霉素在植物体内运输时无极性,通常由木质部向上运输,由韧皮部向下或双向运输。赤霉素最显着的效应是促进植物茎伸长。无合成赤霉素的遗传基因的矮生品种,用赤霉素处理可以明显地引起茎秆伸长。目前在啤酒工业上多用赤霉素促进a-淀粉酶的产生,赤霉素也促进禾本科植物叶的伸长。在蔬菜生产上,常用赤霉素来提高茎叶用蔬菜的产量。一些需低温和长日照才能开花的二年生植物,干种子吸水后,用赤霉素处理可以代替低温作用,使之在第1年开花。赤霉素还可促进果实发育和单性结实,打破块茎和种子的休眠,促进发芽。干种子吸水后,胚中产生的赤霉素能诱导糊粉层内a-淀粉酶的合成和其他水解酶活性的增加,促使淀粉水解,加速种子发芽。目前在啤酒工业上多用赤霉素促进a-淀粉酶的产生,避免大麦种子由于发芽而造成的大量有机物消耗,从而节约成本。

细胞分裂素
这种物质的发现是从激动素的发现开始的。由韧皮部向下或双向运输。1955年美国人F.斯库格等在烟草髓部组织培养中偶然发现培养基中加入从变质鲱鱼精子提取的DNA,可促进烟草愈伤组织强烈生长。后证明其中含有一种能诱导细胞分裂的成分,称为激动素。第一个天然细胞分裂素是1964年D.S.莱瑟姆等从未成熟的玉米种子中分离出来的玉米素。以后从植物中发现有十多种细胞分裂素,GA2等。都是腺嘌呤的衍生物。

高等植物细胞分裂素存在于植物的根、叶、种子、果实等部位。根尖合成的细胞分裂素可向上运到茎叶,但在未成熟的果实、种子中也有细胞分裂素形成。细胞分裂素的主要生理作用是促进细胞分裂和防止叶子衰老。绿色植物叶子衰老变黄是由于其中的蛋白质和叶绿素分解;而细胞分裂素可维持蛋白质的合成,从而使叶片保持绿色,发现感病稻苗的徒长和黄化现象与赤霉菌(Gibberellafujikuroi)有关。延长其寿命。细胞分裂素还可促进芽的分化。在组织培养中当它们的含量大于生长素时,愈伤组织容易生芽;反之容易生根。可用于防止脱落、促进单性结实、疏花疏果、插条生根、防止马铃薯发芽等方面。

人工合成的细胞分裂素苄基腺嘌呤常用于防止莴苣、芹菜、甘蓝等在贮存期间衰老变质。4-滴、4-碘苯氧乙酸等,
脱落酸60年代初美国人F.T.阿迪科特和英国人P.F.韦尔林分别从脱落的棉花幼果和桦树叶中分离出脱落酸,其分子式为C15H20O4。

脱落酸
存在于植物的叶、休眠芽、成熟种子中。通常在衰老的器官或组织中的含量比在幼嫩部分中的多。它的作用在于抑制RNA和蛋白质的合成,从而抑制茎和侧芽生长,因此是一种生长抑制剂,有利于细胞体积增大。与赤霉素有拮抗作用。脱落酸通过促进离层的形成而促进叶柄的脱落,在于它能使细胞壁环境酸化、水解酶的活性增加,还能促进芽和种子休眠。种子中较高的脱落酸含量是种子休眠的主要原因。经层积处理的桃、红松等种子,芽次之,因其中的脱落酸含量减少而易于萌发,脱落酸也与叶片气孔的开闭有关。小麦叶片干旱时,保卫细胞内脱落酸含量增加,气孔就关闭,从而可减少蒸腾失水。根尖的向重力性运动与脱落酸的分布有关。合成部位:根冠、萎蔫的叶片等。分布:将要脱落的器官和组织中含量多。主要作用:抑制细胞分裂,促进叶和果实的衰老和脱落。抑制种子萌发。

乙烯
早在20世纪初就发现用煤气灯照明时有一种气体能促进绿色柠檬变黄而成熟,这种气体就是乙烯。但直至60年代初期用气相层析仪从未成熟的果实中检测出极微量的乙烯后,乙烯才被列为植物激素。乙烯广泛存在于植物的各种组织、器官中,是由蛋氨酸在供氧充足的条件下转化而成的。它的产生具有“自促作用”,即乙烯的积累可以刺激更多的乙烯产生。乙烯可以促进RNA和蛋白质的合成,在高等植物体内,并使细胞膜的透性增加, 加速呼吸作用。因而果实中乙烯含量增加时,已合成的生长素又可被植物体内的酶或外界的光所分解,可促进其中有机物质的转化,加速成熟。乙烯也有促进器官脱落和衰老的作用。用乙烯处理黄化幼苗茎可使茎加粗和叶柄偏上生长。乙烯还可使瓜类植物雌花增多,在植物中,促进橡胶树、漆树等排出乳汁。乙烯是气体,在田间应用不方便。一种能释放乙烯的液体化合物2-氯乙基膦酸(商品名乙烯利)已广泛应用于果实催熟、棉花采收前脱叶和促进棉铃开裂吐絮、刺激橡胶乳汁分泌、水稻矮化、增加瓜类雌花及促进菠萝开花等。合成部位:植物体各个部位。主要作用:促进果实成熟,促进器官脱落和衰老。
其他植物激素
主要有油菜素甾醇、水杨酸、茉莉酸等,目前比较公认的第六大类植物激素是油菜素甾醇(Brassinosteroid)。油菜素甾醇是甾体类激素,与动物甾体激素的作用机理不同。其具有促进细胞伸长和细胞分裂、促进维管分化、促进花粉管伸长而保持雄性育性、加速组织衰老、促进根的横向发育、顶端优势的维持、促进种子萌发等生理作用。而目前油菜素甾醇的信号转导途径也是目前研究的前沿和热点之一。

动物激素:
动物的某些器官、组织或细胞所产生的一类微量但高效的调节代谢的化学物质。

肽类和蛋白质类激素
1. 垂体分泌的激素
(1)生长激素:由垂体分泌,作用于全身,功能是促进生长,主要是促进蛋白质的合成和骨的生长。
(2)促甲状腺激素:由垂体分泌,作用于甲状腺,功能是促进甲状腺的生长发育,调节甲状腺激素的合成和分泌。
(3)促性腺激素:由垂体分泌,作用于性腺,功能是促进性腺的生长和发育,调节性激素的合成和分泌等。
(4)促肾上腺皮质激素:由垂体分泌,作用于肾上腺,功能是促进肾上腺皮质合成和分泌肾上腺皮质激素。
(5)催乳素:由垂体分泌,功能是调控某些动物对幼仔的照顾行为,促进某些合成食物的器官发育和生理机能的完成,如促进哺乳动物乳腺的发育和泌乳,促进鸽的嗉囊分泌鸽乳等。

2. 下丘脑分泌的激素
(1)抗利尿激素:由下丘脑神经细胞分泌,垂体后叶释放,作用于肾小管和集合管,功能是促进肾小管和集合管对水分的重吸收。
(2)促甲状腺激素释放激素:下丘脑分泌,作用于垂体,功能是促进垂体合成和分泌促甲状腺激素。
(3)促性腺激素释放激素:下丘脑分泌,作用于垂体,功能是促进垂体合成和分泌促性腺激素。

3. 胰岛分泌的激素
(1)胰高血糖素:胰岛A细胞分泌,功能是保进糖元分解和非糖物质转化为葡萄糖,从而使血糖升高。
(2)胰岛素:胰岛B细胞分泌,功能是调节糖类代谢,降低血糖含量,促进血糖合成糖元,抑制非糖物质转化为葡萄糖,从而使血糖降低。

二、氨基酸衍生物类激素
1. 甲状腺激素:由甲状腺分泌,功能是促进新陈代谢和生长发育,尤其对中枢神经系统的发育和功能具有重要影响,提高神经系统的兴奋性。
2. 肾上腺素:由肾上腺髓质分泌,功能是促进肝糖元分解为葡萄糖,从而使血糖含量升高。

三、固醇类激素
1. 雄激素:主要由睾丸分泌,功能是促进雄性生殖器官的发育和生殖细胞的生成,激发和维持雄性的第二性征。
2. 雌激素:主要由卵巢分泌,功能是促进雌性生殖器官的发育和生殖细胞的生成,激发和维持雌性的第二性征和正常的性周期。
3. 孕激素:由卵巢分泌,功能是促进子宫内膜和乳腺等的生长发育,为受精卵着床和泌乳准备条件。

‘肆’ 酶和激素的异同点

酶是蛋白质或其衍生物(少数是RNA)

激素有 蛋白质 蛋白质衍生物 脂类(主要是固醇类) 类脂 烃类及其衍生物....

同点是 人体含量不多 但是作用明显..作用大

‘伍’ 生物中酶和激素的关系

A是正确的
因为每个细胞都要呼吸,所以有呼吸酶的存在,还有细胞内的一些化学反应也需要酶的参与
而激素是一些特定细胞产生的,比如胰岛A细胞能分泌胰高血糖素,而红细胞就不能产生激素

‘陆’ 生物酶,激素,神经递质那个会失活

大部分酶的化学本质都是蛋白质,由氨基酸构成。
少部分酶的化学本质是RNA,即核酶,由核糖核苷酸构成 易被破坏但不易被分解。,激素是会被分解,神经递质被分解或重新吸收进细胞。

用过之后激素被分解,如果条件还适宜与酶还存在,神经递质被分解(题目中说过有一种物质能将它分解否则不就一直起作用吗? 受刺激一次就够,还一直刺激或抑制不就有病吗

‘柒’ 高中生物学的植物激素那些是协同作用 那些是拮抗作用

植物激素有六大类,即生长素(auxin)、赤霉素(GA)、细胞分裂素(CTK)、脱落酸(abscisic acid,ABA)、乙烯(ethyne,ETH)和油菜素甾醇(brassinosteroid,BR)。最近新确认的植物激素有,多胺,水杨酸类,茉莉酸(酯)等等。
生长素(auxin)、赤霉素(GA)、细胞分裂素(CTK)有协同作用,促使细胞分裂,组织生长。油菜素甾醇是甾体类激素,具有促进细胞伸长和细胞分裂、促进维管分化、促进花粉管伸长而保持雄性育性、加速组织衰老、促进根的横向发育、顶端优势的维持、促进种子萌发等生理作用。

它们都与脱落酸有拮抗作用。脱落酸存在于植物的叶、休眠芽、成熟种子中。通常在衰老的器官或组织中的含量比在幼嫩部分中的多。它的作用在于抑制RNA和蛋白质的合成,从而抑制茎和侧芽生长,因此是一种生长抑制剂,有利于细胞体积增大。与赤霉素有拮抗作用。脱落酸通过促进离层的形成而促进叶柄的脱落,在于它能使细胞壁环境酸化、水解酶的活性增加,还能促进芽和种子休眠。种子中较高的脱落酸含量是种子休眠的主要原因。脱落酸合成部位:根冠、萎蔫的叶片等。分布:将要脱落的器官和组织中含量多。主要作用:抑制细胞分裂,促进叶和果实的衰老和脱落。抑制种子萌发。
乙烯合成部位:植物体各个部位。主要作用:促进果实成熟,促进器官脱落和衰老。乙烯可以促进RNA和蛋白质的合成,在高等植物体内,并使细胞膜的透性增加, 加速呼吸作用。因而果实中乙烯含量增加时,已合成的生长素又可被植物体内的酶或外界的光所分解,可促进其中有机物质的转化,加速成熟。乙烯也有促进器官脱落和衰老的作用。所以与生长素是拮抗作用,与脱落酸是协同作用。

‘捌’ 植物激素对植物生长起到了哪些巨大作用

一、生长素类
增加雌花,单性结实,子房壁生长,细胞分裂,维管束分化,光合产物分配,叶片扩大,茎伸长,偏上性,乙烯产生,叶片脱落,形成层活性,伤口愈合,不定根的形成,种子发芽,侧根形成,根瘤形成,种子和果实生长,座果,顶端优势。
但是必须指出,生长素对细胞伸长的促进作用,与生长素浓度、细胞年龄和植物器官种类有关。一般生长素在低浓度时可以促进生长,浓度较高则会抑制生长,如果浓度更高则会使植物受伤。细胞年龄不同对生长素的敏感程度不同。一般来说,幼嫩细胞对生长素反应非常敏感,老细胞则比较迟钝。不同器官对生长素的反应敏感也不一样,根最敏感,其最适浓度是10-10mol/L左右;茎最不敏感,最适浓度是10-4mol/L左右;芽居中,最适浓度是10-8mol/L左右。

二、赤霉素类
(一)促进茎的生长
1、促进整株植物的生长
尤其是对矮生突变品种的效果特别明显,但GA对离体茎切段的伸长没有明显的促进作用,
而IAA对整株植物的生长影响较小,却对离体茎切段的伸长有明显的促进作用。GA促进矮生
植株伸长的原因是由于矮生种内源GA生物合成受阻,使得体内GA含量比正常品种低的缘故。
2、促进节间的伸长
GA主要作用于已有的节间伸长,而不是促进节数的增加。
3、不存在超最适浓度的抑制作用
即使GA浓度很高,仍可表现出最大的促进效应,这与生长素促进植物生长具有最适浓度显着
不同。
(二)诱导开花
某些高等植物化芽的分化是受日照长度(即光周期)和温度影响的。例如,对于二年生植物,需要一定日数的低温处理(即春化)才能开花,否则表现出莲座状生长而不能抽薹开花。若对这些未经春化的植物施用GA,则不经低温过程也能诱导开花,且效果很明显。此外,GA也能代替长日照诱导某些长日植物开花,但GA对短日植物的化芽分化无促进作用。
对于花芽已经分化的植物,GA对其花的开放具有显着的促进效应。
(三)打破休眠
GA可以代替光照和低温打破休眠,这是因为GA可诱导α-淀粉酶、蛋白酶和其他水解酶的合成,催化种子内贮藏物质的降解,以供胚的生长发育所需。
在啤酒制造业中,用GA处理萌动而未发芽的大麦种子,可诱导α-淀粉酶的产生,加速酿造时的糖化过程,并降低萌芽的呼吸消耗,从而降低成本。
(四)促进雄花分化
对于雌雄异花同株的植物,用GA处理后,雄花的比例增加;对于雌雄异株植物的雌株,如用GA处理,也会开出雄花。GA在这方面的作用与生长素和乙烯相反。
(五)其他生理效应
GA还可以加强IAA对养分的动员效应,促进某些植物坐果和单性结实、延缓叶片的衰老等。此外,GA也可以促进细胞的分裂和分化,GA促进细胞分裂是由于缩短了G1期和S期。但GA对不定根的形成却起抑制作用,这与生长素的作用又有所不同。

三、细胞分裂素类
(一)促进细胞分裂
细胞分裂素的主要生理功能就是促进细胞的分裂。生长素、赤霉素和细胞分裂素都有促进细胞分裂的效应,但它们各自所起的作用不同。细胞分裂包括核分裂和胞质分裂两个过程,生长素只促进核的分裂 (因促进了DNA的合成),而与细胞质的分裂无关。而细胞分裂素主要是对细胞质的分裂起作用,所以,细胞分裂素促进细胞分裂的效应只有在生长素存在的前提下才能表现出来。而赤霉素促进细胞分裂主要是缩短了细胞周期中的G1期 (DNA合成准备期)和S期 (DNA合成期)的时间,从而加速了细胞的分裂。
(二)促进芽的分化
促进芽的分化是细胞分裂素最重要的生理效应之一。1957年斯库格和米勒在进行烟草的组织培养时发现,细胞分裂素 (激动素)和生长素的相互作用控制着愈伤组织根、芽的形成。当培养基中CTK/IAA比值高时,愈伤组织形成芽;当CTK/IAA比值低时,愈伤组织形成根;如二者的浓度相等,则愈伤组织保持生长而不分化;所以,通过调整二者的比值,可诱导愈伤组织形成完整的植株。
(三)促进细胞扩大
细胞分裂素可促进一些双子叶植物如菜豆、萝卜的子叶或叶圆片扩大,这种扩大主要是因为促进了细胞的横向增粗。因生长素只促进细胞的纵向伸长,赤霉素对子叶的扩大没有显着效应,所以CTK这种对子叶扩大的效应可作为CTK的一种生物测定方法。
(四)促进侧芽发育,消除顶端优势
CTK能解除由生长素所引起的顶端优势,促进侧芽生长发育。如豌豆苗第一真叶叶腋内的侧芽,一般处于潜伏状态,但若以激动素溶液滴加于叶腋部位,腋芽则可生长发育。
(五)延缓叶片衰老
如在离体叶片上局部涂以激动素,则在叶片其余部位变黄衰老时,涂抹激动素的部位仍保持鲜绿 。这不仅说明了激动素有延缓叶片衰老的作用,同时也说明了激动素在一般组织中不易移动。细胞分裂素延缓衰老是由于细胞分裂素能够延缓叶绿素和蛋白质的降解速度,稳定多聚核糖体 (蛋白质高速合成的场所),抑制DNA酶、RNA酶及蛋白酶的活性,保持膜的完整性等。此外,CTK还可调动多种养分向处理部位移动,因此有人认为CTK延缓衰老的另一原因,是由于促进了物质的积累。现在有许多资料证明激动素有促进核酸和蛋白质合成的作用。例如细胞分裂素可抑制与衰老有关的一些水解酶 (如纤维素酶、果胶酶、核糖核酸酶等)的mRNA的合成,所以,CTK可能在转录水平上起防止衰老的作用。
由于CTK有保绿及延缓衰老等作用,故可用来处理水果和鲜花等以保鲜、保绿,防止落果。如用40Omg/L的6-BA水溶液处理柑橘幼果,可显着防止第一次生理脱落,对照的坐果率为21%,而处理的可达91%,且果梗加粗,果实浓绿,果个也比对照显着增大。
(六)打破种子休眠
需光种子,如莴营和烟草等在黑暗中不能萌发,用细胞分裂素则可代替光照打破这类种子的休眠,促进其萌发。

四、脱落酸
在植物体内,ABA不仅存在多种抑制效应,还有多种促进效果。在各种实验系统中,它的最适浓度可跨4个数量级(0.1 ~ 200μmol/L)。对于不同组织,它可以产生相反的效应。例如,它可促进保卫细胞的Ca2+水平上升,却诱导糊粉层细胞的胞液Ca2+水平下降。通常把这些差异归因于各种组织与细胞的ABA受体的性质与数量的不同。
促进:叶、花、果实的脱落,气孔关闭,侧芽、块茎休眠,叶片衰老,光合产物运向发育着的种子,果实产生乙烯,果实成熟。
抑制:种子发芽,IAA运输,植株生长。
乙烯的生理作用
促进:解除休眠,地上部和根的生长和分化,不定根形成,叶片和果实脱落,某些植物花的诱导形成,两性花中雌花形成,开花,花和果实衰老,果实成熟,茎增粗,萎蔫。
抑制:某些植物开花,生长素的转运,茎和根的伸长生长。

‘玖’ 请比较激素和酶的关系

激素分为动物激素和植物激素两种,动物激素是动物的内分泌腺分泌的,植物激素是植物的一定部位产生的。它们虽然含量极少,但对生物体的生长发育、新陈代谢等生命活动起着重要的调节作用。
而酶是活细胞产生的具有催化能力的一类特殊蛋白质,是生物的催化剂,具有高效性、专一性和多样性的特点,极易受温度、酸碱度的影响。激素与神经系统关系密切,一般是通过改变细胞膜的通透性而对细胞起调节作用。一种激素往往具有多种功能,它的作用广泛而多样的,有时还能影响某种酶的合成及其活性。
激素和酶是生物体内两类不可缺少的重要物质,都对生命活动起着独特的作用,两者独立“行事”,不可替代,又相互牵制、共同调节以维持生命活动的正常进行。

‘拾’ 没有酶和激素,植物体是否能进行正常代谢

如果酶有酶,植物将不能正常代谢,但影响植物的代谢还有外界因素,如中午效应,这是由于中午的温度升高而导致的植物的气孔关闭,从而影响代谢,,我的答案并不详细,如果你想知道更多,去翻翻高三的生物书吧,如果你想我也可以告诉你

阅读全文

与生物酶和激素对植物哪个好相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:736
乙酸乙酯化学式怎么算 浏览:1401
沈阳初中的数学是什么版本的 浏览:1347
华为手机家人共享如何查看地理位置 浏览:1039
一氧化碳还原氧化铝化学方程式怎么配平 浏览:881
数学c什么意思是什么意思是什么 浏览:1405
中考初中地理如何补 浏览:1296
360浏览器历史在哪里下载迅雷下载 浏览:698
数学奥数卡怎么办 浏览:1384
如何回答地理是什么 浏览:1020
win7如何删除电脑文件浏览历史 浏览:1052
大学物理实验干什么用的到 浏览:1481
二年级上册数学框框怎么填 浏览:1696
西安瑞禧生物科技有限公司怎么样 浏览:962
武大的分析化学怎么样 浏览:1244
ige电化学发光偏高怎么办 浏览:1334
学而思初中英语和语文怎么样 浏览:1647
下列哪个水飞蓟素化学结构 浏览:1420
化学理学哪些专业好 浏览:1483
数学中的棱的意思是什么 浏览:1054