A. 微生物世界是怎样的
微生物维持着地球可呼吸的大气,是一种强大的力量。
植物学家和动物学家可以相对容易地测量许多大型动植物种群的变化。然而,试图在全球微生物多样性方面采取同样的做法则是另一回事。首先,微生物“物种”可能总共有一万亿,是人类的100多倍,是更大的“宏观”物种的10万倍。
微生物世界很大一部分存在于难以接近、稀有或极端的环境中,如土壤和海底。此外,建立和维护确定微生物物种的核苷酸(DNA和RNA)序列的基线库也是一个挑战。微生物多样性的某些部分或所有部分可能正在迅速增加,这意味着调查可能永远无法跟上这一动态过程。
虽然每隔几千年就会出现一种新的鸟类或甲虫,或者在罕见的地质大变化期间突然出现,但每天都有无数新的微生物出现。微生物的进化并没有因为动植物的出现而停止。微生物快速进化以适应我们提供给它们的新环境。在深厚的泥土中,在我们的肠道中,在我们构建的新环境中,如下水道中。
瑞典博物学家林奈在1735年就开始着手制作一份完整的动植物物种目录。而要对微生物做类似的事情,并测量这些变化并不容易。即使是一根头发丝那么细小的物体,也可能寄生着大量不同种类的微生物。
分子技术提供了一种寻找答案的明显方法,有两种方法可以自成体系,第一种关注是什么调节和促进了微生物的进化。另一个是研究如何利用单个分子或细胞来评估物种内部的变异。因此,我们面临的评估微生物多样性变化的步伐和方向的挑战是艰巨的,但不是不可能的。
一种有趣的可能性是,我们的宏观“团队”不仅包括人类,还包括我们肉眼可以看到的所有其他动物和植物,它们在生物圈中所占的比例可能在不断缩小。
B. 如何定义“微生物”
微生物不是分类学上的名词
1、形体<0.1mm 结构简单
2、需要用光学或电子显微镜观察
3、低等
4、多为单细胞,少部分多细胞,或无细胞结构
5、微生物种类庞杂,差异大
简单来说,微生物就是低等小型的一类生物,在六界分类系统中占了四界(除动物界植物界)
详情参考黄秀梨的微生物学。
C. 微生物怎么定义的
微生物是一切肉眼看不见或看不清楚的微小生物的总称.人们通常要借助光学显微镜或者电子显微镜才能看清它们的形态和结构.
对于蘑菇,只是人们的习惯分类罢了.
微生物:原核生物,真核生物(原生生物,真菌),非细胞生物等
原核生物:细菌,蓝藻,防线菌,支原体,衣原体,立克次氏体等.
原生生物:原生动物(变形虫,喇叭虫等),原生植物(衣藻等)等单细胞真核生物.
真菌:酵母菌,霉菌,木耳,蘑菇等.
非细胞生物主要是病毒和亚病毒等.
D. 微生物在如何培养基上绘画
1、图案的绘制:蘸取适量菌落在培养基上画出图案,在恒温箱内培养一段时间就能显现出先前绘画的图案。
2、颜色的选取:不同菌种长成的菌落有不同的颜色、边缘、质地特征
E. 环境微生物群落heatmap图怎么画
稀释性曲线(Rarefaction Curve)采用对测序序列进行随机抽样的方法,以抽到的序列数与它们所能代表OTU的数目构建曲线,即稀释性曲线。当曲线趋于平坦时,说明测序数据量合理,更多的数据量对发现新OTU的边际贡献很小;反之则表明继续测序还可能产生较多新的OTU。横轴:从某个样品中随机抽取的测序条数;"Label 0.03" 表示该分析是基于OTU 序列差异水平在0.03,即相似度为97% 的水平上进行运算的,客户可以选取其他不同的相似度水平。纵轴:基于该测序条数能构建的OTU数量。曲线解读:Ø 图1中每条曲线代表一个样品,用不同颜色标记;Ø 随测序深度增加,被发现OTU 的数量增加。当曲线趋于平缓时表示此时的测序数据量较为合理。2. Shannon-Wiener 曲线反映样品中微生物多样性的指数,利用各样品的测序量在不同测序深度时的微生物多样性指数构建曲线,以此反映各样本在不同测序数量时的微生物多样性。当曲线趋向平坦时,说明测序数据量足够大,可以反映样品中绝大多数的微生物物种信息。横轴:从某个样品中随机抽取的测序条数。纵轴:Shannon-Wiener 指数,用来估算群落多样性的高低。Shannon 指数计算公式:其中,Sobs= 实际测量出的OTU数目;ni= 含有i 条序列的OTU数目;N = 所有的序列数。
F. 微生物如何才能看得到
微生物(英文名:microorganism),是指一切肉眼看不到或看不清楚,因而需要借助显微镜观察的微小生物,包括细菌、病毒、真菌以及一些小型的原生动物等在内的一大类生物群体。它个体微小,与人类生活密切相关,涵盖了有益有害的众多种类,广泛涉及健康、食品、医药、工农业、环保等诸多领域。在中国大陆地区的教科书中,把微生物划分为以下8大类:细菌、病毒、真菌、放线菌、立克次体、支原体、衣原体、螺旋体。
微生物是一切肉眼看不见或看不清的微小生物,个体微小,结构简单,通常要用光学显微镜和电子显微镜才能看清楚的生物,统称为微生物。微生物包括细菌、病毒、真菌、和少数藻类等。(但有些微生物是肉眼可以看见的,像属于真菌的蘑菇、灵芝等。)病毒是一类由核酸和蛋白质等少数几种成分组成的“非细胞生物”,但是它的生存必须依赖于活细胞。根据存在的不同环境分为原核微生物、空间微生物、真菌微生物、酵母微生物、海洋微生物等。微生物的形态观察是从安东·列文虎克发明的显微镜开始的,他利用能放大50~300倍的显微镜,清楚地看见了细菌和原生动物,他的发现和描述首次揭示了一个崭新的生物世界——微生物世界。在微生物学的发展史上具有划时代的意义。
要了解它们,首先得看看它们的模 样。但看它们可不能像在动物园看大象 和猴子那样简单,可以直接用眼睛看,那样你什么也看不见。现在就用得着显微 镜了。用光学显微镜可以清楚地看到老大一真菌,老二——放线菌,老三—— 螺旋体,老四——细菌,老五、老六、老七只能勉强看到,至于老八——病毒则一 点儿也看不见了,它太小了,只能用电子显微镜才能看到。
G. 怎样画微生物平板才好看
我觉得画成这样就不错
H. 如何制作微生物培养皿
一、如何制作:
分离培养微生物,离不开固体培养基。在微生物实验室里,固体培养基的使用是如此地频繁和常规,以至于这一方法看起来也理所当然。然而,回溯至1881年固体培养基出现以前,微生物的培养还只能在液体培养基中进行。为了能直接观察培养物的形态及生长情况,科学家希望能将微生物培养在固体表面上,就像微生物生长在橘子皮或薯仔上一样。德国医生罗伯特·科赫(Robert·Koch,1843—1910)曾用煮沸消毒的薯仔来培养细菌。此后,他试着用明胶作培养基的凝固剂。他将明胶加入液体培养基中进行融化,然后将混合均匀的液体缓慢地倒在一块玻璃板的表面。当明胶冷却凝固后,就在玻璃板表面形成一层固体培养基。为了防止空气中杂菌的污染,科赫还用玻璃罩将玻璃板与周围环境隔离开来。但是,人们很快发现,明胶在20 ℃以上就变软了,很难进行分离微生物的划线操作。在温度高于25 ℃时,明胶就液化了,而大多数细菌的培养温度都不低于25 ℃。
二、培养皿的定义:
培养皿是一种用于微生物或细胞培养的实验室器皿,由一个平面圆盘状的底和一个盖组成,一般用玻璃或塑料制成。培养皿材质基本上分为两类,主要为塑料和玻璃的,玻璃的可以用于植物材料、微生物培养和动物细胞的贴壁培养也可能用到。塑料的可能是聚乙烯材料的,有一次性的和多次使用的,适合实验室接种、划线、分离细菌的操作,可以用于植物材料的培养。
I. 画出来的生物是二微生物嘛。
什么是二微生物?还是二维? 你提供的仅仅是一幅画片, 二维只有面积而没有体积,图画可以有二维、三维之分,活的生物没有二维的。
J. 环境微生物群落heatmap图怎么画
稀释性曲线(Rarefaction Curve)采用对测序序列进行随机抽样的方法,以抽到的序列数与它们所能代表OTU的数目构建曲线,即稀释性曲线。当曲线趋于平坦时,说明测序数据量合理,更多的数据量对发现新OTU的边际贡献很小;反之则表明继续测序还可能产生较多新的OTU。横轴:从某个样品中随机抽取的测序条数;"Label 0.03" 表示该分析是基于OTU 序列差异水平在0.03,即相似度为97% 的水平上进行运算的,客户可以选取其他不同的相似度水平。纵轴:基于该测序条数能构建的OTU数量。曲线解读:Ø 图1中每条曲线代表一个样品,用不同颜色标记;Ø 随测序深度增加,被发现OTU 的数量增加。当曲线趋于平缓时表示此时的测序数据量较为合理。2. Shannon-Wiener 曲线反映样品中微生物多样性的指数,利用各样品的测序量在不同测序深度时的微生物多样性指数构建曲线,以此反映各样本在不同测序数量时的微生物多样性。当曲线趋向平坦时,说明测序数据量足够大,可以反映样品中绝大多数的微生物物种信息。横轴:从某个样品中随机抽取的测序条数。纵轴:Shannon-Wiener 指数,用来估算群落多样性的高低。Shannon 指数计算公式:其中,Sobs= 实际测量出的OTU数目;ni= 含有i 条序列的OTU数目;N = 所有的序列数。曲线解读:Ø 图2每条曲线代表一个样品,用不同颜色标记,末端数字为实际测序条数;Ø 起初曲线直线上升,是由于测序条数远不足覆盖样品导致;Ø 数值升高直至平滑说明测序条数足以覆盖样品中的大部分微生物。3.Rank-Abundance 曲线用于同时解释样品多样性的两个方面,即样品所含物种的丰富程度和均匀程度。物种的丰富程度由曲线在横轴上的长度来反映,曲线越宽,表示物种的组成越丰富;物种组成的均匀程度由曲线的形状来反映,曲线越平坦,表示物种组成的均匀程度越高。横轴:OTU 相对丰度含量等级降序排列。纵轴:相对丰度比例。曲线解读:Ø 图3与图4中每条曲线对应一个样本(参考右上角图标);Ø 图3与图4中横坐标表示的是OTU(物种)丰度排列顺序,纵坐标对应的是OTU(物种)所占相对丰度比例(图3为相对百分比例,图4为换算后Log值),曲线趋于水平则表示样品中各物种所占比例相似;曲线整体斜率越大则表示样品中各物种所占比例差异较大。4. 样本群落组成分析:多样本柱状图/ 单样本饼状图 根据分类学分析结果,可以得知一个或多个样品在各分类水平上的物种组成比例情况,反映样品在不同分类学水平上的群落结构。柱状图(图5)横轴:各样品的编号。纵轴:相对丰度比例。图标解读:Ø 颜色对应此分类学水平下各物种名称,不同色块宽度表示不同物种相对丰度比例;Ø 可以在不同分类学水平下作图分析。饼状图(图6)在某一分类学水平上,不同菌群所占的相对丰度比例。不同颜色代表不同的物种。5. 样品OTU 分布Venn 图用于统计多个样品中共有或独有的OTU数目,可以比较直观地表现各环境样品之间的OTU 组成相似程度。不同样品用不同颜色标记,各个数字代表了某个样品独有或几种样品共有的OTU 数量,对应的OTU编号会以EXCEL 表的形式在结题报告中呈现。分析要求单张分析图,样本分组至少两个,最多5 个。Ø 默认设置为97% 相似度水平下以OTU 为单位进行分析作图。6. Heatmap 图用颜色变化来反映二维矩阵或表格中的数据信息,它可以直观地将数据值的大小以定义的颜色深浅表示出来。将高丰度和低丰度的物种分块聚集,通过颜色梯度及相似程度来反映多个样品在各分类水平上群落组成的相似性和差异性。相对丰度比例:热图(图8)中每小格代表其所在样品中某个OTU 的相对丰度。以图8为例,红框高亮的小格所对应的信息为:样本(R11-1Z)中OTU(OTU128)的相对丰度比例大概为0.2%。丰度比例计算公式(Bray Curtis 算法):其中,SA,i = 表示A样品中第i个OTU所含的序列数SB,i = 表示B样品中第i个OTU所含的序列数样品间聚类关系树:进化树表示在选用成图数据中,样本与样本间序列的进化关系(差异关系)。处于同一分支内的样品序列进化关系相近。物种/OTU 丰度相似性树:丰度相似性树表示选用成图的数据中样品与样品中的OTU 或序列在丰度上的相似程度。丰度最相近的会分配到同一分支上。客户自定义分组:根据研究需求对菌群物种/OTU 研究样本进行二级分组Ø 二级物种/OTU 分组:将下级分类学水平物种或OTU 分配到对应的上级分类学水平,以不同颜色区分;Ø 二级样品分组:根据研究需要,对样品进行人为的分组,以不同颜色区分。7. 主成分分析PCA (Principal Component Analysis)在多元统计分析中,主成分分析是一种简化数据集的技术。主成分分析经常用于减少数据集的维数,同时保持数据集中对方差贡献最大的特征,从而有效地找出数据中最“主要”的元素和结构,去除噪音和冗余,将原有的复杂数据降维,揭示隐藏在复杂数据背后的简单结构。通过分析不同样品的OTU 组成可以反映样品间的差异和距离,PCA 运用方差分解,将多组数据的差异反映在二维坐标图上,坐标轴为能够最大程度反映方差的两个特征值。如样品组成越相似,反映在PCA图中的距离越近。横轴和纵轴:以百分数的形式体现主成分主要影响程度。以图9为例,主成分1(PC1)和主成分2(PC2)是造成四组样品(红色,蓝色,黄色和绿色)的两个最大差异特征,贡献率分别为41.1% 和27.1%。十字交叉线:在图9中作为0 点基线存在,起到辅助分析的作用,本身没有意义。图例解读:Ø PCA 分析图是基于每个样品中所含有的全部OTU 完成的;Ø 图9中每个点代表了一个样本;颜色则代表不同的样品分组;Ø 两点之间在横、纵坐标上的距离,代表了样品受主成分(PC1 或 PC2)影响下的相似性距离;Ø 样本数量越多,该分析意义越大;反之样本数量过少,会产生个体差异,导致PCA分析成图后形成较大距离的分开,建议多组样品时,每组不少于5个,不分组时样品不少于10个;Ø 图10中的圆圈为聚类分析结果,圆圈内的样品,其相似距离比较接近。8. RDA/ CCA 分析图基于对应分析发展的一种排序方法,将对应分析与多元回归分析相结合,每一步计算均与环境因子进行回归,又称多元直接梯度分析。主要用来反映菌群与环境因子之间的关系。RDA 是基于线性模型,CCA是基于单峰模型。分析可以检测环境因子、样品、菌群三者之间的关系或者两两之间的关系。横轴和纵轴:RDA 和CCA 分析,模型不同,横纵坐标上的刻度为每个样品或者物种在与环境因子进行回归分析计算时产生的值,可以绘制于二维图形中。图例解读:Ø 冗余分析可以基于所有样品的OTU作图,也可以基于样品中优势物种作图;Ø 箭头射线:图11中的箭头分别代表不同的环境因子(即图中的碳酸氢根离子HCO3-,醋酸根离子AC-等,图中的其它环境因子因研究不同代表的意义不同,因此不再赘述);Ø 夹角:环境因子之间的夹角为锐角时表示两个环境因子之间呈正相关关系,钝角时呈负相关关系。环境因子的射线越长,说明该影响因子的影响程度越大;Ø 图11中不同颜色的点表示不同组别的样品或者同一组别不同时期的样品,图中的拉丁文代表物种名称,可以将关注的优势物种也纳入图中;Ø 环境因子数量要少于样本数量,同时在分析时,需要提供环境因子的数据,比如 pH值,测定的温度值等。9. 单样品/ 多样品分类学系统组成树根据NCBI 提供的已有微生物物种的分类学信息数据库,将测序得到的物种丰度信息回归至数据库的分类学系统关系树中,从整个分类系统上全面了解样品中所有微生物的进化关系和丰度差异。单样品图(图12):可以了解单样品中的序列在各个分类学水平上的分布情况。图例解读:Ø 图12中不同的层次反映不同的分类学水平;Ø 分支处的圆面积说明了分布在该分类学水平,且无法继续往下级水平比对的序列数量,面积越大,说明此类序列越多;Ø 每个分支上的名词后面的两组数字分别表示比对到该分支上的序列数和驻留在该节点上的序列数;Ø 图13中为某单一水平物种分布情况,并非是序列分布。多样品图(图14):比对多个样品在不同分类学分支上序列数量差异。图例解读:Ø 比对不同样品在某分支上的序列数量差异,通过带颜色的饼状图呈现,饼状图的面积越大,说明在分支处的序列数量越多,不同的颜色代表不同的样品。Ø 某颜色的扇形面积越大,说明在该分支上,其对应样品的序列数比其他样品多。Ø 多样品在做该分析时,建议样品数量控制在10个以内,或者将重复样本数据合并成一个样本后,总样品数在10个以内。10.系统发生进化树在分子进化研究中,基于系统发生的推断来揭示某一分类水平上序列间碱基的差异,进而构建进化树。