‘壹’ 生物质能源
生物质能是自然界中有生命的植物提供的能量。这些植物以生物质作为媒介储存太阳能。属再生能源。据计算,生物质储存的能量为270亿千瓦,比目前世界能源消费总量大2倍。人类历史上最早使用的能源是生物质能。19世纪后半期以前,人类利用的能源以薪柴为主。当前较为有效地利用生物质能的方式有: (1) 制取沼气。主要是利用城乡有机垃圾、秸杆、水、人畜粪便,通过厌氧消化产生可燃气体甲烷,供生活、生产之用。(2) 利用生物质制取酒精。当前的世界能源结构中,生物质能所占比重微乎其微。
1.什么是生物质?什么是生物质能?生物质(biomass)可以理解为自然界通过光合作用产生的一切生命体(动、植、微生物)及其代谢的产物(粪便、秸秆)等。
生物质能(biomass energy)则可以简单地理解为这些生命体里所蕴含的能量,是一种能源。2.身边的生物质能利用 就拿国内来说,已经规模化利用方式有主要有沼气池、生物质发电等。(可能还有堆肥之类的,本身作为热能方向的学生不甚了解)3.生物质能里利用方式固体燃料 例如火力发电厂中与煤混燃发电,或是直接的生物质发电厂发电。存在的问题就是生物质在中国的收集运输成本较高。在欧洲一些国家生物质发电发展的很好,而且生物质已经被制作成颗粒燃料,可以简单的用于日常替代煤。液体燃料 液体燃料的话,主要有通过生化转化、热解等技术产生的生物乙醇、生物柴油等等。曾经,美国向墨西哥大量采购玉米作为燃料生产乙醇,而且采购价格比国内食用采购价还高,导致墨西哥国内市场问题。对这个生化转化有兴趣的话有很多相关的书籍可以了解一下。垃圾焚烧 垃圾焚烧也可以算作生物质能的利用范畴,与之前提到的火电厂不同,其主要问题在于会产生剧毒物质二恶英,但作为迄今为止优秀的垃圾处理方式,已经慢慢推广。同学毕业后就有很多去往深圳能源的垃圾焚烧厂。沼气 其本质也属于生物质生化转化范畴,与发酵之类相关。
‘贰’ 生物质为什么被各国研究开发
生物质能是世界上最普遍的一种可再生能源。据估算,地球上每年经光合作用而生成的生物质总量为1440亿~1800亿吨(干重),相当于目前全世界每年总能耗的3~8倍。若把动物排泄的粪便也包括进去,则其数量更大。但是,迄今人们实际利用的生物质能还很少,并且利用的效率也不高。至今,利用的生物质能只占全球总能耗的6%~13%。其中我国约占总能耗的30%,在非洲某些国家则高达60%以上;而发达国家生物质能在总能耗中所占比重较小,像美国只占3%~4%。随着化石能源的日益短缺和高新科技的发展,特别是保护生态环境的迫切需要,研究开发和充分合理利用生物质能,不但越来越显得非常必要,而且也已经具备了这种可能性。世界各国都将发展生物质能技术。比如说,有的国家着重研究生物质的液化问题,以它来代替石油;有的国家则侧重于研究生物质的气化,以提高生物质能的利用效率……
[我还想知道]
在新能源的大家族中,还有异军突起的电磁能、磁流体发电技术、电气体发电技术以及超导技术在电力工业中的应用等等。
清洁能源是指对环境无污染的能源。它包含了太阳能、风能、水能、潮汐能,还有核能和地热能。
‘叁’ 生物质能源有哪些种类
依据来源的不同,可以将适合于能源利用的生物质分为林业资源、农业资源、生活污水和工业有机废水、城市固体废物和畜禽粪便等五大类。
1、林业资源
林业生物质资源是指森林生长和林业生产过程提供的生物质能源,包括薪炭林、在森林抚育和间伐作业中的零散木材、残留的树枝、树叶和木屑等;木材采运和加工过程中的枝丫、锯末、木屑、梢头、板皮和截头等;林业副产品的废弃物,如果壳和果核等。
2、农业资源
农业生物质能资源是指农业作物(包括能源作物);农业生产过程中的废弃物,如农作物收获时残留在农田内的农作物秸秆(玉米秸、高粱秸、麦秸、稻草、豆秸和棉秆等);农业加工业的废弃物,如农业生产过程中剩余的稻壳等。
能源植物泛指各种用以提供能源的植物,通常包括草本能源作物、油料作物、制取碳氢化合物植物和水生植物等几类。
3、污水废水
生活污水主要由城镇居民生活、商业和服务业的各种排水组成,如冷却水、洗浴排水、盥洗排水、洗衣排水、厨房排水、粪便污水等。工业有机废水主要是酒精、酿酒、制糖、食品、制药、造纸及屠宰等行业生产过程中排出的废水等,其中都富含有机物。
4、固体废物
城市固体废物主要是由城镇居民生活垃圾,商业、服务业垃圾和少量建筑业垃圾等固体废物构成。其组成成分比较复杂,受当地居民的平均生活水平、能源消费结构、城镇建设、自然条件、传统习惯以及季节变化等因素影响。
5、畜禽粪便
畜禽粪便是畜禽排泄物的总称,它是其他形态生物质(主要是粮食、农作物秸秆和牧草等)的转化形式,包括畜禽排出的粪便、尿及其与垫草的混合物。
6、沼气
沼气是由生物质能转换的一种可燃气体。沼气是一种混合物,主要成分是甲烷(CH4)。沼气是有机物质在厌氧条件下,经过微生物的发酵作用而生成的一种混合气体。由于这种气体最先是在沼泽中发现的,所以称为沼气。
人畜粪便、秸秆、污水等各种有机物在密闭的沼气池内,在厌氧(没有氧气)条件下发酵,类繁多的沼气发酵微生物分解转化,从而产生沼气。沼气是一种混合气体,可以燃烧。通常可以供农家用来烧饭、照明。
生物质能源特点:
1、可再生性
生物质能属可再生资源,生物质能由于通过植物的光合作用可以再生,与风能、太阳能等同属可再生能源,资源丰富,可保证能源的永续利用;
2、低污染性
生物质的硫含量、氮含量低、燃烧过程中生成的SOX、NOX较少;生物质作为燃料时,由于它在生长时需要的二氧化碳相当于它排放的二氧化碳的量,因而对大气的二氧化碳净排放量近似于零,可有效地减轻温室效应;
3、广泛分布性
缺乏煤炭的地域,可充分利用生物质能;
4、总量十分丰富
生物质能是世界第四大能源,仅次于煤炭、石油和天然气。根据生物学家估算,地球陆地每年生产1000~1250亿吨生物质;海洋年生产500亿吨生物质。生物质能源的年生产量远远超过全世界总能源需求量,相当于世界总能耗的10倍。我国可开发为能源的生物质资源到2010年可达3亿吨。
随着农林业的发展,特别是炭薪林的推广,生物质资源还将越来越多。
5、广泛应用性
生物质能源可以以沼气、压缩成型固体燃料、气化生产燃气、气化发电、生产燃料酒精、热裂解生产生物柴油等形式存在,应用在国民经济的各个领域。
以上内容参考:网络-生物质能
‘肆’ 世界上所有能源的存储量是多少
(1)世界能源储量和分布 目前,人类使用的能源最主要是非再生能源,如石油、天然气、煤炭和裂变核燃料约占能源总消费量的90%左右,再生能源如水力、植物燃料等只占10%左右。
世界能源储量最多是太阳能,在再生能源中占99.44%,而水能、风能、地热能、生物能等不到1%。在非再生能源中,利用海水中的氘资源产生的人造太阳能(聚变核能)几乎占100%,煤炭、石油、天然气、裂变核燃料加起来也不足千万分之一。所以,人类使用的能源归根到底要依靠太阳能,太阳能是人类永恒发展的能源保证。
世界能源储量分布是不平衡的。石油储量最多地区是中东占56.8%;天然气和煤炭储量最多是欧洲,各占54.6%和45%。亚洲大洋洲除煤炭稍多(占18%)以外,石油、天然气都只有5%多一点。据预测,全世界石油储量只够开采30~40年,天然气约60年。
(2)我国能源储量和分布 我国有着丰富的能源资源。世界各国有的能量资源我国都有。我国煤炭资源(探明储量)和水力资源均居世界第一位;石油资源占世界第十一位;天然气资源占世界第十四位;太阳能资源居世界第二位;潮汐、地热、风力和核燃料资源都很丰富。但人均占有量很少,只有世界平均水平的一半。我国能源资源地区分布不均衡。1985年,煤炭探明储量7690亿吨,主要集中在华北和西北,各占59.3%和19.2%,西南占9.6%,华东占5.8%,中南3.4%,东北2.7%。石油探明储量25亿吨,天然气储量3800亿立米,主要分布在黑龙江、辽宁、河北、河南、山东、四川、甘肃和新疆等省区内。可开发水力资源有3.78亿千瓦,年发电量1.92亿千瓦时,主要集中在西南,占68%,中南占15.2%,西北占10%,华东占3.6%,东北占2%,华北占1.2%。我国太阳能和风能资源丰富,有很大利用潜力。
参考资料: http://www.hbylzx.com/yilingonline/printpage.asp?BoardID=18&ID=1143
‘伍’ 地球上的能源到底还有多少
按照目前的消耗水平,世界上现在的石油60-70年,天然气80-100年,煤炭210-230年,核能可以用500年而风能,太阳能,水力资源,潮汐能是可以再生和循环利用的,但是开发技术跟不上,开发成本太高,所以能源危机离我们不远了。
‘陆’ 生物能源有哪几种
1、燃料乙醇概念:燃料乙醇一般是指提及浓度达到99.5%以上的无水乙醇。
特点:可作为新兴能源,减少石油消耗,保障国家能源安全;辛烷值高,抗爆性能好,可作为汽油添加剂,提高辛烷值,减少矿物燃料对大气污染;是可再生能源,利用农作物发酵生产乙醇,燃烧排放二氧化碳与作物在生长过程中消耗二氧化碳基本持平,可减少矿物燃料燃烧产生的二氧化碳
2、生物柴油概念:生物柴油是清洁的可再生能源,它是一大豆和油菜籽等油料作物、油棕和黄连木等油料林木果实、工程薇藻等油料水生植物以及动物油脂、废餐饮油等为原料制成的液体燃料,是优质的石化柴油代替品。
特点:优良的环保性、较好的低温发动机启动性能、较好的安全性能、较好的安全性能、具有可再生性能、无需改动柴油发动机
3、生物沼气概念:生物沼气是指利用城市生活垃圾、农作物废料甚至污泥等分解产生的气体,主要成分为甲烷和二氧化碳,可用于发电和供热。
4、生物丁醇概念:生物丁醇是以生物为原料,通过与乙醇相似的发酵工艺制备而成的可再生能源。
特点:碳排放量较低、蒸汽压力较低、与汽油混合与水的宽容度较大,与汽油混合比较高5、微藻制油概念:薇澡即指是生长在海中的藻类,是植物界的隐花植物,通过有效的利用太阳能,进行光合作用固定二氧化碳,将无机物转化为氢、高不饱和烷烃、油脂等能源物资。
特点:薇澡生物是可再生、速生生物、对大气二氧化碳没有净增加、人工培养资源占用小6、生物质发电概念:生物质发电是指利用生物质所具有的生物质能进行的发电,是可再生能源发电的一种,包括农林废弃物直接燃烧发电、农林废弃物气化发电、垃圾焚烧发电、垃圾填埋发电、早期发电等。
‘柒’ 生物能是什么
生物质能是自然界中有生命的植物提供的能量,这些植物以生物质作为媒介储存太阳能,属再生能源。据计算,生物质储存的能量比目前世界能源消费总量大2倍。人类历史上最早使用的能源是生物质能。19世纪后半期以前,人类利用的能源以薪柴为主。当前较为有效地利用生物质能的方式有: (1) 制取沼气。主要是利用城乡有机垃圾、秸秆、水、人畜粪便,通过厌氧消化产生可燃气体甲烷,供生活、生产之用。(2) 利用生物质制取酒精。当前的世界能源结构中,生物质能所占比重微乎其微。[1]
中文名
生物质能
外文名
biomass energy
类别
能量的一种
含义
太阳能以化学能贮存在生物质中
媒介
生物质
快速
导航
生物质特点
生物质
分类
特点
利用
资源
效益分析
意义
我国生物质能现状
质能研究
问题分析
发展前景
简介
生物质能可转化为常规的固态、液态和气态燃料,取之不尽、用之不竭,是一种可再生能源,同时也是唯一一种可再生的碳源。
生物质特点
生物质是指利用大气、水、土地等通过光合作用而产生的各种有机体,即一切有生命的可以生长的有机物质通称为生物质。它包括植物、动物和微生物。广义概念:生物质包括所有的植物、微生物以及以植物、微生物为食物的动物及其生产的废弃物。有代表性的生物质如农作物、农作物废弃物、木材、木材废弃物和动物粪便。狭义概念:生物质主要是指农林业生产过程中除粮食、果实以外的秸秆、树木等木质纤维素(简称木质素)、农产品加工业下脚料、农林废弃物及畜牧业生产过程中的禽畜粪便和废弃物等物质。特点:可再生、低污染、分布广泛。
2013年中国生物质能源的特点分析,①可再生性,生物质能源是从太阳能转化而来,通过植物的光合作用将太阳能转化为化学能,储存在生物质内部的能量,与风能、太阳能等同属可再生能源,可实现能源的永续利用。
②清洁、低碳。生物质能源中的有害物质含量很低,属于清洁能源。同时,生物质能源的转化过程是通过绿色植物的光合作用将二氧化碳和水合成生物质,生物质能源的使用过程又生成二氧化碳和水,形成二氧化碳的循环排放过程,能够有效减少人类二氧化碳的净排放量,降低温室效应。
③替代优势。利用现代技术可以将生物质能源转化成可替代化石燃料的生物质成型燃料、生物质可燃气、生物质液体燃料等。在热转化方面,生物质能源可以直接燃烧或经过转换,形成便于储存和运输的固体、气体和液体燃料,可运用于大部分使用石油、煤炭及天然气的工业锅炉和窑炉中。国际自然基金会2011年2 月发布的《能源报告》认为,到2050 年,将有60%的工业燃料和工业供热都采用生物质能源。
④原料丰富。生物质能源资源丰富,分布广泛。根据世界自然基金会的预计,全球生物质能源潜在可利用量达350EJ/年(约合82.12 亿吨标准油,相当于2009年全球能源消耗量的73%)。根据我国《可再生能源中长期发展规划》统计,我国生物质资源可转换为能源的潜力约5 亿吨标准煤,随着造林面积的扩大和经济社会的发展,我国生物质资源转换为能源的潜力可达10 亿吨标准煤。在传统能源日渐枯竭的背景下,生物质能源是理想的替代能源,被誉为继煤炭、石油、天然气之外的“第四大”能源。
生物质
生物质是指通过光合作用而形成的各种有机体,包括所有的动植物和微生物。而所谓生物质能(biomassenergy ),就是太阳能以化学能形式贮存在生物质中的能量形式,即以生物质为载体的能量。它直接或间接地来源于绿色植物的光合作用,可转化为常规的固态、液态和气态燃料,取之不尽、用之不竭,是一种可再生能源,同时也是唯一一种可再生的碳源。生物质能的原始能量来源于太阳,所以从广义上讲,生物质能是太阳能的一种表现形式。很多国家都在积极研究和开发利用生物质能。生物质能蕴藏在植物、动物和微生物等可以生长的有机物中,它是由太阳能转化而来的。有机物中除矿物燃料以外的所有来源于动植物的能源物质均属于生物质能,通常包括木材、及森林废弃物、农业废弃物、水生植物、油料植物、城市和工业有机废弃物、动物粪便等。地球上的生物质能资源较为丰富,而且是一种无害的能源。地球每年经光合作用产生的物质有1730亿吨,其中蕴含的能量相当于全世界能源消耗总量的10-20倍,利用率不到3%。
‘捌’ 世界上能源一共有多少种
能源是提供能量的物质资源.地球上有各种各样的能源,能源可以根据其成因、性质和使用状况进行分类.
如按使用状况分类,有常规能源(包括煤、原油、天然气等),新能源(包括核燃料、地热能、太阳能等);
如按能源成因分类,可分为一次能源和二次能源,一次能源像煤、天然气、水能、风能等,二次能源是指煤气、原油加工品、火药、电能、沼气等;
如按能源可否再生分:
可再生能源:不随其本身的转化或被人类利用而减少的能源,如太阳能、生物能、水能、风能、地热能等
非再生能源:随其本身的转化或被人类利用而减少的能源,如化石燃料、核燃料等
有些能源,如火山能、地震能、雷电能、宇宙射线能等还未能被人们所利用开发,期待进一步开发利用.
‘玖’ 生物燃料的国外现状
目前,生物燃料主要被用于替代化石燃油作为运输燃料,如替代汽油的燃料乙醇和替代石油基柴油的生物柴油。在化石燃料储量逐步下降、环境保护日益严峻的背景下,生物燃料受到各国政府的高度重视。欧盟委员会积极推进生物燃料发展,制定了2015年生物燃料占运输燃料消费总量8%的目标。美国通过法律手段强制在运输燃料中添加生物燃料,具体比例是柴油中添加2%的生物柴油,汽油中添加5%的燃料乙醇。据调查数据统计,2011年8月16日,美国白宫宣布推出一项总额为5.1亿美元的计划,由农业部、能源部和海军共同投资推动美国生物燃料产业的发展。英国政府从2006年起要求生产运输燃油的能源企业必须有3%的原料是来自可再生资源,并且比例将逐年提高。根据国际能源机构(IEA)的数据,2010年全球生物燃料日产量为182.2万桶,2011年降至181.9万桶。 作为应对气候变化战略的一部分,西欧和北美政府强制要求,在未来15年里汽油和柴油中要添加更多的生物燃料组分。修改后的欧盟燃料质量法规定,欧盟汽油中可再生乙醇的含量将从5%倍增至10%,欧盟各国将在加油站出售这种命名为E10的汽油。
世界对生物柴油的需求量有望从2006年的690万吨增长至2010年的4480万吨。到2010年,亚洲有望超过北美、中欧和东欧,成为仅次于西欧的世界第二大生物柴油生产地区。全球生物柴油工业呈现快速增长,2000~2005年产能、产量及消费量年均增长率约为32%,而到2008年产能和需求增速更快,年均增速将分别达到115%和101%,甚至更高。2005~2010年全球生物柴油生产模式也将发生变化,2005年西欧生物柴油产量占全球总产量的75%,2010年将减少至低于40%,主要原因是以亚洲为首的其他地区产量增速加快,亚洲将可能成为第二大生物柴油生产地区,其次是北美地区。从消费情况来看,2005年德国占全球消费量的61%,其他消费国家主要包括法国、美国、意大利和巴西,其消费总和只占到全球消费量的11%。2010年,美国可能成为全球最大的生物柴油市场,占全球消费量的18%,新的大型消费市场将出现在中国和印度,其他国家的消费总和将占到全球消费量的44%。生物燃料的原料来源成为生物燃料可持续发展的重要课题。
东南亚正在崛起成为一个主要的生物柴油生产基地,到2010年更有望成为世界上领先的供应地区。东南亚各国政府和企业纷纷斥巨资发展生物柴油工业,在建的生物柴油工厂遍及各地,也因此成为未来西欧和北美地区生物柴油的主要供货地。棕桐油是东南亚最丰富的自然资源之一,将成为该地区发展生物柴油工业的主要原料。同时,该地区还计划将大量土地开发为新的油棕种植园。东南亚生物柴油工业发展最快的是马来西亚,然后是泰国和印尼,马来西亚和印尼的粗棕榈油合计产量大约占到全球产量的85%。
泰国能源部去年5月份开始实施一项到2012年使生物柴油产量达到255万吨的计划。马来西亚政府表示,2007年,该国生物柴油产量将翻一番多,达到110万吨,工厂将由3家增加至今年的22家,到2008年将达到29家,到2010年,马来西亚生物柴油产量将达到330万吨,成为仅次于美国和德国,与印度并列的世界第三大生物柴油生产国。印尼政府表示,该国生物柴油产量有望从2006年的18万吨增长至2007年的75万吨,到2008年将达到120万吨,该国的生物柴油工厂将由4家增加至今年的15家,到2008年将达到23家。到2010年,印尼和泰国的生物柴油年产量都将达到约130万吨。 目前,巴西所有车用汽油均添加20%~25%的燃料乙醇,并且已有大量使用纯燃料乙醇的汽车。除在本国大力发展生物乙醇工业之外,巴西还积极开展国际“乙醇外交”。今年3月,巴西与美国签订了在西半球鼓励生产和消费乙醇的协定。此外,还同意大利和厄瓜多爾尔尔签订了共同开发乙醇项目的合作协定。中国限制使用玉米加工生物燃料之后,引起了巴西工业界的广泛关注,巴西农业部1995年就表示关注中国推广使用乙醇汽油的行动,希望与中国在发展乙醇燃料方面进行广泛的合作。
美国从上世纪70年代开始利用其耕地多、玉米产量大的优势,发展燃料乙醇,目前以玉米为原料生产燃料乙醇的生产工艺已经基本成熟。今年年初布什表示,美国到2012年法定的可再生和替代性能源的总量目标是要达到75亿加仑,到2017年达到350亿加仑,而当前的替代能源每年产量是40亿加仑。因此美国玉米价格节节攀升。随着对燃料汽油需求的不断增加,美国的乙醇加工项目也不断上马,2004—2005被用于生产乙醇的玉米总量是13.23亿蒲式耳,2005~2006达到21.5亿蒲式耳,美国农业部预计,2007年将会有约32亿蒲式耳玉米用于加工成燃料乙醇。
一些企业正在致力于将非粮食类或废弃生物质如秸秆等转化为乙醇,以帮助解决原料供应问题。以木质纤维素为原料生产生物乙醇是技术开发的焦点。木质纤维素来源于农业废弃物(如麦草、玉米秸秆、玉米芯等)、工业废弃物(如制浆和造纸厂的纤维渣)、林业废弃物和城市废弃物(如废纸、包装纸等)。目前世界各国研究利用木质纤维素发酵生产乙醇的科研机构都围绕着这几大关键技术进行攻关,但是目前世界上还没有一家工业规模利用纤维质原料生产燃料乙醇的企业。其主要障碍是酶解成本过高、缺乏经济可行的发酵技术。因此,技术路线的优化组合问题、生产过程中成本降低的问题以及乙醇废糟的综合利用等问题,需要解决。
养殖藻类是另一个潜在的生物燃料原料。一些企业正在开发从藻类中产业化生产合成气和氢气的体系。绿色燃料技术公司与亚利桑那公共服务公司合作,利用以天然气为原料的发电厂排出的二氧化碳养殖可以转化为生物柴油或生物乙醇的藻类。绿色燃料技术公司的技术去年在亚利桑那州的一个发电厂进行了中试并获得了巨大成功。公司计划将该项目范围扩大,并于2008年在亚利桑那州开始商业化生产,然后扩展至澳大利亚和南非。 我国玉米资源比较丰富,2006年产量1.44亿吨,居世界第二位,玉米秸秆年产量达6亿多吨。在全球高度关注能源危机,关注可再生资源开发利用的大背景下,以玉米为原料生产的燃料乙醇、玉米乙烯及其衍生物、可降解高分子材料等,成为企业竞相开发和投资的热点。2006年,我国可再生能源年利用量已达到1.8亿吨标准煤,约为一次能源消费总量的7.5%。掺入10%燃料乙醇的乙醇汽油成为中国能源替代战略的着力点之一。
2001年国内酒精原料中玉米占原料总量的比重为59%,到2006年,这一比重已经上升到79%。目前有关部门正着手研究、开发汽车用甘蔗燃料乙醇。目前我国甘蔗年产量在8500万吨左右,仅产食用酒精50多万吨。若技术攻关成功,成本控制得当,用甘蔗生产燃料乙醇,将会有很好的发展前景。但问题在于,我国甘蔗种植面积十分有限,主要集中在广西、云南等少数几个省份,而且随着国内食糖消费量大幅增加,价格也将一路上扬,生产成本将可能大大高于玉米制造燃料乙醇。国家发改委相关人士也表示,继续推广乙醇汽油是大势所趋,非粮生物能源如红薯、木薯、甜高粱、纤维质乙醇是今后发展的重点,将加大这方面的科研投入力度。而另一方面,相关部委紧急叫停玉米加工乙醇后,政府仍会继续“适度”发展燃料乙醇行业,坚持能源与粮食双赢,在确保粮食安全的前提下,国家会采取一些财税扶持政策,支持燃料乙醇的生产和使用。
(一)我国大型集团公司积极进行生物燃料的研究开发及生产
2006年11月,中国石油集团与四川省签订合作开发生物质能源框架协议,双方将以甘薯和麻疯树为原料发展生物质能源,“十一五”期间将建成60万吨/年燃料乙醇、10万吨/年生物柴油项目。2006年12月,中石油又与云南省签署框架协议,在以非粮能源作物为原料制取燃料乙醇、以膏桐等木本油料植物为原料制取生物柴油等方面进行合作。2007年初,中石油与国家林业局就发展林业生物质能源签署合作框架协议,并正式启动云南、四川第一批能源林基地建设。作为我国石油能源行业的巨头,中石油在生物质能源的频频出手令人瞩目,充分显示了生物质能源对中石油集团发展的战略重要性。中石油总经理蒋洁敏表示,“十一五”末,中石油非粮乙醇年生产能力将超过200万吨/年,达到全国产量的40%以上,同时形成林业生物柴油每年20万吨/年的商业化规模,并建设生物质能源原料基地40万公顷以上。
无独有偶,中粮集团近年也将生物质能源发展提到了战略重地的高度,一时间与中石油并驾齐驱,成鏖战之势。2007年4月6日,紧随中石油之后,中粮集团与国家林业局签署《关于合作发展林业生物质能源框架协议》,双方将重点建设一批能源林基地,开发利用林业生物柴油、燃料乙醇和木本食用油三大产品。
中粮集团在燃料乙醇、生物柴油等方面频频重拳出击,进行企业并购。目前,国家发改委先后批准建设的4套燃料乙醇生产装置。2006年国家审批第5个燃料乙醇生产装置,也是唯一的一个非粮作物燃料乙醇装置——广西15万吨/年木薯乙醇项目正在建设中。
2006年7月,中石化在攀枝花建设了一座10万吨/年的生物柴油装置,配套的能源林基地为40万~50万亩。同月,中石化总投资约1800万元、规模为2000吨/年生物柴油的试验装置在河北建成。2007年4月13日,中石化与中粮集团签订《关于发展中国生物质能源及生物化工的战略合作协议书》,共同发展生物质能源及生物化工,双方将在未来5年内合作建设100万~120万吨/年燃料乙醇的生产装置。
尤其值得注意的是,在政府的帮助下,一些中国公司在海外开办生物燃料加工厂。例如,一家中国企业在尼日尔爾利亚投资9000万美元开生物乙醇加工厂,以木薯作原料,年产15万吨,北京出资85%,15%由尼日尔爾利亚政府负担。2007年4月12日,国家科技部与意大利环境国土与海洋部签署协议:武汉的生物柴油公司与意大利有关单位合作,在武汉兴建一条将餐馆产生的潲水油、地沟油等废弃油脂,加工成为生物柴油的生产线。这条生产线建成投产后每年可生产3万吨生物柴油,生产成本在5000元/吨左右,与石油柴油相当,发展前景看好。该项目在武汉实施成功后还将向我国的其他大中城市推广。
(二)国家鼓励以非粮食作物进行生物燃料的研发及生产,企业积极响应
国家发改委2006年12月18日下发的《关于加强玉米加工项目建设管理的紧急通知》明确提出,我国将坚持非粮为主积极稳妥推动生物燃料乙醇产业发展,并立即暂停核准和备案玉米加工项目,对在建和拟建项目进行全面清理。通知要求,“十五”期间建设的4家以消化陈化粮为主的燃料乙醇生产企业,未经国家核准不得增加产能。
相关部委鉴于目前危及粮食安全的严峻形势对国内一些地方盲目发展玉米加工乙醇能力的态势实施紧急刹车,令生产企业猝不及防。粮食问题直接关系到整个社会与国家经济的稳定,这也许是国家部委对发展玉米加工乙醇能力紧急刹车的最根本原因。去年玉米和大豆的国际期货价格大幅飙升,受此影响,国内市场的玉米价格也一路走高,国内四大定点乙醇生产厂全部亏损,为了不进一步刺激玉米需求,国家发改委此前已经叫停了一些中小乙醇生产项目。
国家现在和将来都不会鼓励用玉米大规模发展燃料乙醇和工业酒精,但我国有6亿多吨的农作物秸秆,应该展开规模化利用,还有北方的甜高粱及南方的木薯等非粮作物都在国家鼓励利用之列。寻找玉米替代资源,企业已经开始行动。
中粮集团正努力发展木薯、甜高粱和纤维素乙醇,中粮集团的广西15万吨/年木薯乙醇项目正在建设中,计划在今年投产;甜高粱乙醇正在中试阶段,分别在广西桂林和内蒙古五原建设了液态发酵和固态发酵中试装置;在黑龙江肇东建立了500吨/年的纤维素乙醇中试装置,目前正改造生产装置,优化工艺流程,为万吨级工业示范装置的建设奠定基础。到2010年,中粮集团将年产燃料乙醇310万吨,其中玉米乙醇占42%、木薯乙醇占26%、红薯及甜高粱等为原料的乙醇占32%。 诚然,我国有丰富的非粮生物质资源有待开发利用,除了有农作物秸秆、甜高粱、木薯、红薯处,还有甘蔗、甜菜、芒草、柳枝稷等。但这些作物普遍存在收集、贮运的难题,生产中又有技术、工艺、设备不成熟等诸多问题,另外农业生产的季节性和工业化生产连续性的矛盾也是制约非粮食乙醇发展的主要因素。
(一)乙醇燃料的推广促使粮食价格上涨
让人担忧的迹象频频出现。世界一些积极推广乙醇燃料的国家粮食已在上涨,比如美国、巴西、墨西哥和中国等国家。以美国为例,用玉米生产乙醇对粮价上涨起到了促进作用。2006年8月,购买1蒲式耳(等于35.238升)玉米要付2.09美元,但2006年9月、10月、11月和12月,这个价格分别上涨到2.2美元、2.54美元、2.87美元和3美元。2006年美国乙醇燃料工业消耗了美国20%左右的玉米,今年预计增加至25%以上。
在中国,掺入10%乙醇的乙醇汽油成为中国能源替代战略的重要目标,但是粮食和粮食产品与乙醇燃料的争夺也日趋白热化。专业研究机构预测,“十一五”期间,中国玉米缺口在350万吨左右,将由玉米的净出口国转变为净进口国,而加工企业抢购粮源必然会使玉米价格扶摇直上。此外,与其他国家不同的是,中国的玉米都是非转基因,非常适合人畜食用,用来生产乙醇燃料显然大材小用。
(二)反对声音渐起,有研究认为乙醇燃料加剧了环境污染
世界范围内已经有多项研究表明,被标榜为绿色的乙醇燃料并非如人所愿可以保环境,而是更加剧了环境污染。美国斯坦福大学大气科学家马克·雅各布森等人的研究结果表示,乙醇燃料对人和生物健康损害比人们以前想象的还要大,以乙醇为燃料的车辆可能导致更多人罹患或死于呼吸系统疾病。如果用以乙醇为燃料的车辆替代所有的轿车和卡车,美国死于空气污染的人数将增加4%。证明乙醇燃料不“绿”反“黑”的研究结果并非孤例。美国华盛顿州立大学的生物学家伯顿·沃恩的研究小组通过实际调查发现,生产乙醇的过程中造成了另一种环境污染,减少生物多样性和增加土壤的侵蚀。另外,即使用非粮食作物甘蔗来生产乙醇,也要消耗很多的水,每处理1吨甘蔗需要用水3900升(3.9吨水),对环境又增加了负担。
(三)生物乙醇产出效率较低
目前世界上普遍用玉米生产生物乙醇,但是产出效率比较低。即使技术最先进的工厂用100kg玉米也只能生产出约45L乙醇,而且在生产乙醇和栽培玉米等原料作物过程中消耗的能量相当于所产乙醇产生能量的80%,同时也会排放二氧化碳。科学家经过系统测算之后,对生物燃料的经济性产生了疑问。
生物燃料在生产过程中所消耗的能源比它们所能够产生的能源要多,并且生产成本高于它们所替代的石油燃料。能源成本首先包括种植作物所需的化肥,也包括进行转化所需的水、蒸汽及电力。经济成本包括人工、除草剂、灌溉与机械以及化肥。与汽油相比能量密度较低的乙醇还增加了运输成本,并降低了发动机效率。玉米、柳枝稷、木质纤维素、大豆及葵花油等多种生物燃料原料植物的能源与经济性逆差是相似的。所有植物生长都需要二氧化碳,当这些植物作为燃料或者转化为其他用于燃烧用途的燃料时会被再次释放出来。从这个意义上说,生物质对碳吸收与排放的影响是中性的。不过,这没有将耕种、施肥、施杀虫剂、运输、干燥以及转化为可用燃料的过程中的能源消耗考虑进去。其中,化肥是消耗能源的主要方面,工业固氮生产氨的Haber-Bosch工艺需要消耗大量能源,大约每吨氨需要3100万英热单位的能源,如果原料不是天然气,而是煤,或者采用需部分氧化的其他工艺,则每吨氨需要4100万英热单位的能源。磷肥与钾肥生产过程中所消耗的能源要低许多(主要是在机械开采、粉碎、干燥等环节)。化肥在生物乙醇、生物柴油生产过程所消耗的能源中分别占45%、24%。在生物柴油的生产过程中,需要与甲醇进行酯交换反应,而这也要占到所消耗能源的35%。 我国正在拟订生物能源替代石油的中长期发展目标,到2020年,生物燃料生产规模达到2000万吨,其中生物乙醇1500万吨、生物柴油500万吨。如果进展顺利,到2020年,达到3000万吨以上。2006年我国进口石油1.4亿吨,预计2010年进口2亿吨,2020年进口3亿吨。这就能够在2020年以前把我国石油的对外依存度控制在50%以下,提高我国能源安全。中国的生物燃料很丰富,秸秆和林业采伐加工剩余物有10亿吨,合5亿吨标准煤,还有900万公顷木本油料林和薪碳林,30多种油料树种。
“十一五”我国将投入1010亿美元,到2020年实现生物能源占交通能源需要的15%,即1200万吨。我国还计划到2010年种植1300万公顷麻疯树,从中提取600万吨生物柴油。柴油机燃料调合用生物柴油(BDl00)生产标准近日正式颁布,于2007年5月1日实施。这必将大大促进我国生物燃料产业的发展。
但是为避免对粮食生产威胁,我国发展燃料乙醇也正在从粮食为主的原料路线向非粮转变,当然,作为调节粮食供需余缺的手段,玉米燃料乙醇仍将保持适度的规模。从大方向来看,不能再用粮食做燃料乙醇。用非粮物质替代石油将是长远的方向。我国农村劳动力丰富,在田头地角都可以种植纤维素原料植物,更有条件发展。
当2008年国际油价重挫曾一度冲破40美元之时,作为替代能源之一的燃料乙醇的发展前景也令人担心。但燃料乙醇拥有清洁、可再生等特点,可以降低汽车尾气中一氧化碳和碳氢化合物的排放。未来我国燃料乙醇行业的重点是降低生产成本、减少政府补贴,为此,制定生物燃料乙醇生产过程的消耗控制规范,及产品质量技术标准,统一燃料乙醇生产消耗定额标准,包括物耗、水耗、能耗等,是降本增效的有力手段。而未来我国燃料乙醇行业发展的方向是如何实现非粮乙醇的规模化。因此,决定未来燃料乙醇发展前景的关键是成本和技术。
未来,中国政府还将继续适度发展燃料乙醇行业。“十一五”期间,中国燃料乙醇的潜在市场规模将急剧扩大。以中国四家燃料乙醇生产企业的产能来看,远远不能满足未来国内对燃料乙醇的需求,燃料乙醇装置产能扩张不可避免。因此计划到“十一五”末,国内乙醇汽油消费量占全国汽油消费量的比例将上升到50%以上,这意味着届时中国燃料乙醇的产能和产量将会有一个质的飞跃。 中国在生物燃料方面的政策扶持相对较晚,近年随着政府的重视,生物燃料技术迅速提高,市场竞争日趋激烈。截至2010年底,我国生物质固体成型燃料年利用量为50万吨左右,非粮原料燃料乙醇年利用量增加20万吨,生物柴油年产量为50万吨左右。根据《可再生能源中长期发展规划》和《可再生能源发展“十一五”规划》,国家确定的“十一五”生物质能的发展目标为:到2010年,生物质固体成型燃料年利用量达到100万吨,增加非粮原料燃料乙醇年利用量200万吨,生物柴油年利用量达到20万吨。可见我国生物燃料的发展规模距离之前的规划相去甚远,生物质固体成型燃料只完成了1/2,非粮燃料乙醇则仅完成了既定目标的10%左右。总的来说,我国“十一五”期间生物质能源的利用出现“虎头蛇尾”的情况,究其原因主要是国家产业扶持政策没有跟上。截至2012年4月中旬,《可再生能源发展“十二五”规划》已上报国务院,但仍未正式发布。《规划》已初定我国2015年生物燃料乙醇年利用量达到500万吨,与“十一五”的规划目标相比翻了一倍多;生物柴油年利用量为100万吨。
为了“十二五”期间不重蹈覆辙,我国有关部门正在积极制定应对措施。根据《可再生能源中长期发展规划》,到2020年,我国生物柴油年利用量达到200万吨,生物燃料乙醇年利用量达1000万吨。而由于化石能源的有限性,开发新型能源已上升为各国的能源战略。目前全球原油可采年限约为46年,而我国石油可采年限仅为15.62年。发展替代能源是解决我国能源供应紧张问题的有效途径。虽然由于原料短缺及价格高涨等原因,目前我国生物柴油的产能利用率较低,有些企业处于部分停产甚至完全停产状态,但随着国家产业扶持政策的出台,“十一五”期间生物燃料“先热后冷”的局面将不再出现,生物柴油行业必将得到长远的发展。
‘拾’ 为什么在世界能源记录里几乎找不到生物能
是生物能对人类的贡献小吗?完全不是。历史上它对人类社会进步所起的决定性作用且不说,就是现在,全世界大约还有25亿人,即几乎占世界人口的一半,烧饭、取暖和照明都在依靠生物能。这些人大多数居住在发展中国家的农村。调查结果告诉我们,在1987年全世界消耗的能源中,生物能占了14%,大约相当于12.57亿吨石油。特别是发展中国家,消耗的全部能源中生物能的比重竟高达35%。
是生物能资源贫乏吗?不是。有人估计,目前地球上绿色植物所储存的能量,加在一起大约相当于8万亿吨标准煤,比目前已知地壳内可供开采的煤炭总储量还多8倍!
这还不算,更重要的是,像煤炭这样一类的矿物能源,短时期内不会再生,采出一点少一点,总有一天会采光。而生物能却是“活”的,能够再生,可以永续利用,永不枯竭。生物学家说,地球上的绿色植物一年当中通过光合作用储存起来的太阳能,几乎是目前人类一年中主要燃料消耗量的10倍。也就是说,全世界绿色植物在一年中“新生”出来的能量,就足够人类使用好几年!
使用生物能会带来环境污染吗?不会,恰恰相反。生物质基本上是由碳水化合物组成的,如果这种燃料燃烧能够完全,那只会产生很少或者根本不会产生有毒有害气体。
生物质的燃烧产物主要是二氧化碳。二氧化碳被称做“温室气体”,它在空气中的含量多了会产生“温室效应”,引起全球气温上升,从而带来一系列严重后果。但是,绿色植物又能吸收“吞噬”二氧化碳,大量种植绿色植物不仅可以抵消由于燃烧生物质而产生的“温室气体”,而且实际上还能帮助阻止全球气候变暖,有利于改善生态环境。
因此,尽管目前生物能的用量还不是很多,它在世界能源构成中所占的比重不是很大,但是它很有前途,大有潜力可挖,世界上很多国家都在努力开发生物能,有人甚至赞誉它是“未来的燃料”。