导航:首页 > 生物信息 > 怎么生成生物

怎么生成生物

发布时间:2022-04-25 16:01:48

A. 世界上第一个生物是怎么诞生的呢

最早的生物是古细菌,诞生于极端原始环境。

古细菌(古核细胞),常生活于热泉水、缺氧湖底、盐水湖等极端环境中的细菌。具有一些独特的生化性质,如膜脂由醚键而不是酯键连接,其营养方式亦不同于常规生物,如硫氧化等。古核细胞遗传的信息量较小,是世界上最早的生物。

诞生:古菌是生存在极端环境中的。一些生存在极高的温度(经常100℃以上)下,比如间歇泉或者海底黑烟囱中。还有的生存在很冷的环境或者高盐、强酸或强碱性的水中。

后来发现古细菌分布其实很广泛,在温和环境和冷环境中也有它们的踪迹,如温带的土壤、食草动物的消化管和南极海岸水域。

(1)怎么生成生物扩展阅读:

从RNA进化树上,古菌分为两类,泉古菌(Crenarchaeota)和广古菌(Euryarchaeota)。另外未确定的两类分别由某些环境样品和2002年由Karl Stetter发现的奇特的物种纳古菌(Nanoarchaeum equitans)构成。

Woese认为细菌、古菌和真核生物各代表了一支具有简单遗传机制的远祖生物的后代。这个假说反映在了“古菌”的名称中(希腊语archae为“古代的”)。

随后他正式称这三支为三个域,各由几个界组成。这种分类后来非常流行,但远组生物这种思想本身并未被普遍接受。一些生物学家认为古菌和真核生物产生于特化的细菌。

古菌和真核生物的关系仍然是个重要问题。除掉上面所提到的相似性,很多其他遗传树也将二者并在一起。在一些树中真核生物离广古菌比离泉古菌更近,但生物膜化学的结论相反。

然而,在一些细菌,(如栖热袍菌)中发现了和古菌类似的基因,使这些关系变得复杂起来。一些人认为真核生物起源于一个古菌和细菌的融合,二者分别成为细胞核和细胞质。这解释了很多基因上的相似性,但在解释细胞结构上存在困难。

B. 生物是怎样产生的

生命由无生命物质逐步形成。大致经历如下阶段:无机小分子物质—有机小分子物质—蛋白质、核酸等有机高分子—多分子体系(蛋白质、核酸及其它必要物质构成的体系)—原始生命。地球上生物起源于大约30亿年以前。 单细胞生物进化成低等多细胞生物。
所有的生物进化大致都是这个顺序

C. 生物是怎样形成的

1. 对生命起源的早期猜想
从人类文明早期到十七世纪,自然发生学说一直占据着人们的主流思想——即认为生命物质是由无生命物质转化的结果。就连极富盛名的大物理学家牛顿也认为,植物是由逐渐变弱了的慧星尾巴形成的。后来,Louis Pasteur通过巧妙的鹅颈瓶实验证明了生物,即使是最简单的细菌,都不能从无生命的物质中自发产生,生命只能来自生命。1870年,Thomas Henry Huxley提出了生源说:“生命始终来自先前已经存在的生命。”
然而,如果说生命来自于已存在的生命,那这个已存在的生命又从何而来呢?关于生命起源的问题——这个在自然发生论者看来不是问题的问题——生源说却无法解决,所以生源说者经常会无赖地说:“生命是宇宙生来就固有的,你要问我生命从哪里来的,你首先给我回答一个问题,宇宙怎么起源的?物质怎么来的?你给我回答了物质是怎么来的,生命我就可以说是从哪儿来的。”因此,生源说其实是一个不可知论。
如果稍作比较,不难发现进化论与生源说其实面临着同样的难题——如果说高级生命是从低级的生命进化而来的,那么是否存在最低级的生命形态?它又是如何产生的?达尔文巧妙地避开了对生命起源的讨论才使得它不至于落入不可知论的泥淖,却让后世学者为他这不负责任的行为买单,经过几代人的努力,最终形成了一套初步的不尽完整的理论——化学进化论。
2. 化学进化论
化学进化论是被广大学者普遍接受的生命起源假说。这一假说认为,地球上的生命是在地球温度逐步下降以后,在极其漫长的时间内,由非生命物质经过极其复杂的化学过程,一步一步地演变而成的。
原始大气的主要成分有甲烷、氨、水蒸气、氢等,此外还有硫化氢和氢氰酸。这些气体在大自然不断产生的宇宙射线、紫外线、闪电等的作用下,就可能自然合成氨基酸、核苷酸、单糖等一系列比较简单的有机小分子物质。后来,地球的温度进一步降低,这些有机小分子物质又随着雨水,流经湖泊和河流,最后汇集在原始海洋中。
关于这方面的推测,已经得到了科学实验的证实。1935年,美国学者S.L.Miller等人,设计了一套密闭装置。他们将装置内的空气抽出,然后模拟原始地球上的大气成分,通入甲烷、氨、氢、水蒸气等气体,并模拟原始地球条件下的闪电,连续进行火花放电,最后,在U型管内检验出有氨基酸生成。
米勒实验证明了原始地球具备将无机物转化为有机物的条件,随后,原始地球条件下有机小分子如何进化到生物大分子便成为生命起源研究中新的实验课题。1958年,美国人S.W.Fox模拟原始地球的条件,将一些氨基酸溶液混合后倒人160℃~200℃的热沙或粘土中,使水分蒸发、氨基酸浓缩,经过0.5小时至3小时后就产生一种琥珀色的透明物质,它具有蛋白质的部分特性,因此被称为类蛋白质。Fox等认为,在原始地球不断有火山爆发的条件下,火山喷出气体中的甲烷、氨气和水蒸气等可能在高温条件下合成氨基酸,而氨基酸又可能通过热聚合反应而缩合为多肽。此外,也有人用模拟实验得到类似核酸的物质多聚核苷酸。实验表明,在50℃~60℃时,只要有多聚膦酸酯的存在,单个的核苷酸就可以聚合为多聚核苷酸。这些实验证明了有机小分子可以在原始地球上合成生物大分子如蛋白质,核酸等。饱含这种有机物的海洋环境成为了孕育生命的摇篮,被称为“原始汤”。
然而,线索行至此却突然模糊起来。关于有高分子物质如何成为了生命,我查阅了大量资料,绝大多数都是敷衍地说:“……生物大分子经过漫长的演化……终于形成了生命,然后进化……”的确,从无生命到有生命,这是地质史上一次质的飞跃,也是研究生命起源的一道难以跨越的鸿沟,目前,人类还不能在实验室里重现这一过程,然而,现代生命科学的飞速发展也让我们看到了零星的曙光,下面我将展示这些资料,以求尽量给读者一个满意的答案。
3. “生命源于共同祖先”
区别非生物与生物主要有两大特征:1、新陈代谢,即能够与环境进行物质和能量交换以维持其生长、运动和繁殖等生命活动过程。2、繁殖,即能够进行无限次数的自我复制。只要满足这两个条件则可视之为生物。
《物种起源》中虽然没有讨论生命起源的问题,但达尔文还是忍不住说了一句:“生命起源于一个普遍具有高度保守性的遗传信息片段,在相当广的范围内,通过不断的复制和分化得以进化,地球上所有现存物种源于一个原始的共同祖先。”至于那个共同祖先是什么东西,达尔文没有说,也无法说明。
为了跨越无生命与有生命之间的那道鸿沟,我们就必须找到那个共同祖先——地球上最原始的生命体,它必须满足上述两个条件,而且比它低级的任何一种形态都不能全部满足这两个条件。对于这样的生命体,可以确定,它早已灭绝,现存的化石记录里也没有,甚至我们很难在脑海里将其构造出来,不过,我们可以通过某些具体的信息向其逼近。
根据当代生物进化论研究者的观点,地球上的所有生命都可以归结到三个生物类群的某一类中。这三个类群分别是真核生物(Eukaryotes)、细菌(Eubacterial)和古菌(Archaea)。最近研究表明,细菌、古菌与真核生物很有可能源于同一个祖先,它是一种30亿年或40亿年前漂浮在“原始汤”周围的“原胞”实体,这种实体被称为“露卡(LUCA)”,也就是“第一个基本的共同祖先(Last universal common ancestor)”之意。然而,它没有留下任何已知的化石,也没有其他物理线索可揭示其身份。
但我们还是有蛛丝马迹可寻的。首先,我们必须明白,作为一个祖先,“露卡”应该具备以下两个特征:1、年代最久远。2、结构最简单。其中“年代最久远”是为了确保它的祖先地位,而“结构最简单”是为了确保它能由生物大分子直接形成。这两个特征其实并不等价,在原始单细胞生物领域,并非越低级的生物结构越简单,真核生物不一定比原核生物来得要晚(关于这一点我会在第4节说明)。而且在原始地球,退化的现象相当流行,突变即使令生物失去了某些结构,在生存竞争并不激烈的当时,它仍能生存繁衍。这一结论似乎给我们寻找同时满足这两个条件的“露卡”带来困难。
虽难如此,科学家们还是通过基因组分析和实验室模拟生成等巧妙的方法,初步描绘出“露卡”的肖像。
4. 基因组图谱下的“露卡”肖像
基因是个好东西。通过构建基因组水平DNA、RNA 和蛋白质序列分析的技术平台,科学家们在生物分类、生物进化及生命起源等领域取得了杰出成就。
那么,从基因分析中得到的“露卡”肖像又是怎样的呢?
最早应用基因分析研究“露卡”的科学家是伊利诺斯大学分子生物学家Woese。20世纪60年代末,Woese发明了一种通过比较rRNA小节序列来测量物种间关系的方法。假设基因突变会随着时间的推移自然增长,两种物种的rRNA越是不同,它们分离的时间就越久。
Woese测定了200多种原核生物的16S rRNA 和真核生物的18S rRNA 的序列,发现在原核生物中实际上有第三种类型生物:古菌。尽管古菌与细菌在许多方面相似,但缺乏定义的肽脂糖,并且具有几个真核细胞的特性。自此后,科学家采用一种新的分类系统,将生物分为三个域:古菌、细菌和真核生物。那么,这三个域是以何种顺序进化而来?换句话说,“露卡”更像细菌,古菌,还是真核生物?鉴于当时条件,Woese并未解答。如今,这个问题是否已得到解决?
20世纪80年代,科学家对rRNA所进行的进一步比较表明,细菌是最古老的域。这与我们的常识相一致,因为原核生物无论从那方面看都比真核生物简单,甚至很多人认为细菌是通过融合、内共生、内吞作用、膜内陷等方式进化成真核生物的。并不是所有人都同意这一观点,法国巴黎大学的帕特里克•福特勒教授就是其中一位主要反对者。福特勒教授指出,尽管真核生物更复杂,但它们也充斥着原始结构。例如,真核生物染色体包括成串线状DNA,这需要一种称为端粒的分子来保护其末梢在复制过程中不受损坏,而细菌染色体是环状,所以不需要端粒来保护。
至于为什么细菌在基因分析中表现得更古老,福特勒教授解释说,基因分析方法本身存在一个重大缺陷:没有将不同域的突变的不同速度考虑进去。与真核生物相比,细菌圆滑,在制造蛋白质方面效率更高,它们可以在几秒钟内就启动蛋白质合成道路上的第一步,而同样的生物进程真核生物需要半个小时,所以,在同一时段内细菌基因的变异会比真核生物大得多,因此单从基因分析得到结果来看,细菌等一些进化速度更快的直系后代看上去比实际要“老成”,造成细菌比真核生物古老的假象。
由于原始生命突变的速度难以确定且与突变本身有关,这一重大缺陷便使得基因分析的说服力大大下降。而最近发现的另一个重大缺陷又使坚持基因分析法的科学家们不得不转变思维。
20世纪90年代,首批基因组排序计划宣告完成,这使得研究人员能列出所有生命形式共同的基因。但令人吃惊的是,“生命树”所有的基因数量结果却相当少。例如,最新一项研究对100个物种进行了比较,结果只发现60个基因是普遍存在的。这种分析揭示的仅仅是哪些基因是原始的,而与这些基因“落户”的物种没有关系。由此科学家们意识到,基因可能在不同的物种间进行转移。
基因平行转移是比较基因组序列得到的一个令人震惊的结果。这说明原始细胞的所有组成成分很容易通过基因平行转移的方式进行改变或取代,这或许是当时生命进化的主要动力,却为基因分析带来了更大的麻烦,基因的整合使生物的基因组变得杂乱无章,并且这种整合是随机的,基因组的特征便很难向我们表达它应该包含的信息。而我们要寻找的“露卡”位于这些原始生物的最低层,它的基因组早就被平行转移掺和得面目全非,直接追溯“露卡”的基因组无疑困难重重。
然而,随着细胞变得越来越复杂,这种平行转移将逐渐减少,一旦到达某种临界复杂程度,即细胞的各成分出现了高度的整合——称为达尔文式阈值(Darwinian threshold)——基因的平行转移将停止,基因组开始取决于遗传,具有不同特征的直系后代开始出现,这样一来基因分析便颇具参考价值。于是,科学家们只好转而研究达尔文阈值以上的生物的基因组,以此来推断“露卡”的基因组成。
在寻找“露卡”的过程中,研究古细菌的基因组非常重要,因为古细菌的生长环境更接近原始地球的状态。1996年,科学家们解析了从深海发现的古细菌物种詹氏甲烷球菌(Methanococcus jannaschii)的基因组全序列。这是第一个被分析的古细菌类生物的基因组,其主要的环状染色体共有150万对碱基,含大约1700个基因。通过比较基因组研究,研究者推断出“露卡”可能具备这样一些特征:蛋白质合成的装置最为发达,但尚未完全;RNA合成的功能要比蛋白质合成差一些;而DNA合成的机制则基本没有。此外,它具有较为发达的代谢途径,包括氨基酸和核苷酸代谢,以及辅酶的合成等。
然而1700个基因对于“露卡”这位祖先来说似乎是太多了,“露卡”的结构必须尽量简单以确保它能从无生命的形态直接演变而来。那么,还有没有更简单的模型?
生殖道支原体(Mycoplasma genitalium)是一种寄生细菌,它的基因组是目前已测定的物种基因组中最小的一个,仅有468个基因。科学家将它的基因组与另外一种细菌流感嗜血杆菌(Haemophilus influenzae)的基因组序列进行了详细的比较,发现有240个生殖道支原体基因与流感嗜血杆菌基因存在垂直同源性。经过进一步研究,科学家们得出结论“露卡”至少需要大约250个基因。
5. “人工露卡”与多分子体系
“露卡”肖像的确定除了通过用计算手段比较基因组以外,另一个重要的途径是采用实验的手段。
其实上个世纪生物学界一直流行着一种寻找“最小基因组”的“游戏”,即找到那个包含最少基因却又能刚好维持生命体生命活动的基因组序列。这一过程一般是在实验室里完成,而所得到的那串基因组序列及其操控的生命体实际上反映了“露卡”的特征,所以我们可以把这些生命体称为“人工露卡”。
早在比较基因组方法出现之前,美国科学家M. Itaya就利用基因剔除方法,在细菌枯草芽孢杆菌(Bacillus subtilis)基因组上随机敲除了79个基因,通过分析这些基因剔除品系是否存活来探讨最小基因组,从而得到了第一个“人工露卡”。另一位着名的科学家C. Venter也采用基因剔除的办法,对上一节所说的生殖道支原体的基因逐个进行敲除,并检查其存活情况,最终得出结论,生殖道支原体有可能只需要265到350个基因就可以生存。
这个结果与比较基因组方法得到结果惊人地相似。Venter得到的“人工露卡”也许能很好地描述“露卡”的特征,通过对这一“人工露卡”形态与生活史的进一步研究,一张“露卡”的肖像隐约浮现在了我们眼前:
(1)含有250到350个基因,不含内含子
(2)一套基本上完整的DNA复制系统
(3)一套进行DNA重组和修复的系统
(4)一个几乎完整的转录、翻译系统
(5)一组具有4个RNA聚合酶亚单位的转录装置
(6)一组参与蛋白质折叠的分子伴侣蛋白
(7)一组蛋白质转运机器
(8)完整的无氧中间代谢途径
(9)一条辅酶合成途径
(10)一种将生命体与周围环境隔开的结构
这一套机制确保了生命体能够繁殖、表达、遗传、变异、进化以及代谢,这是对生命的基本要求,也是“露卡”最可能的模样。我们不妨吧这一机制称为“露卡机制”。
这也许很令人沮丧,因为“露卡”看起来也很复杂,我们很难想象生物大分子是如何形成这一机制的。那么,还有没有更简单的模型?
我们以上讨论的都是从已知物种出发由复杂向简单逼近“露卡”的追溯过程,那么,可不可以从生物大分子出发由简单向复杂逼近“露卡”呢?
1924年,前苏联生物学家A.I.Oparin在实验的基础上提出团聚体学说(Coacervate Theory),认为生物大分子蛋白质和核酸的溶液混合在一起时可以形成团聚体,这种多分子体系表现出一定的生命现象。奥巴林将明胶(蛋白质)溶液与阿拉伯胶(糖)溶液两种透明的溶液混合在一起,混合之后溶液变为混浊,显微镜下可以看到均匀的溶液中出现了小滴,即团聚体。用蛋白质、核酸、多糖、磷脂及多肽等溶液也能形成这样的团聚体。这种团聚体直径1—500微米,外围可形成膜一样的结构与周围的介质分隔开来,能稳定存在几个小时至几星期时间,并表现出简单的代谢、生长、增殖等生命现象。
20世纪60年代,美国人S.W.Fox提出了微球体学说(Microsphere Theory),强调了蛋白质在生命起源中的重要作用。他将于燥的氨基酸粉末混合加热后在水中形成了类蛋白微球体,并把它看成是原始细胞的模型。这种微球体直径较均一,在1—2微米之间,相当
图2 团聚体(右)与微球体(左)
Fig.2 Coacervate(right) and microsphere(left)
于细菌的大小。它表现出很多生命特征:其表面具有双层膜,能随着介质的渗透压变化而膨
胀或收缩;能吸收溶液中的类蛋白质而生长,并能像细菌那样进行繁殖;在电子显微镜下还
可以观察到它具有类似于细菌的超微结构。
这种团聚体或微球体统称为“多分子体系”,那么,多分子体系是否就是“露卡”呢?答案是否定的。多分子体系虽然能够进行简单的代谢、生长和增殖等生命活动,但是它与真正意义上的生命还是有本质的区别的,因为它没有完整的“露卡机制”,它不能完成核酸的复制、转录与翻译。也就是说,它虽然能简单地分裂形成多个个体,但却不能将其性状遗传下去,不能遗传倒没什么,但是不能遗传也就意味着不能进化,作为一种不能进化的“生物”,它完全没有资格拥有“祖先”这个称号。“露卡”与其本质的区别就在于它已经具备了这套机制,它能够进化。
多分子体系虽然还不能成为“露卡”,但它的发现还是有其意义的,它揭示了生物大分子之间能够相互作用形成具有生命活力的分子团,如果说“露卡”理论是从上往下逼近了达尔文所言的“共同祖先”,那么“多分子体系”理论则是从下往上向其逼近。好,我们的鸿沟变窄了,现在只剩下一个问题:“露卡机制”是如何产生的?
对于这一问题,我只能说,“露卡机制”的产生是一个谜,现代科学在这方面的研究收效甚微,不但如此,我们的科学越是发展,我们对DNA复制、转录和翻译的机制知道得越多,我们越是对它那高度的精确与智能百思不得其解。即使到目前,如果我们仍相信进化论,我们也只能说,它是多分子体系在“漫长的演化”中逐渐形成的。

D. 地球上的生物是怎样形成的

大约30亿年以前,大雨停止后,地球进入了另一个发展阶段。地球的原始大气中含有氨、甲烷、氰化氢、硫化氢、二氧化碳、氢气、水等成分,但没有游离的氧气,大气中一些气体和地壳表面的一些可溶性物质溶于水中,在宇宙射线、太阳紫外线、闪电、高温等的作用下自然合成了一系列的小分子有机化合物,例如氨基酸、核苷酸、单糖、脂肪酸等,汇集在原始海洋中,形成霍尔丹所谓的“原始汤”,从而为生命的诞生准备了必要条件。 当氨基酸、核苷酸、单糖、脂肪酸等有机小分子形成后,在适当的条件下,它们可以进一步形成复杂的有机物质。例如蛋白质、核酸、多糖、类脂等大分子物质。其中蛋白质和核酸的形成对于生命现象具有非常重要的作用,对于它们的形成主要有两种观点。 (1)陆相起源:他们认为聚合反应是发生在火山的局部地区,聚合生成的生物经雨水的冲刷汇集到海洋,并在一定的条件作用下,继续发展成为复杂的有机物质。 (2)海相起源:认为在原始的海洋中的氨基酸和核苷酸等小分子有机物可以被吸附于粘土一类的物质的活性表面,而在适当缩合剂存在时,可以发生聚合反应。 生物大分子不能独立表现生命现象,只有形成了众多的、乃至成百万的一蛋白质、核酸为基础的多分子体系时,才能表现生命萌芽。 而生物大分子在溶液中大量聚集,从而形成各种独立的多分子体系,出现团聚体或微球体。由于多分子体系可以起到有机表面的催化作用,而反过来作用与各类单体的聚合,促使产生更高级的蛋白质和核酸,然后通过有序性逐渐提高的长期过程,其结构、机能便愈益复杂和完善,由此产生出原始生命。

E. 地球上的一切生物最初是从哪里来的是怎样形成的

地球上的第一个生物,许多人认为是病毒一类的非常简单的生物,他只是有核酸和蛋白质外壳组正的物质。
而组成他的是基础的生物大分子,它是由自然界中的无机分子在一定的条件下偶然形成生物小分子,进而发展而来的,从此地球上有了生命,下面是详细的介绍:

神秘的生命起源
那是在大约50亿年前,宇宙中一团弥漫的缓缓转动的气体尘埃云形成了原始太阳系。到了47亿年前,原始太阳系里一些气体尘埃云又凝聚形成了最初的地球。刚刚诞生的地球十分寒冷、荒凉,没有结构复杂的物质,当然也不会有生命。生命是随着原始大气的诞生开始孕育的。
在早期太阳系里,一些处于原始状态的天体频繁和幼小的地球相撞,这一方面增大了地球体积,另一方面运动的能量转化为热能贮存在了地球内部。撞击不断地发生,地球内部蓄积了大量热能。地球的平均温度高达摄氏几千度,内部的金属和矿物变成了融融的炽热岩浆。岩浆在地球内部剧烈运动着,不时冲出地球表面形成火山爆发。在原始地球上,火山爆发十分频繁。随着火山爆发,地球内 部一些气体被源源不断地释放出来,形成了原始大气。不过,这时的地球上仍然没有生物分子。
在以后的岁月里,由于日积月累,原始大气中的水蒸气越来越多,地球表面温度开始降低。当降低到水的沸点以下时,水蒸气就化作倾盆大雨降落到了地面上。倾盆大雨不分昼夜地下着,形成了最初的海洋,这为生命的诞生准备了摇篮。
那时地球表面的温度仍然很高,到了大约36亿年前,海水的温度已降为80℃左右,然而在此之前,原始生命就已悄悄孕育了。
生命的诞生与原始大气十分有缘。据推测,原始大气的主要成份是一氧化碳、二氧化碳、甲烷、水蒸气、氨气。这些简单的气体分子要想成为生物分子,就必须变得足够复杂。合成复杂物质是需要消耗能量的。
值得庆幸的是,在原始地球上有各种形式的能量可供利用。首先,原始大气没有臭氧层,阳光中的紫外线可以毫无顾忌地进入大气,这为地球带来了能量。其次,原始大气中会出现闪电,闪电是一种能量释放现象。再次,原始地球上火山活动频繁,火山喷发可以释放大量热量。
简单的气体分子在吸收了能量之后,它们会变得异常地活泼,进而产生化学反应,形成复杂的(生命)物质。美国的科学家米勒是第一位模拟原始地球的大气的条件,成功地合成出复杂(生命)物质的科学家。
第二集 生命怎样诞生
米勒设计了一套玻璃仪器装置。球形的玻璃容器里模拟的是原始地球的大气,主要有氢气、甲烷和氨气。在实验过程中,需要把烧瓶里的水煮沸,这模拟的是原始海洋里的蒸发现象。球形的电火花室里外接有高频线圈,使电极可以连续火花放电,这模拟的是原始地球大气中的放电现象。放电进行了一周,让米勒惊喜的是,实验中产生了多种氨基酸。
氨基酸和核苷酸是动植物体内普遍存在和最最重要的两种生物小分子,它们是建造生命大厦的砖块和石头。
由不是生物体基本结构单元的无机小分子演变为生物小分子,这无疑是生命进化过程中至关重要的一步,但是呢,由于生物小分子毕竟过于简单,只有它们演变成更为复杂的生物大分子之后,才能导致生命的诞生。
在原始地球上,自然合成的氨基酸和核苷酸随雨水汇集到湖泊海洋里。矿物粘土把这些生物小分子吸附到自己周围,在铜、锌、钠、镁等金属离子催化下,许多氨基酸分子通过脱去水分子而连接在一起,形成更为复杂的分子,也就是蛋白质分子。同样,许多核苷酸分子可以通过脱去水分子而连接在一起,形成更为复杂的分子,也就是核酸分子。
核酸是生物的遗传物质,生物体生长、繁殖、行为和新陈代谢的信息就包含在核酸分子里核苷酸的排列顺序中,可以说,每一种核苷酸排列顺序都是一篇记录着生命信息的文章,书写的文字就是核苷酸。核酸是生命的信息分子,对于生命是绝对重要的。然而核酸的功能却是通过蛋白质来实现的,就连核酸本身的复制都需要蛋白质参与。
原始地球的湖泊海洋里出现了核酸和蛋白质以后,也许有人认为生命从此就诞生了,因为自然界中一些病毒就是由核酸和蛋白质组成的,而类病毒就更是简单得可怜,只是一个核酸分子,这个核酸分子能侵入植物细胞并使植物得病,马铃薯纺锤状块茎病就是这种类病毒感染的结果。
病毒和类病毒只能在活细胞内生存繁殖,至于是不是一种生命形式,目前还存在争议。
生物为了适应环境,在进化过程中,它必须从简单到复杂、从低级到高级这样一个过程当中进行演化,而一个简单的分子,在传宗接代过程中是无能为力把其它物质聚集在自己周围的,它必须形成具有一定结构的复杂形态的实体。
在原始海洋里,随着时间推移,自然合成的生物大分子浓度越来越高,最终形成了具有一定形态结构的分子实体,并进一步进化为最原始的生命。
第三集 遗传物质的进化
众所周知,核酸是当今地球上所有生物的遗传物质,它携带着生命信息,又能自我复制。核酸有两种:一种是核糖核酸,又叫RNA,在RNA病毒和类病毒中,RNA携带着全部生命信息;另一种是脱氧核糖核酸,又叫DNA,它是目前绝大多数生物的遗传物质。
种种迹象表明,原始地球上首先出现的复杂分子可能是RNA,为什么这样说呢?
首先,RNA分子比较简单,只有一条链,DNA分子却很复杂,有两条链,按照进化规律,简单的分子总是最先出现。其次,DNA分子自我复制时离不开酶,酶的本质是蛋白质,在原始地球上,在蛋白质没有产生以前,DNA分子是无法完成自我复制的,然而有些RNA分子本身就有酶的活性,在原始地球条件下,即使没有蛋白质,RNA也可以完成自我复制。
在生命起源中,RNA先发生的学说能够被科学界更多的学者所接受,但是要想真正地证明RNA是最早发生的遗传物质,还存在很多的问题,最大的问题是,要想在模拟原始的条件下合成RNA非常困难。
长期以来,人们总以为只有核酸才是遗传物质,近年来生物学家发现,疯牛病、疯羊病的病原体是朊病毒,朊病毒的本质是蛋白质,可以自我复制,这启发人们,蛋白质也可以作为遗传物质。
其实,和核酸一样,蛋白质的分子结构十分规则,而且也有螺旋结构。科学家长期研究后发现,蛋白质完全具备遗传物质的条件,能够贮藏、复制和传递生命信息。
我们知道,蛋白质是由氨基酸组成的,通过氨基酸和氨基酸配对,可以把遗传信息传递给下一代。
通过实验,刘次全研究员提出了氨基酸的配对模型,并且在此基础上,绘出了一张很有特色的遗传密码表。
在原始地球上,最早能够进行自我复制的分子可能是蛋白质,那时的蛋白质既能贮存或传递遗传信息,又能执行特定的生物学功能。
对于原始生命来说,蛋白质的这种性质是十分经济的,后来随着生命进化,蛋白质贮存或传递遗传信息的功能交给了RNA,然而RNA不够稳定,随着生命继续进化,又出现了DNA,DNA是后来才出现的遗传物质。
DNA作为遗传物质的好处是:第一,DNA的某些部位与RNA相比,少了氧原子,氧原子是非常活泼的,这样DNA更加稳定,能够更好地保存生命信息,第二, RNA是单链,如果受到损伤,生命的信息势必丢失,DNA则是双链,一条链发生损伤后,可以根据另一条链进行修复,生命信息不易丢失。
因而,今天地球上的生命选择了DNA作为遗传物质,这也是生物在自然界中长期进化的结果
不过在还没有发现地外生物之前还不能确定地球的生物到底是偶然产生还是必然产生。

F. 生物怎么产生的

生命诞生于海洋,微生物开始到岸上,接着演变出脊椎动物
然后就有了恐龙,再接着有了人类啊
当代关于生命诞生的假说可归结为两大类:一是"化学进化说",一是"宇宙胚种说".
A、化学进化说
化学进化说主张,生命起源于原始
地球
条件下从无机到有机,由简单到复杂的一系列化学进化过程.
核酸和蛋白质等生物分子是生命的物质基础,生命的起源关键就在于这些生命物质的起源,即在没有生命的原始地球上,由于自然的原因,非生命物质通过化学作用,产生出多种有机物和生物分子.因此,生命起源问题首先是原始有机物的起源与早期演化.化学进化的作用是造就一类化学材料,这些化学材料构成氨基酸,糖等通用的"结构单元",核酸和蛋白质等生命物质就来自这结"结构单元"的组合.
1922年,生物化学家奥巴林第一个提出了一种可以验证的假说,认为原始地球上的某些无机物,在来自闪电,太阳国徽的能量的作用下,变成了第一批有机分子.时隔31年之后的1953年,美国化学家米勒首次实验证了奥巴林的这一假说.他模似原始地球上的大气成分,用氢,甲烷,氨和水蒸气等,通过加热和火花放电,合成了有机分子氨基酸.继米勒之后,许多通过模拟原始地球条件的实验,又合成出了其他组成生命体的重要的生物分子,如嘌呤,嘧定,核糖,脱氧核糖,核苷,核苷酸,脂肪酸,卟啉和脂质等.1965年和1981年,我国又在世界上首次人工合成胰岛素和酵母丙氨酸转移核糖核酸.蛋白质和核酸的形成是由无生命到有生命的转折点,上述两种生物分子的人工合成成功,开始了通过人工合成生命物质去研究生命起源的新时代.
一般说来,生命的化学进化过程包括四个阶段:从无机小分子生成有机小分子;从有机小分子形成有机大分子;从有机大分子组成能自我维持稳定和发展的多分子体系;从多分子体系演变为原始生命.
B、宇宙胚种说
宇宙胚种说则认为,地球上最初的生命是来自地球以外的宇宙空间,只是后来才在地球让发展了起来.
过去和现在,已经提出了许多属于宇宙胚种说的假说,如在1993年7月的第十次生命起源国际会议上,有人提出,"造成化学反应并导致生命产生的有机物,毫无颖问是与地球碰撞的彗星带来的";还有人推断,是同地球碰撞在其中一颗彗星带着一个"生命的胚胎",穿过宇宙,将其留在了刚刚诞生的地球之上,从而有了地球生命.几年前一位空间物理学家和一位天体物理学家也把地球生命的起源解释为:地球生命之源可能来自40亿年前坠入海洋的一颗或数颗彗星,他们也认为是彗星提供了地球生命诞生需要的原材料(他们将之谓"类生命生物").
尽管有科学家对此类假说持强烈的反对意见(他们认为:"彗星是带来了某些物质,但它们不是决定性的,生命所必需的物质在地球上已经存在
"),尽管诸如此类的观点仍是一些尚需进一步证明的问题,但通过对陨石,彗星,星际尘云以及其他行星上的有机分子的探索与研究,了解那些有机分子形成与发展的规律,并将其与地球上的有机分子进行比较,都将为地球上生命起源的研究提供更多的资料.

G. 地球上是怎么形成生物的,初始生命体是什么

从古至今,有很多说法来解释生命起源的问题。如西方的创世说,中国的盘古开天地说等。但直到十九世纪,伴随着达尔文《物种起源》一书的问世,生物科学发生了前所未有的大变革,同时也为人类揭示生命起源这一千古之谜带来了一丝曙光,这就是现代的化学进化论。生命起源的化学进化论首先在1953年首先得到了一位美国的学者米勒的证实,米勒描述的生命起源的事件应该是什么样子的呢?那就是在早期,地球上因为它含有大量的还原性的原始大气圈,比如说甲烷、氨气、水、氢气,还有原始的海洋,当早期地球上闪电作用把这些气体聚合成多种氨基酸,而这多种氨基酸,在常温常压下,它可能在局部浓缩,再进一步演化成蛋白质和其他的多糖类、以及高分子脂类,在一定的时候有可能孕发成生命,这就是米勒描述的生命进化的过程。
地球上的生命也许就产生在距今38亿年到40亿年之间,但是我们应该清醒的明白,我们距离揭开生命起源这一亘古之谜,还有一段遥远的科学历程。从无机物到有机物,到有机化合物到有机生命体的演化,同时还具有很多的偶然性,并不是有这种环境,有这种形成条件,它就能产生生命。有人曾经比喻说,这些无机物好像一个垃圾堆里面什么都有,塑料、塑料瓶子、铁,废弃金属、油,而生命,一个单细胞,就像一辆精美的奔驰车,在一阵台风过后,这些垃圾组装成了一个奔驰车。因此我们可以想象,这个生命起源的过程是非常非常地艰难。因此,也许我们在这个蓝色的星球,是生命的惟一的乐园,因此请保护我们的地球,珍惜地球上的生命,我们不能奢望地球上第二次的生命起源。

H. 地球上的所有生物是怎么形成的

最早出现的是生命之源--蛋白质.以后才有单细胞生命.最早的是微生物菌母.5亿年前的陆地上,到处是光秃秃的山脉和大地,除了石头就是沙子,没有任何生命,也没有生命赖以生存的土壤.直到4亿2千5百万年前,海藻才在地球大气中积累了足够的氧,形成臭氧层来保护暴露在阳光下的生命,生物才可能浮出水面.地球上最早的生命出现在45亿年前.这时的生命是像细菌一样的东西,它只有一个细胞,今天地球上所有的动植物都是由细胞组成的.在以后漫长的岁月中,这种单细胞的小生命遍布海洋,孤独地生活了大约20亿年.这时的地球上空旷、寂寞,空气是有毒的,根本无法呼吸.大气中没有氧气,也没有保护生命的臭氧层,直射地面的强烈紫外线辐射只要一个小时就可以杀死绝大多数生命.大约7亿年前,单细胞生物又演变成多细胞生物,就像今天的植物一样,它们靠光合作用吸收二氧化碳,放出氧气.这种只能在显微镜下才能看清的小生命,用了漫长的时间,让地球大气中充满了氧气.这样,最早的地球生命就从简单的单细胞生物进化成一些更复杂的生命.这是生命的重大突破.据某些专家推测,地衣是最早上岸的生命,正是由于地衣分解岩石,再加上自然的分化为后来登陆的生物打下一片天地,因为没有土壤,任何其他陆地生命都是无法生存的.生命在进化过程中,前仆后继地经营出了我们赖以生存的环境.生命第一次从海洋爬上陆地后,就不断地开发新的栖息地,直至布满地球上的每一个角落.在南极零下23摄氏度的严寒冰层中,有自在生活的藻类和真菌;在海底火山附近达到沸点的开水中,也有安详生活的生命.已知生活在世界最低处的动物是一种像虫子一样的海洋生物;在珠穆朗玛峰海拔6千米以上的地方也有生命存在.古老而浩荡的息粒,是地球古期最为单一的生命形式,生存期短促,约有半小时的时间,它们的游离性全凭着外力.暗灰色的息粒虽瞬生瞬死,但总量奇多,铺天盖地,充斥着广袤的地表.息粒时代,是地球婴儿般简单,并且纯洁的时代.肉眼难视的息粒放大来看,是一个水泡样的单胞原体,在它身体边缘有若干纤毛,能缓慢地扇动.它们始生于距今47亿2千万年前,蓬勃生发,持续了约一百万年之久,在后四十余万年趋减至无.继息粒之后,地球迎来了第二批绚丽的生命之花——微生物菌母.这是地球真正意义上的生命——微生物菌母,在息粒减灭期大量涌出,它们称雄于天下的的时间,约三十万年.

I. 地球上的生物是怎么来的

地球上的第一个生物,许多人认为是病毒一类的非常简单的生物,他只是有核酸和蛋白质外壳组正的物质。

值得庆幸的是,在原始地球上有各种形式的能量可供利用。首先,原始大气没有臭氧层,阳光中的紫外线可以毫无顾忌地进入大气,这为地球带来了能量。其次,原始大气中会出现闪电,闪电是一种能量释放现象。再次,原始地球上火山活动频繁,火山喷发可以释放大量热量。

阅读全文

与怎么生成生物相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:748
乙酸乙酯化学式怎么算 浏览:1413
沈阳初中的数学是什么版本的 浏览:1367
华为手机家人共享如何查看地理位置 浏览:1054
一氧化碳还原氧化铝化学方程式怎么配平 浏览:896
数学c什么意思是什么意思是什么 浏览:1424
中考初中地理如何补 浏览:1314
360浏览器历史在哪里下载迅雷下载 浏览:712
数学奥数卡怎么办 浏览:1404
如何回答地理是什么 浏览:1038
win7如何删除电脑文件浏览历史 浏览:1063
大学物理实验干什么用的到 浏览:1495
二年级上册数学框框怎么填 浏览:1715
西安瑞禧生物科技有限公司怎么样 浏览:1013
武大的分析化学怎么样 浏览:1257
ige电化学发光偏高怎么办 浏览:1346
学而思初中英语和语文怎么样 浏览:1670
下列哪个水飞蓟素化学结构 浏览:1433
化学理学哪些专业好 浏览:1493
数学中的棱的意思是什么 浏览:1073