A. 泰拉瑞亚雪系生物群、丛林生物群怎么做
泰拉瑞亚雪系生物群、丛林生物群怎么做
泰拉瑞亚丛林钥匙怎么做:
1、需要丛林钥匙磨具和力量之魂等材料合成出丛林钥匙,丛林钥匙模具在肉山后雪地或地下雪地生物群系怪物有几率掉落。
2、打BOSS获得:钥匙是打死世纪之花100%掉落。
世纪之花需要打死机械三王之一,地下丛林会刷新粉色花苞,用任何方式(镐子,炸弹等)摧毁花苞都会召唤出世纪之花。
B. 泰拉瑞亚怎么建蘑菇生物群
用淤泥垫底,厚度随便,然后在上面放夜光蘑菇孢子,等它繁殖,然后就可以了。
C. 我的世界怎么用指令制造巨大生物
在游戏中按键盘Enter建打开输入框,输入“/summon”。
该游戏中可召唤的巨大生物有僵尸、狼狗、野猪、蜘蛛等。巨型生物群系是在游戏当中的一种自带的世界类型,在游戏里面的相同地图种子下,会为玩家默认与巨型生物群系具有相同的地貌,只不过在游戏中的巨型生物群系的地貌是扩大了16倍的,但是在河流的分布上面是与默认世界相同的。
D. 如何利用群落演替原理建造合理的生物群落
演替就是指随时间的推移,群落中一些物种消失,一些物种侵入,群落的结构和环境向一定方向产生有顺序的发展变化,就称为群落的演替.还有一个理论,在这里有指导意义的,我觉得应该就是中度干扰学说,就是中等程度的干扰,有利于维持种群的高多样性.也就是说,如果想要植物群落回复和重建,最有效的方法,就是任其发展,只要没有了人类的作用,一切生物都能生存的很好.也就是,如果长时间不去干扰,群落必将能经过一定的时间达到顶级群落.
E. 利用生态位和高斯假说原理论述如何进行生物群落的建立和管护
今李晨,别查了,咱班的都知道,就你不知道,哈哈,傻瓜,课本地一百零一夜,看看就知道了,SB!
F. 如何划分一个地区的生物群落
生物群落指生活在一定的自然区域内,相互之间具有直接或间接关系的各种生物的总和。与种群一样,生物群落也有一系列的基本特征,这些特征不是由组成它的各个种群所能包括的,也就是说,只有在群落总体水平上,这些特征才能显示出来。生物群落的基本特征包括群落中物种的多样性、群落的生长形式(如森林、灌丛、草地、沼泽等)和结构(空间结构、时间组配和种类结构)、优势种(群落中以其体大、数多或活动性强而对群落的特性起决定作用的物种)、相对丰盛度(群落中不同物种的相对比例)、营养结构等。
作为一般名词时与群落同义。现在使用的生物群落一词,只限于强调沿袭克列门茨和谢尔福德(F.E.Clements & V.E.Shelford,1939)的考虑方法。克列门茨认为,植物群落并不是个体和种的组合,而是用生长形(growth form)为代表的生态群组合,这种必须以生物个体为准据的新阶段的有机体,称之为复合生物(complex organism)。谢尔福德(1912)对动物曾使用了生理活动型这个名词,它相当于植物的生长型,并称之为生态种群(mores,用复数形,单数形为mos,涵义不同),它的组合即是动物群落。以后把植物和动物作为mune的机能生活形的集群,而进一步强调了统一性。演替是复合生物的发育、成长,相当于它的成体的顶极群落是仅仅由气候决定的。也有把这种观点特称之为生物生态学(bio-ecology)的。
生物群落与生态系统的概念不同。后者不仅包括生物群落还包括群落所处的非生物环境,把二者作为一个由物质、能量和信息联系起来的整体。因此生物群落只相当于生态系统中的生物部分。
生物群落中的各种生物之间的关系主要有3类:①营养关系,当一个种以另一个种,不论是活的还是它的死亡残体,或它们生命活动的产物为食时,就产生了这种关系。又分直接的营养关系和间接的营养关系。采集花蜜的蜜蜂,吃动物粪便的粪虫,这些动物与作为它们食物的生物种的关系是直接的营养关系;当两个种为了同样的食物而发生竞争时,它们之间就产生了间接的营养关系。因为这时一个种的活动会影响另一个种的取食。②成境关系,一个种的生命活动使另一个种的居住条件发生改变。植物在这方面起的作用特别大。林冠下的灌木、草类和地被以及所有动物栖居者都处于较均一的温度、较高的空气湿度和较微弱的光照等条件下。植物还以各种不同性质的分泌物(气体的和液体的)影响周围的其他生物。一个种还可以为另一个种提供住所,例如,动物的体内寄生或巢穴共栖现象,树木干枝上的附生植物等。③助布关系,指一个种参与另一个种的分布,在这方面动物起主要作用。它们可以携带植物的种子、孢子、花粉,帮助植物散布。
营养关系和成境关系在生物群落中具有最大的意义,是生物群落存在的基础。正是这两种相互关系把不同种的生物聚集在一起,把它们结合成不同规模的相对稳定的群落。
编辑本段种类划分
划分方式 主要是按气候条件划分的生物带(lifezone),也就是冻原、夏季绿林、热带雨林、稀树干草原(savannah)等划分范围内的生物的群落单位。F.E.Elements(1916)提出这个术语,当时是指一般生物群落,强调具有与生物栖息场所相关连的形态构造,并向顶极发展。然而V.E.Shelford(1932)以后,多局限于与植物社区(formation)相对应的大型动植物构成的群落(biotic forma- tion,生物社区), 而Clements和Shelford(1939)等,根据植物的顶极,提出群落外貌(physiognomy)特征,并根据动物的影响种所鉴别的单位,把两者合并起来加以命名,例如stipa-antilocapra群落这种称呼。但是现在,以它作为群落基本单位的看法,几乎不再存在,而是以气候区分作为生物群落型,而应用于类型的区分。至于对动植物间的关系,则不予以特别考虑,而具有专对种类组成、生活型或生活型组成,以及群落外貌等进行论述的强烈倾向。
种类 地球上的生物群落首先分为陆地群落和水生群落两大类。它们之间尽管基本规律有相似的表现,但存在本质的差别。这些差别基本上是由环境的不同所引起的。水生群落的结构比陆地的简单些。在水中,水底土质不同于陆地的土壤。植物和底栖动物与水体土质的联系主要带有机械性质。水生群落生物所经受的环境因素十分不同于陆生生物所经受的。在研究陆地群落时,首先必须研究环境的降水量和温度,而在研究水生群落时,光照、溶解氧量和悬浮营养物质更为重要。
周围环境的差别也决定了组成陆地和水生生物群落的生物种类有很大的差别。在水生生物群落中占优势的是低等植物,尤其是藻类起的作用最大;而在陆地生物群落是高等有花植物占优势。水生生物群落的动物栖居者种类极为广泛,但高等节肢动物和高等脊椎动物仅具有次要的意义;在陆地生物群落中则相反,昆虫(高等节肢动物),特别是鸟类和哺乳动物起主要作用。
在典型的水生生物群落和陆地生物群落之间存在着一系列的过渡形式。例如,沼泽的生物群落,河漫滩阶地的水淹地段和遭受涨潮退潮影响的海岸部分的生物群落等。
动植物的分布受许多因素的控制,但从全球或整个大陆来看,各种因素中最重要的是全球气候。由气候制约的全球生物群落的最大和最易识别的划分是生物群域。生物群域按照占优势的顶极植被划分。分布于不同大陆的同类生物群域,其环境条件(气候和土壤)基本相似。因而有着相同的外貌。年平均温度和降水量被认为是决定外貌的主要因素。在这两个因素的基础上表示出主要外貌类型之间的大致边界。正如R.H.惠特克自己所指出的,该模式有一定的局限,它不能充分地表示:①温度和降水的不同季节配合 的影响;海洋气候和大陆气候的显着对比;②火在决定许多地区出现草类占优势的群落的影响;③土壤差别的影响;④群域之间连续的逐渐变化。
世界主要生物群域有:①陆地生物群域:热带雨林、热带季节林和季风林、亚热带常绿林、温带落叶阔叶林、泰加林或北方针叶林、多刺林、亚热带灌丛、热带稀树草原、温带草原、冻原、荒漠、极地-高山荒漠。②水-陆过渡性生物群域:内陆沼泽(包括酸沼和普通沼泽)、沿海沼泽(盐沼,包括热带亚热带的红树林)。③水生生物群域:静止淡水(湖泊、池塘)、流动淡水(河流)、河口湾、沿岸海、大洋或深海。
编辑本段空间分布
一个地区总由许多生境组成镶嵌结构,它们沿环境梯度(随高度、土壤特征、地表水分状况等的变化形成)相互联系。尽管有时这种梯度可能被某种障碍所打断。但多数情况是形成连续的梯度。每一个生境可能发展出一个与它相适应的顶极自然群落。沿一连续的环境梯度,一个群落的特征常常是平滑地改变到其他群落的特征中。如果沿一环境梯度每隔一定距离对群落取样(样条),统计出现的植物种类和数量,就可以观察到种群沿梯度分布的升降情况。根据植物种出现的多度绘制的种群曲线,大多数呈对称的钟形。曲线一般彼此重叠很大一部分,但在一个种排除另一个种的地方形成突然的中断。
当沿一样条观察种群的分布或沿一气候梯度观察植物生长型的变化时,大多数情况下看到的是群落的连续变化,即作为连续体出现。这便是群落连续性原理。按照这一原理,沿连续的环境梯度,自然群落一般是连续地相互渐次变化,而不是以清晰的边界突然地让位于其他种的组合。当然,在自然界也可观察到这一原理的许多例外。例如地形的突然变化(峭壁)、岩石性质的突然改变(酸性的花岗岩或砂页岩改变成基性的石灰岩)、水状况的截然变更(水体到岸边)、森林和草地之间的林缘(火灾引起的)等等产生的群落不连续性。在这些情况下,一种群落突然地让位于另一种群落。
急剧的群落过渡(如森林和草地之间的林缘)被称为生态交错区。在这里常常表现出一种“边界效应”,即交错区的物种多样性特别高:既有出现在林缘本身的种,也有来自相邻两个群落的种。
编辑本段群落结构
包括空间结构、时间组配和种类结构。
空间结构 不同生活型的植物(乔木、灌木、草本)生活在一起,它们的营养器官配置在不同高度(或水中不同深度),因而形成分层现象。分层使单位面积上可容纳的生物数目加大,使它们能更完全、更多方面地利用环境条件,大大减弱它们之间竞争的强度;而且多层群落比单层群落有较大的生产力。
分层现象在温带森林中表现最为明显,例如温带落叶阔叶林可清晰地分为乔木、灌木、草本和苔藓地衣(地被)4层。热带森林的层次结构最为复杂,可能有的层次最为发育,特别是乔木层,各种高度的巨树、一般树和小树密集在一起,但灌木层和草本层常常不很发育。草本群落一样地分层,尽管层次少些(通常只分为草本层和地被层)。
群落不仅地上分层,地下根系的分布也是分层的。群落地下分层和地上分层一般是相应的;乔木根系伸入土壤的最深层,灌木根系分布较浅,草本植物根系则多集中土壤的表层,藓类的假根则直接分布在地表。
生物群落的垂直分层与光照条件密切相关,每一层的植物适应于该层的光照水平,并降低下层的光强度。在森林中光强度向下递减的现象最为明显。最上层树处于全光照之中,平均说来,到达下层小树的光只有上层树(全光照)的10~50%,灌木层只有5~10%,而草本层则只剩1~5%了。随着光照强度的变化,温度、空气湿度也发生变化。
每一层植物和被它们所制约的小气候为生活于其中的特有动物创造一定的环境,因此动物在种类上也表现出分层现象,不同的种类出现于不同层次,甚至同一种的雌雄个体,也分布于不同的层次。例如,在森林中可以区分出3组鸟种:在树冠中采食的,接近地面的,以及生活在其间的灌木和矮树簇叶中的。
林地也由于枯枝落叶层的积累和植物对土壤的改造作用,创造了特殊的动物栖居环境。较高的层(草群,下木)为吃植物的昆虫、鸟类、哺乳动物和其他动物所占据。在枯枝落叶层中,在腐烂分解的植物残体、藓类、地衣和真菌中,生活着昆虫、蜱、蜘蛛和大量的微生物。在土壤上层,挤满了植物的根,这里居住着细菌、真菌、昆虫、蜱、蠕虫。有时在土壤的某种深度还有穴居的动物。
当然,也存在一些层外生物,它们不固定于某一个层。例如藤本植物、附生植物,以及从一个层到另一个层自由活动的动物。它们使划分层次困难化;在结构极其复杂的热带雨林中经常见到这种情况。
因为下层生物是在上层植物遮荫所形成的环境中发育起来的,所以生物群落中不同层的物种间有密切的相互作用和相互依赖关系。群落上层植物强烈繁生,相应地下层植物的密度就会降低;而如果由于某种原因上层植物变得稀疏,下层的光照、热等状况得到改善,同时土壤中矿物养分因释放加强而增高,下层植物发育便会加强。下层的繁茂生长也对动物栖居者有利。这种情况特别反映在森林群落中,哪里乔木层稀疏便会导致那里的灌木或喜光草本植被的丰富繁生。而乔木层的完全郁闭,有时甚至抑制最耐荫的草本和藓类。
生物群落不仅有垂直方向的结构分化,而且还有水平方向的结构分化。群落在水平方向的不均匀性表现为以斑块出现;在不同的斑块上,植物种类、它们的数量比例、郁闭度、生产力以及其他性质都有不同。例如在一个草原地段,密丛草针茅是最占优势的种类,但它并不构成连续的植被,而是彼此相隔一定的距离(30~40厘米)分布的。各个针茅草丛之间的空间,则由各种不同的较小的禾本科植物和双子叶杂类草占据着,并混有鳞茎植物。但其中的某些植物也出现在针茅草丛的内部。因此,伴生少数其他植物的针茅草丛同针茅草丛之间生长有其他草类的空隙,它们在外貌、在种间数量关系和质量关系上都有很明显的不同。但它们的差别与整个植物群落(针茅草原)比较起来,是次一级的差别,而且是不很明显的和不稳定的。在森林中,在较阴暗的地点和较明亮的地点,也可以观察到在植物种类的组成和数量比例方面以及其他方面的类似差异。群落内水平方向上的这种不一致性,叫做群落的镶嵌性。这种不一致性在某些情况下是由群落内环境的差别引起的,如影响植物种分布的光强度不同或地表有小起伏;在某些情况下是由于共同亲本的地下茎散布形成的植物集群所引起;在另外的情况下,它们可能由种之间的相互作用引起,例如在寄主种的根出现的地方形成斑块状的寄生植物。动物的活动有时也是引起不均一性的原因。植物体通常不是随机地散布于群落的水平空间,它们表现出成丛或成簇分布。许多动物种群,不论在陆地群落或水生群落,也具有成簇分布的性质。相比之下,有规则的分布是比较不常见的。某些荒漠中灌木的分布、鸣禽和少数其他动物的均匀分布是这种有规则分布的例子。
时间组配 组成群落的生物种在时间上也常表现出“分化”,即在时间上相互“补充”,如在温带具有不同温度和水分需要的种组合在一起:一部分生长于较冷季节(春秋),一部分出现在炎热季节(夏)。例如,在落叶阔叶林中,一些草本植物在春季树木出叶之前就开花,另一些则在晚春、夏季或秋季开花。随着不同植物出叶和开花期的交替,相联系的昆虫种也依次更替着:一些在早春出现,另一些在夏季出现。鸟类对季节的不同反应,表现为候鸟的季节性迁徙。生物也表现出与每日时间相关的行为节律:一些动物白天活动;另一些黄昏时活动;还有一些在夜间活动,白天则隐藏在某种隐蔽所中。大多数植物种的花在白天开放,与传粉昆虫的活动相符合;少数植物在夜间开花,由夜间动物授粉。许多浮游动物在夜间移向水面,而在白天则沉至深处远离强光,但是不同的种具有不同的垂直移动模式和范围、潮汐的复杂节律控制着许多海岸生物的活动。土壤栖居者也有昼夜垂直移动的种类。
种类结构 每一个具体的生物群落以一定的种类组成为其特征。但是不同生物群落种类的数目差别很大。例如,在热带森林的生物群落中,植物种以万计,无脊椎动物种以10万计,脊椎动物种以千计,其中的各个种群间存在非常复杂的联系。
冻原和荒漠群落的种数要少得多。根据苏联学者Б.А.季霍米罗夫的资料,在西伯利亚北部的泰梅尔半岛的冻原生物群落中共有139种高等植物,670种低等植物,大约1000种动物和2500种微生物。与此相应。这些生物群落的生物量和生产力,也比热带森林小得多。
生物群落中生物的复杂程度用物种多样性这一概念表示。多样性与出现在某一地区的生物种的数量有关,也与个体在种之间的分布的均匀性有关。例如,两个群落都含有5个种和100个个体,在一个群落中这100个个体平均地分配在全部5个种之中,即每1个种有20个个体,而在另一个群落中80个个体属于1个种,其余20个个体则分配给另外的4个种,在这种情况下,前一群落比后一群落的多样性大。
在温带和极地地区,只有少数物种很常见,而其余大多数物种的个体很稀少,它们的种类多样性就很低;在热带,个体比较均匀地分布在所有种之间,相邻两棵树很少是属于同种的(热带雨林),种类多样性就相对较高。群落的种类多样性决定于进化时间、环境的稳定性以及生态条件的有利性。热带最古老,形成以来环境最稳定,高温多雨气候对生物的生长最为有利,以生物群落的种类多样性最大。在严酷的冻原环境中,情况相反,所以种类多样性低。
每种植物在群落中所起的作用是不一样的。常常一些种以大量的个体,即大的种群出现;而另一些种以少量的个体,即小的种群出现。个体多而且体积较大(生物量大)的植物种决定了群落的外貌。例如,绝大多数森林和草原生物群落的一般外貌决定于一个或若干个植物种,如中国山东半岛的大多数栎林决定于麻栎,燕山南麓的松林决定于油松,内蒙古高原中东部锡盟的针茅草原决定于大针茅或克氏针茅等。在由数十种甚至百余种植物组成的森林中,常常只有一种或两种乔木提供90%的木材。群落中的这些个体数量和生物量很大的种叫做优势种,它们在生物群落中占居优势地位。优势种常常不止一个,优势种中的最优势者叫建群种,通常陆地生物群落根据建群植物种命名,例如,落叶阔叶林、针茅草原、泥炭藓沼泽等。建群种是群落的创建者,是为群落中其他种的生活创造条件的种。例如,云杉在泰加带形成稠密的暗针叶林,在它的林冠下,只有适应于强烈遮荫条件,高的空气湿度和酸性灰化土条件的植物能够生活;相应于这些因素,在云杉林中还形成特有的动物栖居者。因此在该情况下云杉起着强有力的建群种的作用。
松林中的建群种是松树,但与云杉相比,它是较弱的建群种,因为松林树干稀疏,树冠比较不密接,比较透光,它的植物和动物的种类组成远比云杉林丰富和多样。在松林中甚至见到能生活在林外环境中的植物。
温带和寒带地区的生物群落中,建群种比较明显;无论森林群落、灌木群落、草本群落或藓类群落,都可以确定出建群种(有时不止一个)。亚热带和热带,特别是热带的生物群落,优势种不明显,很难确定出建群种来。除优势种外,个体数量和生物量虽不占优势但仍分布广泛的种是常见种;个体数量极少,只偶尔出现的种是偶见种。
生物群落中的大多数生物种,在某种程度上与优势种和建群种相联系,它们在生物群落内部共同形成一个物种的综合体,叫做同生群。同生群也是生物群落中的结构单位。例如一个优势种植物,和与它相联系的附生、寄生、共生的生物以及以它为食的昆虫和哺乳动物等共同组成一个同生群。
生活在一个群落中的多种多样的生物种,是在长期进化过程中被选择出来能够在该环境中共同生存的种。它们中每一个占据着独特的小生境,并且在改造环境条件、利用环境资源方面起着独特的作用。群落中每一个生物种所占据的特定的生境和它执行的独特的功能的结合,叫做生态位。因此,一个生物群落的物种多样性越高,其中生态位分化的程度也越高。
编辑本段群落功能
可从生产力、有机物质的分解和养分循环3方面来描述。
生产力 群落中的绿色植物通过光合作用从无机物质制造有机化合物,这是生物群落的最重要的功能。在光合作用过程中,一段时间内由植物生产的有机物质的总量叫总初级生产力,通常以克/米2·年或千卡/米2·年表示。可是植物为了维持生存要进行呼吸作用,呼吸作用要消耗一部分光合作用生成的有机物质,剩余的部分才用于积累(生长);一段时间内植物在呼吸之后余下的有机物质的数量,叫净初级生产力,例如在森林中,60~75%的总生产量可能被植物呼吸掉,余下的40~25%才是净生产量,在水生群落中不到总生产量的一半可能被植物呼吸掉。净初级生产量随时间的前进会逐渐积累,日益增多,到任一观测时间为止积累下来的数量就是植物生物量。生物量以克/米2或千克/公顷表示。
生态学上更关心的是群落的生产力,即单位时间内的生产量。对于陆地或水底群落,是计算单位面积内的生物量数量,而对于浮游和土壤群落则按单位容积确定。因而生物生产力乃是平方米面积上(或立方米容积中)在单位时间内的生产量,经常以碳的克数或干有机物质的克数表示。
生物生产力不能与生物量混淆。例如,一年内单位面积上的浮游藻类合成的有机物质可能和高生产力的森林一样多,但因大部分被异养生物所消费,故前者的生物量只有后者的十万分之一。按照生产力,草甸草原的生物量年增长量比针叶林的大得多。根据苏联的资料,在中等草甸草原植物生物量为每公顷23吨的情况下,它们的年生产量达到每公顷10吨,而在针叶林,在植物生物量为每公顷200吨的情况下,年增长量每公倾只有6吨。小型哺乳动物比大型哺乳动物有较大的生长和繁殖速度,在相等的生物量的情况下提供较高的生产量。
消耗初级生产量的消费者也形成自己的生物量。它们在一段时间内的有机物质生产量叫次级生产量,即异养生物的生产量。消费者形成产量的速率叫次级生产力。
地球上不同群落的初级生产力差别很大。R.H.惠特克按初级生产力将地球生物群落分为4类(见表1)。
绿色植物的生物生产量,一部分以枯枝落叶的形式被分解者分解,一部分被风、水或其他动力带至群落之外,一部分沿食物链传递。余下的部分以有机物质的形式积累在群落中。
有机物质的分解 在许多群落中,动物从活植物组织得到的净初级生产量部分要比植物组织死亡之后被分解者细菌和真菌等利用的部分小得多。在森林中,动物食用的大约不到叶组织的10%,不到活木质组织的1%,大部分落到地面形成覆盖土壤表面的枯枝落叶层,被各种各样的土壤生物所利用。这些土壤生物包括吃死植物组织和死动物组织的食腐者,分解有机质的细菌和真菌,以及以这些生物为食的动物。虽然动物有助于枯枝落叶的破坏,但细菌和真菌在把死有机物质还原成无机最终产物方面起最主要的作用。
分解者的生物量与消费者的相比是很小的,与生产者的相比更小。然而,物质量微小的分解者的活动在群落功能中十分重要。群落中全部死亡生物的残体依赖分解者进行破坏。如果没有分解者的分解活动,生物的死亡残体将不断地积累,像在酸沼中形成泥炭那样。不仅群落的生产力可能由于养分被闭锁在死组织中而受限制,而且整个群落也将不能存在。
养分循环 群落中生产者从土壤或水中吸收无机养分,如氮、磷、硫、钙、钾、镁以及其他元素,利用这些元素合成某些有机化合物,组成原生质和保持细胞执行功能。消费者动物从吃植物或其他动物取得这些元素。分解者在分解动、植物废物产品和死亡残体时,养分又释放归还到环境中,再被植物吸收。这便是养分循环,或称物质的生物性循环。例如,在森林中,某种养分从土壤被吸收进入树根,通过树的输导组织向上运输到叶子,这时可能被吃叶子的蠋所食入,然后又被吃蠋的鸟所利用,直到鸟死亡后,被分解释放归还到土壤,再被植物根重新吸收。许多养分采取较短的途径从森林树木回到土壤──随植物组织掉落到枯枝落叶层而被分解,或者在雨水淋洗下由植物表面落到土壤。
不同群落参加循环的养分数量和循环的速度不同。在一部分群落中,某些元素的较大部分保持在植物组织中,只有较小部分在土壤和水中游离。例如溶于水中的磷酸盐数量与浮游生物细胞和颗粒中的数量比较起来只是小部分。在热带森林,大部分养分保持在植物组织中,被雨水淋洗到土壤的养分和枯枝落叶腐败分解时释放出的养分,很快被重新吸收。但当一片森林被采伐或火烧后,通过侵蚀和养分在土壤水中的向下移动,造成养分的大量损失。在开阔大洋中随着浮游生物细胞和有机颗粒的下沉,养分也被携带到深处,因而在进行光合作用的光亮表层水中养分很少,所以生产力很低。
编辑本段群落演替
生物群落总是处于不断的变化之中,有昼夜的改变,也有季节的改变,还有年际的波动,但这种改变和波动并不引起群落的本质的改变,它的某些某本特征还是保持着。但有时在自然界也常见到另一种现象:一个群落发育成另一个完全不同的群落,这叫群落演替或生态演替。例如,北京附近的撂荒农田,第一年生长的主要是一年生的杂草,然后经过一系列的改变,最后形成落叶阔叶林。演替过程中经过的各个阶段叫做系列群落。演替最后达到一种相对稳定的群落,叫做顶极。
在大多数情况下,生物群落演替过程中的主导组分是植物,动物和微生物只是伴随植物的改变而发生改变的。植物的演变的基本原因是先定居在一个地方的植物,通过它们的残落物的积累和分解,增加有机物质到土壤中,改变了土壤的性质(包括肥力),同时通过遮荫改变了周围的小气候,有些还通过根的分泌给土壤增加某些有机化合物,这样群落内环境发生改变就为另外物种的侵入创造了条件。当改变积累到一定程度时,反而对原有植物自己的生存和繁殖不利,于是就发生演替。当然,外界因素的改变也可以诱发演替。
有些演替可在比较短的时期内完成,例如森林火灾之后的火烧迹地上出现一系列快速更替的群落,最后恢复起稳定的原来类型。但有时演替进行得非常缓慢,甚至要几百年或上千年才能完成。根据苏联学者的研究,在泰加云杉林地区的撂荒耕地上,首先出现桦树、山杨和桤木,因为这些树种的种子很容易被风携带,它们落到弱生草化土壤上就开始萌发。这些是所谓先锋种。它们之中最坚强的定居在撂荒地或被开垦的土地上,在那里巩固下来并逐渐改变环境,经过30~50年,桦树树冠密接后,形成新的条件。新条件适合云杉生长,对桦树本身反而不利,于是逐渐形成混交林。但这种混交林存在时间不太长,因为喜光的桦树不能忍受遮荫,在云杉林冠下无法更新。大约在第一批桦树幼苗出现后,经过80~120年,就形成稳定的云杉林了。
演替有两种类型:在原来没有生命的地点(如沙丘、火山熔岩冷凝后的岩面、冰川退却露出的地面、山坡的崩塌和滑塌面等)开始的演替叫原生演替。在原生演替的情况下,群落改变的速度一般不大,连续地相继更替的系列群落相互之间保持很大的时间间隔,而生物群落达到顶极状态有时需要上百年或更长时间。如果群落在以前存在过生物的地点上发展起来,那么这种演替叫次生演替。这种地点通常保存着成熟的土壤和丰富的生物繁殖体,因此通过次生演替形成顶极群落要比原生演替快得多。在现代条件下,到处可以观察到次生演替,它们经常发生在火灾、洪水、草原开垦、森林采伐、沼泽排干等之后。
G. minecraft怎么改变生物群系
minecraft原版还没有开发出(据我所知)可以改变生物群系的指令,也暂没有不借助插件/模组的方法,你可以尝试使用一些带有此功能的插件/模组。就像工业时代的地形转换器。外国佬的一个跑酷地图里见他在虚空上有一片沼泽地,应是改变了原有的生物群系。还有的方法就是使用地图编辑器,来改变不过会复杂一些。建议尝试一些插件/模组。可以试试工业时代2模组
H. 泰拉瑞亚如何算一个生物群
你说的是那种额,一般形成一个生物群,只要是规模够大就可以了,能够出现对应生物群的背景和背景音乐那就算是了,假如蘑菇生物群,你个夜光蘑菇地够大,背景变成了夜光蘑菇的背景,而且还响着相对应的背景音乐,那就算是一个了!
I. 一个出生无菌的婴儿,通过什么途径建立那么丰富的微生物群落
1.细菌(英文:germs;学名:bacteria)广义的细菌即为原核生物是指一大类细胞核无核膜包裹,只存在称作拟核区(nuclearregion)(或拟核)的裸露DNA的原始单细胞生物,包括真细菌(eubacteria)和古生菌(archaea)两大类群.人们通常所说的即为狭义的细菌,狭义的细菌为原核微生物的一类,是一类形状细短,结构简单,多以二分裂方式进行繁殖的原核生物,是在自然界分布最广、个体数量最多的有机体,是大自然物质循环的主要参与者.2.蓝细菌(Cyanobacteria)旧名蓝藻或蓝绿藻,是一类进化历史悠久、革兰氏染色阴性、无鞭毛、含叶绿素和藻蓝素(但不形成叶绿体)、能进行产氧性光合作用的大型原核微生物.3.放线菌(Actinomycete)游动放线菌放线菌因菌落呈放线状而的得名.它是一个原核生物类群,在自然界中分布很广,主要以孢子繁殖.放线菌的形态与结构放线菌种类很多,多数放线菌具有发育良好的分支状菌丝体,少数为杆状或原始丝状的简单形态.菌丝大多无隔膜,其粗细与杆状细菌相似,直径为1微米左右.细胞中具核质而无真正的细胞核,细胞壁含有胞壁酸与二氨基庚二酸,而不含几丁质和纤维素.以与人类关系最密切、分布最广、种类最多、形态最典型的链霉菌属为例.链霉菌主要由菌丝和孢子两部分结构组成.菌丝(mycelium)根据菌丝的着生部位、形态和功能的不同,放线菌菌丝可分为基内菌丝、气生菌丝和孢子丝三种.1.基内菌丝(substratemycelium)链霉菌的孢子落在适宜的固体基质表面,在适宜条件下吸收水分,孢子肿胀,萌发出芽,进一步向基质的四周表面和内部伸展,形成基内菌丝,又称初级菌丝(primarymycelium)或者营养菌丝(vegetativemycelium),直径在0.2~0.8微米之间,色淡,主要功能是吸收营养物质和排泄代谢产物.可产生黄、蓝、红、绿、褐和紫等水溶色素和脂溶性色素,色素在放线菌的分类和鉴定上有重要的参考价值.放线菌中多数种类的基内菌丝无隔膜,不断裂,如链霉菌属和小单孢菌属等;但有一类放线菌,如诺卡氏菌型放线菌的基内菌丝生长一定时间后形成横隔膜,继而断裂成球状或杆状小体.2.气生菌丝(aerialmycelium)是基内菌丝长出培养基外并伸向空间的菌丝,又称二级菌丝(secondarymycelium).在显微镜下观察时,一般气生菌丝颜色较深,比基内菌丝粗,直径为1.0~1.4微米,长度相差悬殊,形状直伸或弯曲,可产生色素,多为脂溶性色素.3.孢子丝(sporehypha)是当气生菌丝发育到一定程度,其顶端分化出的可形成孢子的菌丝,叫孢子丝,又称繁殖菌丝.孢子成熟后,可从孢子丝中逸出飞散.放线菌孢子丝的形态及其在气生菌丝上的排列方式,随菌种不同而异,是链球菌菌种鉴定的重要依据.孢子丝的形状有直形、波曲、钩状、螺旋状,螺旋状的孢子丝较为常见,其螺旋的松紧、大小、螺数和螺旋方向因菌种而异.孢子丝的着生方式有对生、互生、丛生与轮生(一级轮生和二级轮生)等多种.孢子(spore)孢子丝发育到一定阶段便分化为孢子.在光学显微镜下,孢子呈圆形、椭圆形、杆状、圆柱状、瓜子状、梭状和半月状等,即使是同一孢子丝分化形成的孢子也不完全相同,因而不能作为分类、坚定的依据.孢子的颜色十分丰富.孢子表面的纹饰因种而异,在电子显微镜下清晰可见,有的光滑,有的褶皱状、疣状、刺状、毛发状或鳞片状,刺又有粗细、大小、长短和疏密之分,一般比较稳定,是菌种分类、鉴定的重要依据.孢子的形成为横割分裂,横割分裂有两种方式:①细胞膜内陷,并由外向内逐渐收缩,最后形成完整的横割膜,将孢子丝分隔成许多无性孢子;②细胞壁和细胞膜同时内缩,并逐步缢缩,最后将孢子丝缢缩成一串无性孢子.放线菌代表属生孢囊放线菌的特点是形成典型孢囊,孢囊着生的位置因种而异.有的菌孢囊长在气丝上,有的菌长在基丝上.孢囊形成分两种形式:有些属菌的孢囊是由孢子丝卷绕而成;有些属的孢囊是由孢囊梗逐渐膨大.孢囊外围都有囊壁,无壁者一般称假孢囊.孢囊有圆形、棒状、指状、瓶状或不规则状之分.孢囊内原生质分化为孢囊孢子,带鞭毛者遇水游动,如游动放线菌属;无鞭毛者则不游动,如链孢囊菌属.链霉菌属(Streptomyces)是最高等的放线菌.有发育良好的分枝菌丝,菌丝无横隔,分化为营养菌丝、气生菌丝、孢子丝.孢子丝再形成分生孢子.孢子丝和孢子的形态、颜色因种而异,是分种的主要识别性状之一.主要分布于含水量较低,有机质丰富的中性或微碱性土壤中,多数为腐生,好氧菌.已知放线菌所产抗生素的90%由本属产生.中国科学院微生物研究所根据气生菌丝、孢子堆、基内菌丝的颜色、水溶性色素、孢子丝的形状、孢子的形状和表面结构等特征,将本属分为14个不同的类群,每个群又包括许多不同的种,以此做为链霉菌属各种的鉴定和寻找新的抗生素产生菌的依据.主要代表如产生链霉素的灰色链霉菌.已经发现由链霉菌产生的抗生素有1000多种,应用于临床的有上百种,如链霉素(streptomycin)、卡那霉素(kanamycin)、丝裂霉素(mitomycin)、土霉素(oxytetracycline)等.链霉菌孢子对热的抵抗力比细菌芽胞弱,但强于营养体细胞.对链霉菌的保藏一般利用沙土法,在4℃冰箱可保存1~3年.小单孢菌属(Micromonospora)菌丝体纤细,直径0.3~0.6微米,有分枝,不断裂.只形成营养菌丝(基质菌丝),深入培养基内,不形成气生菌丝.孢子单生、无柄,或着生在或长或短的孢子梗上,孢子梗时常分枝成簇.菌落小,直径一般2~3微米,通常橙黄色或红色,边有深褐黑色、蓝色,表面覆盖一层粉沫状的孢子.一般为好气性腐生.大多分布在土壤或湖底泥土中,堆肥和厩肥中也不少.约有30多种.是产生抗生素较多的一个属.有的种还积累维生素B12.重要代表如产生庆大霉素的棘孢小单孢菌和绛红小单孢菌.诺卡氏菌属(Nocardia)即原放线菌属.在培养基上形成典型的分枝菌丝体,弯曲或不弯曲,多数无气生菌丝.培养15小时至4无菌丝产生横隔膜,突然断裂成长短近于一致的杆状、环状体,或带叉的杆状体.每个杆状体内至少有一个核,因此可以复制并形成新的多核的菌丝体.菌落一般比链霉菌菌落小,表面多皱,致密干燥,一触即碎.多为需氧型腐生菌,少数厌氧型寄生菌.已报道有100余种,主要分布于土壤.许多种能产生抗生素,如利福霉素(rifomycin)等,有的用于石油脱蜡,烃类发酵及污水处理等.4.支原体(Mycoplasmal)是目前所能发现的能在无生命培基中生长繁殖的最小的微生物.支原体体形多样,基本为球形,亦可呈球杆状或丝状,其菌落呈针尖大小,故又称之为微小支原体.支原体特点是无细胞壁及前体,细胞器极少.DNA的G+C含量低,菌体内具有非常小的染色体组,其分子量约为45×108,菌体细胞大小约为0.2-0.3μm,很少超过1.0μm.由三层蛋白质和脂质组成的膜样结构以及一层类似毛发结构组成.支原体由二分裂繁殖,形态多样.支原体用普通染色法不易着色,用姬姆萨染色很浅,革兰氏染色为阴性.支原体可在鸡胚绒毛尿囊膜上或细胞培养中生长.用培养基培养.营养要求比细菌高.由于它没有细胞壁,因此对影响细胞壁合成的抗生素,如青霉素等不敏感,但红霉素、四环素、卡那霉素、链霉素、氯霉素等作用于核蛋白体的抗生素,可抑制或影响支原体的蛋白质合成,有杀伤支原体作用,支原体对热抵抗力差,通常55℃经15分钟处理可使之灭活.石碳酸,来苏儿易将其杀死.在培养基中置入脲素并以硫酸锰作指示剂极易与其他支原体作出鉴别.它广泛分布于自然界,有80余种.与人类有关的支原体有肺炎支原体(M-pneumonie,Mp)、人型支原体(M.humenis,MH)、解脲支原体(Ureaplasmaurealyticum,UU分解尿素支原体)和生殖器支原体(M.genitalium,MG)等.5.衣原体为革兰氏阴性病原体,在自然界中传播很广泛.它没有合成高能化合物ATP、GTP的能力,必须由宿主细胞提供,因而成为能量寄生物,多呈球状、堆状,有细胞壁,以一般寄生在动物细胞内.从前它们被划归病毒,后来发现自成一类.它是一种比病毒大、比细菌小的原核微生物,呈球形,直径只有O.3-0.5微米,它无运动能力,衣原体广泛寄生于人类,哺乳动物及鸟类,仅少数有致病性.衣原体是一类能通过细胞滤器,有独特发育周期、严格细胞内寄生的原核细胞型微生物.衣原体是一种既不同于细菌也不同于病毒的一种微生物,属于原核生物,即细胞内没有形成核膜的细胞核.衣原体与细菌的主要区别是其缺乏合成生物能量来源的ATP酶,也就是说衣原体自己不能合成生物能量物质ATP,其能量完全依赖被感染的宿主细胞提供.而衣原体与病毒的主要区别在于其具有DNA、RNA两种核酸、核糖体和一个近似细胞壁的膜,并以二分裂方式进行增殖,能被抗生素抑制.衣原体属于原核类生物.6.立克次氏体(Rickettsia)是一类专性寄生于真核细胞内的G-原核生物.是介于细菌与病毒之间,而接近于细菌的一类原核生物.一般呈球状或杆状,是专性细胞内寄生物,主要寄生于节肢动物,有的会通过蚤、虱、蜱、螨传入人体、如斑疹伤寒、战壕热.立克次氏体的特点:①细胞大小为0.3~0.6μm×0.8~2.0μm,一般不能通过细菌滤器,在光学显微镜下清晰可见.②细胞呈球状、杆状或丝状,有的多形性.③有细胞壁,呈革兰氏阴性反应.④除少数外,均在真核细胞内营专性寄生,宿主一般为虱、蚤等节肢动物,并可传至人或其他脊椎动物.⑤以二等分裂方式进行繁殖,但繁殖速度较细菌慢,一般9~12h繁殖一代.⑥有不完整的产能代谢途径,大多只能利用谷氨酸和谷氨酰胺产能而不能利用葡萄糖或有机酸产能;⑦大多数不能用人工培养基培养,须用鸡胚、敏感动物及动物组织细胞来培养立克次氏体;⑧对热、光照、干燥及化学药剂抵抗力差,60℃30min即可杀死,100℃很快死亡,对一般消毒剂、磺胺及四环素、氯霉素、红霉素、青霉素等抗生素敏感.⑨基因组很小,如普氏立克次氏体的基因组为1.1Mb.立克次氏体在虱等节肢动物的胃肠道上皮细胞中增殖并大量存在其粪中.人受到虱等叮咬时,立克次氏体便随粪从抓破的伤口或直接从昆虫口器进入人的血液并在其中繁殖,从而使人感染得病.当节肢动物再叮咬人吸血时,人血中的立克次氏体又进入其体内增殖,如此不断循环.立克次氏体可引起人与动物患多种疾病,如立氏立克次氏体可引起人类患落基山斑点热、普氏立克次氏体可引起人类患流行性斑疹伤寒、穆氏立克次氏体可引起人类患地方性斑疹伤寒、伯氏考克斯氏体可引起人类患Q热以及恙虫热立克次氏体可引起人类患恙虫热.它与衣原体的不同处在于其细胞较大,无滤过性,合成能力较强,且不形成包涵体.7.真菌(Fungus)一词的拉丁文Fungus原意是蘑菇.真菌是生物界中很大的一个类群,世界上已被描野生蘑菇述的真菌约有1万属12万余种,真菌学家戴芳澜教授估计中国大约有4万种.按照林奈(Linneaus)的两界分类系统,人们通常将真菌门,分为鞭毛菌亚门、接合菌亚门、子囊菌亚门、担子菌亚门和半知菌亚门.其中,担子菌亚门是一群多种多样的高等真菌,多数种具有食用和药用价值,如银耳、金针菇、竹荪、牛肝菌、灵芝等,但也有豹斑毒伞、马鞍、鬼笔蕈等有毒种.另外,半知菌亚门中约有300属是农作物和森林病害的病原菌,还有些属是能引起人类和一些动物皮肤病的病原菌,如稻瘟病菌,可以引起苗瘟、节瘟和谷里瘟等.(fungus;eumycetes)是具有细胞核和细胞壁的异养生物.种属很多,已报道的属达1万以上,种超过10万个.其营养体除少数低等类型为单细胞外,大多是由纤细管状菌丝构成的菌丝体.低等真菌的菌丝无隔膜,高等真菌的菌丝都有隔膜,前者称为无隔菌丝(coenocytichypha),后者称有隔菌丝(septatehypha).在多数真菌的细胞壁中最具特征性的是含有甲壳质(chitin),其次是纤维素.常见的真菌细胞器有:线粒体,微体,核糖体,液泡,溶酶体,泡囊,内质网,微管,鞭毛等;常见的内含物有肝糖,晶体,脂体等.真菌通常又分为三类,即酵母菌、霉菌和蕈菌(大型真菌),它们归属于不同的亚门.大型真菌是指能形成肉质或胶质的子实体或菌核,大多数属于担子菌亚门,少数属于子囊菌亚门.常见的大型真菌有香菇、草菇、金针菇、双孢蘑菇、平菇、木耳、银耳、竹荪、羊肚菌等.它们既是一类重要的菌类蔬菜,又是食品和制药工业的重要资源.真菌的细胞既不含叶绿体,也没有质体,是典型异养生物.它们从动物、植物的活体、死体和它们的排泄物,以及断枝、落叶和土壤腐殖质中、来吸收和分解其中的有机物,作为自己的营养.真菌的异养方式有寄生和腐生.真菌常为丝状和多细胞的有机体,其营养体除大型菌外,分化很小.高等大型菌有定型的子实体.除少数例外,真菌都有明显的细胞壁,通常不能运动,以孢子的方式进行繁殖.8.原生动物亚界的物种统称,包括一大群单细胞的真核(拥有明确的细胞核)生物.原生动物是最简单的生物之一.虽然构成一个亚界,但它们相互之间并不一定有亲缘关系.从生物学的观点来看,它们并非属于一个自然的类群,而只是将一大批生物体集合起来而已.已经记述的原生动物计有65,000多种,其中一半以上为化石.原生动物无所不在,从南极到北极的大部分土壤和水生栖地中都可发现其踪影.大部分肉眼看不到.许多种类与其他生物体共生,现存的原生动物中约1/3为寄生物.因为现代的电子显微镜技术和新的生化和遗传学技术提供了越来越多的知识,有助于人们认识各种原生生物物种和类群之间的关系,也因而常常证明以前的分类是不正确的,并使原生动物的分类需要经常修正.1、原生动物的生物学特征原生动物约30000种,绝大多数由单细胞构成,少数种类是单细胞合成的群体.在五界分类系统中,常将原生动物单独归属于原生生物界.它主要有以下特征:(1)体形微小.原生动物的大小一般在几微米到几十微米之间.可是,也有少数原生动物比较大.如蓝喇叭虫和玉带虫,体长可达1cm~3cm,还有一种货币虫,它的外壳直径为16cm.(2)一般由单细胞构成,有些种类是群体性的.单细胞的原生动物整个身体就是一个细胞,作为完整有机体,它们同多细胞动物一样,有各种生命功能,诸如应激性、运动、呼吸、摄食、消化、排泄以及生殖等.单细胞的原生动物当然不可能有细胞间的分化,而是出现细胞内分化,由细胞质分化出各种细胞器来实现相应的生命功能.例如用来运动的有鞭毛、纤毛、伪足,摄食的有胞口、胞咽,防卫的有刺丝泡,调节体内渗透压的有伸缩泡等.有些原生动物是群体性的,但一般组成群体的细胞之间并不分化,各个个体保持自己的独立性.(3)原始性.一般讲原生动物是最低等、最原始的动物,指的是它们的形态结构和生理功能在现有各类动物中是最简单、最原始的,反映了动物界最早祖先类型的特点.从原生动物可以推测地球上最早的动物祖先的面目.现在生存的各类原生动物,是经历了千百年进化而演变成的现代种.因此,切不可把现在的原生动物看做是其他各类动物的原始祖先.(4)具有3种营养方式.一是植物性营养,又称光合营养,如绿眼虫等;二是动物性营养,又称吞噬营养,如变形虫、草履虫等;三是渗透性营养,又称腐生营养,如孢子虫、疟原虫等.(5)当遇到不良条件时,它们形成包囊,把自己同不良的外界环境隔开,同时新陈代谢的水平降得很低,处于休眠状态.等到有合适的环境条件,又会长出相应的结构,恢复正常的生活.另外,原生动物的适应性很强,它们能生存在各种自然条件下,如淡水、咸水、温泉、冰雪以至于植物的浆液,动物和人类的体液等.2、原生动物的分类在原生动物门里,根据运动胞器、细胞核以及营养方式可以分成4个纲:(1)鞭毛虫纲.运动胞器是一根或多根鞭毛,例如绿眼虫、衣滴虫.(2)肉足虫纲.运动胞器是伪足,伪足兼有摄食功能,例如大变形虫.(3)孢子虫纲.没有运动胞器,全部营寄生生活,例如间日疟原虫.(4)纤毛虫纲.运动胞器是纤毛,有两种细胞核,大核和小核,大核与营养有关,小核与生殖有关,例如尾草履虫.3、原生动物的繁殖原生动物是无性繁殖的,不需要交配或性细胞器官.对大多数自由生活的物种而言,无性繁殖通过二分裂过程实现,即每次繁殖都是由一个母细胞分裂为两个完全相同的子细胞.包括寄生物种在内的鞭毛虫都是纵向分裂的;而纤毛虫的分裂通常则是横向的,并且在细胞质分裂前其口部已经先分裂了;根足门、辐足门和粒网门的生物通常则没有固定的分裂方式.有壳物种的分裂由于需要复制其骨骼结构,因此过程更加复杂.变形虫的有壳物种――如沙壳虫――将被分入子细胞的细胞质从母细胞外壳的小孔中挤出来,细胞质中预先形成的薄片就包裹在挤出的细胞质周围,形成新的壳质;这样就完成了整个分裂过程并形成两个单独的变形虫,.大多数自由生活的物种一般都在有利于无性繁殖的环境中生存.有性繁殖通常只是它们在不利环境中的一种手段而已,如当水生介质的枯竭导致普通细胞无法生存的时候.在变形虫和鞭毛虫中,只有有限物种具有行有性繁殖的能力;有的物种在其进化史中可能从未行有性繁殖,而其他物种则可能已经丧失了交配能力.原生动物的有性繁殖既包括同配生殖(性细胞或配子相似),也包括更高级的异配生殖(性细胞或配子不同).有孔虫是自由生活的物种中少见的同时具有无性和有性繁殖后代的物种,它们的每个生物体通过无性繁殖产生许多变形虫状的生物体,这些生物体能分泌出围绕在其周围的壳质.当它们发育成熟时,又将许多同样的配子释放到海洋中;这些配子彼此成对结合,分泌出壳质并发育成熟,又重复上述过程.几乎所有的纤毛虫都能进行有性繁殖,这个过程称为配对,但这种方式不能形成其数量的立即增加.配对有助于不同个体间遗传物质的交换.9.显微藻类1.金藻门多产于淡水中,特别是在水温较低的软水水体中尤为常见.植物体多为单细胞或群体,少数为多细胞丝状体.运动细胞多具1—2条鞭毛.单细胞或群体的种类,细胞内多具有1—2个色素体,以胡萝卜素和叶黄素占优势,绿色色素只有叶绿素a一种,所以多呈金黄色或金褐色.同化产物主要是金藻多糖,或称为金藻糖,金藻淀粉,又因它具有和海带糖相似的化学性质,所以亦称为金藻海带糖.此外,也含有脂类.繁殖方式主要是营养繁殖和孢子生殖,有性生殖极少见.常见的有合尾藻属和钟罩藻属.2.黄藻门(Xanthophyta)海产的种类很少,主要分布在淡水水体中,或生于潮湿的地面、树干和墙壁上.在水温较低的春季较多.植物体为单细胞、群体或多细胞体.所含的色素和同化产物与金藻门基本相同,但除叶绿素a外,尚含有叶绿素e,多呈黄绿色.运动细胞具有两条长短不一和结构不同的鞭毛,所以这一类群又称为不等鞭毛藻类(Heterocontae).繁殖方式有营养繁殖、孢子生殖和有性生殖,但随种类的不同,也有不同的繁殖方法.肉眼常见的是植物体成丝状的黄绿藻属(Tribonema)和无隔藻属(Vauchcria).(在部分近期国外教材分类方案中将该门作为金藻门的一个纲).3.硅藻门(Bacillariophyta)广布于海水和淡水中,多行浮游生活.植物体由单细胞构成或互相连接成群体.细胞壁由两个瓣片套合而成,上面具有花纹,其成分含有果胶质和硅质,而不含纤维素.细胞内具有一至数个金褐色的色素体.色素体中含有叶绿素a、c和多量的胡萝卜素和叶黄素,光合产物主要是脂类.硅藻可借助细胞分裂进行营养繁殖,但经数代后也能通过配子的接合或自配形成复大孢子,行有性生殖.).(在部分近期国外分类方案中将该门作为金藻门的一个纲).4.甲藻门(Pyrrophyta)多产于海洋中,行浮游生活,有时在海岸线附近大量繁殖,形成赤潮,有些种类也常在池塘、湖泊中大量出现.植物体多数是单细胞的,少数为群体或丝状体.除少数种类裸露无壁外,多具有由纤维素构成的细胞壁.甲藻的细胞壁称为壳,是由许多具有花纹的甲片相连而成的.壳又分上壳和下壳两部分,在这两部分之间有一横沟,与横沟垂直的还有一条纵沟,在两沟相遇之处生出横、直不等长的两条鞭毛.色素体1个或多个,呈黄绿色或棕黄色,除含叶绿素a、c外,还含有多量的胡萝卜素和叶黄素.海产种类的光合产物多为脂类,淡水产的多为淀粉.繁殖方式主要是细胞分裂,或是在母细胞内产生无性孢子,行孢子生殖,有性生殖只在少数属、种中发现.常见的有角藻属(Ceralium)(见图)和多甲藻属(Peridinium).7.裸藻门(Euglenophyta)裸藻又称眼虫或眼虫藻,多生于富含动物性有机质的淡水中,营浮游生活.大量繁殖时,常使水呈绿色、黄褐色或红色.除柄裸藻属(Colacium)外,全为顶端生有鞭毛,能运动而无细胞壁的单细胞种类.在裸藻中,除少数种类无色,行异养生活外,多含有与绿藻相似的光合色素,但贮藏物质主要是裸藻淀粉和少量的脂类.繁殖方式主要是细胞分裂,在不良的环境条件下,也能形成具有厚壁的孢囊,待环境条件好转时,原生质体即破壁而出,形成新个体.裸藻属(Euglena)基本门中常见的属.8.绿藻门(Chlorophyta)多生于淡水中,海产的种类较少,营浮游、固着或附生生活,还有少数种类为寄生或共生.植物体有单细胞或群体的,也有多细胞的丝状体或片状体.色素体的形状和数目也常随种类而不同,所含的光合色素成分、含量以及同化产物均与高等植物相似.运动细胞多具有2条、4条或多条等长、顶生的鞭毛.有各种各样的繁殖方式,有些种类在生活史中有世代交替现象.在绿藻中如植物体为单细胞的小球藻属(Chlorella),群体的栅藻属(Scenedesmus),多细胞成丝状的水绵属(Spirogyra)和刚毛藻属(Cladophora)等都是淡水中常见的种类.9.轮藻门(Charophyta)广布于淡水或半咸水中,均营固着生活.植物体都是由多细胞构成的,而且有类似根、茎、叶的分化,外形很象高等植物中的木贼和金鱼藻.体外多被有大量钙质,所以又有石草之称.光合色素成分及贮藏物都与绿藻相同,但生殖器官的结构和生活史比较特殊.轮藻在生活史中,都不产生无性孢子,有性生殖均为卵式生殖.藏卵器外面有5个左旋的螺旋细胞包被着,顶端还具有由5个或10个冠细胞构成的冠.藏精器的外面是有由8个(罕4个)盾细胞镶嵌而成的外壁,里面是由许多精子囊组成的精子囊丝体和一些不育的头细胞组成的.实际上这种藏精器是由许多雄性生殖器官和不育细胞构成的聚合体,所以也把它叫做精囊球,它的藏卵器又叫做卵囊球.轮藻的营养体和生殖器官虽然结构很复杂,但在生活史中无世代交替,植物体都是单倍体,而且在受精卵萌发后,经过原丝体阶段才能发育为成体.我国常见的有轮藻属(Chara),丽藻属(Nitella)和鸟巢藻属(Tolypella).(某些教材分类方案中将该门作为绿藻门内一个纲).