‘壹’ 海洋微生物的介绍
以海洋水体为正常栖居环境的一切微生物。但由于学科传统及研究方法的不同,本文不介绍单细胞藻类,而只讨论细菌、真菌及噬菌体等狭义微生物学的对象。海洋细菌是海洋生态系统中的重要环节。
‘贰’ 药源海洋微生物
海洋生物资源是一个十分巨大的有待深入开发的生物资源,环境的多样性决定了生物的多样性,同时也决定了化合物的多样性。发掘新的海洋生物资源已成为海洋药物研究的一个重要发展趋势。
1、海洋微生物资源
海洋微生物种类高达100万种以上,其次生代谢产物的多样性也是陆生微生物无法比拟的。但能人工培养的海洋微生物只有几千种,不到总数的1%;目前为止,以分离代谢产物为目的而被分离培养的海洋微生物就更少。由于微生物可以经发酵工程大量获得发酵产物,药源得到保障。此外,海洋共生微生物有可能是其宿主中天然活性物质的真正产生者,具有重要的研究价值。
2、海洋罕见的生物资源
生长在深海、极地以及人迹罕至的海岛上的海洋动植物,含有某些特殊的化学成分和功能基因。在水深6000米以下的海底,曾发现具有特殊的生理功能的大型海洋蠕虫。在水温90摄氏度的海水中仍有细菌存活。对这些生物的研究将成为一个新的方向。
3、海洋生物基因资源
海洋生物活性代谢产物是由单个基因或基因组编码、调控和表达获得的。获得这些基因预示可获得这些化合物。开展海洋药用基因资源的研究对研究开发新的海洋药物将有着十分重大的意义。
(1)海洋动植物基因资源:活性物质的功能基因,如活性肽、活性蛋白等。
(2)海洋微生物基因资源:海洋环境微生物基因及海洋共生微生物基因。
4、海洋天然产物资源
海洋天然产物历经数十年的研究,已经积累了相当丰富的研究资料,为海洋药物的开发提供了科学依据。
(1)对已获得的上万种海洋天然产物进行多靶点和新模型的筛选,发现新的活性。
(2)对已获得的海洋天然产物进行结构修饰或结构改造。
(3)采用组合化学或生物合成技术,衍生更多的新的化合物,从中筛选出新的活性成分。
5、海洋中药资源
海洋中药是我国中药宝库的重要组成部分,是一种民间长期用药经验的总结。历代本草中经现代临床实践证明疗效确切的海洋药物有110多种,是寻找先导化合物和开发海洋药物的重要资源。从海洋中药中开发新药具有针对性强、见效快、周期短等特点。
‘叁’ 海洋微生物具有哪些特性
1.嗜盐性
这是所有海洋微生物几乎都具备的特点。真正的海洋微生物要想生长,就离不开海水。海水中含有丰富的无机盐类和微量元素。钠为海洋微生物生长与代谢所必需,此外,钾、镁、钙、磷、硫或其他微量元素也是某些海洋微生物维持生命必不可少的。
2.嗜冷性
海洋中大多数领域的温度都在5℃以下,绝大多数海洋微生物都在低温中生长,如果温度超过37℃,就会停止生长或死亡。生活在低温环境下且最高生长温度不超过20℃,最适宜温度在15℃,在0℃可生长繁殖的微生物,就称为嗜冷微生物。嗜冷菌在极地、深海或高纬度的海域中较常见。其细胞膜构造具有适应低温的特点。那种严格依赖低温才能生存的嗜冷菌对热反应极为敏感,即使处于中温也会阻碍它的生长与代谢。
3.嗜压性
深海微生物的嗜压性是其他微生物所不具备的。浅海的微生物通常只能忍耐较低的压力,而深海的嗜压细菌则具有在高压环境下生长的能力,能在高压环境中保持其酶系统的稳定性。海洋中静水压力因水深而有所不同,水深每增加10米,静水压力递增1个标准大气压。海洋底部的静水压力可超过1000大气压。在深海水域中,约一半以上的海洋环境处在100~1100大气压的压力之中。海洋的这种压力使浅海和陆源细菌失去在深海中生长的机会。
4.低营养性
海水中所含的营养物质非常稀少,部分海洋细菌要求在营养贫乏的培养基上生长。在营养较丰富的培养基上,有些细菌于第一次形成菌落后即迅速死亡,有些则根本无法形成菌落。这类海洋细菌在形成菌落过程中因其自身代谢产物积聚过多而中毒致死。这种现象说明用常规的平板法来分离海洋微生物,并不是一种较理想的方法。
5.趋化性
虽然海水中的营养物质较稀少,但海洋环境中各种固体表面或不同性质的界面上仍有一些丰富的营养物吸附积聚在上面。绝大多数海洋细菌都有一定的运动能力,其中某些细菌还能够沿着某种化合物浓度梯度进行移动,这种特点就称为趋化性。某些靠依附在海洋植物体表生长的细菌称为植物附生细菌。海洋微生物附着在海洋中生物和非生物固体的表面,形成薄膜,为其他生物的附着提供条件,进一步形成稳定的附着生物区系。
6.多形性
通过显微镜观察细菌,有时候会发现,在同一株细菌纯培养中会出现多种形态,如球形、椭圆形、杆状或各种不规则形态的细胞。这种多形现象在海洋革兰氏阴性杆菌中的表现尤为普遍。看来,微生物是为了适应复杂的海洋环境,而逐渐形成了这种特征。
7.发光性
在海洋细菌中,具有发光特征的种类并不多。海洋发光细菌发光强度的大小,除了种的自身特性外,在很大程度上取决于各种外界条件的综合作用,如海洋环境要素、水中污染状况等。细菌发光现象对理化因子反应敏感,因此利用发光细菌来检验水域污染状况,通常会收到不错的效果。
‘肆’ 海洋生物技术的海洋微生物技术的研究
在海洋微生物技术的研究中,也取得了令人兴奋的成绩。20世纪70年代,美国率先开展了利用细菌消除海洋石油污染的研究。目前,已发现约有40个属的细菌,在不同条件下能够降解石油。随后,一些发达国家也开始了这项技术的研究。近些年来,有关降解石油的“超级细菌”的研究,成为当今海洋微生物学研究的“热点”之一。研究表明,随着细菌中某些烃降解质粒的发现和分子技术的不断发展,使构建消除石油污染的“超级细菌”成为可能。人们将TOL质粒导入TOD降解途径中,某些关键酶的基因缺陷型菌株,使之达到完全降解这类芳香化合物的目的。
‘伍’ 海洋微生物及其特性是什么
海洋微生物是指以海洋水体为正常栖居环境的一切微生物。但由于学科传统及研究方法的不同,本文不介绍单细胞藻类,而只讨论细菌、真菌及噬菌体等狭义微生物学的对象。海洋细菌是海洋生态系统中的重要环节。作为分解者,它促进了物质循环;在海洋沉积成岩及海底成油成气过程中,都起了重要作用。还有一小部分化能自养菌则是深海生物群落中的生产者。海洋细菌会污损水工构筑物,在特定条件下其代谢产物如氨及硫化氢也会毒化养殖环境,从而造成养殖业的经济损失。但海洋微生物的颉颃作用可以消灭陆源致病菌,它的巨大分解潜能几乎可以净化各种类型的污染,它还可能提供新抗生素以及其他生物资源,因而随着研究技术的发展,海洋微生物日益受到重视。
海洋微生物
与陆地相比,海洋环境以高盐、高压、低温和稀营养为特征。海洋微生物长期适应复杂的海洋环境而生存,因而有其独有的特性。
嗜盐性
嗜盐性是海洋微生物最普遍的特点。真正的海洋微生物的生长必需海水。海水中富含各种无机盐类和微量元素。钠为海洋微生物生长与代谢所必需。此外,钾、镁、钙、磷、硫或其他微量元素也是某些海洋微生物生长所必需的。
海洋中硫的循环
嗜冷性
大约90%海洋环境的温度都在5℃以下,绝大多数海洋微生物的生长要求较低的温度,一般温度超过37℃海洋微生物就会停止生长或死亡。那些能在0℃生长或其最适生长温度低于20℃的微生物称为嗜冷微生物。嗜冷菌主要分布于极地、深海或高纬度的海域中。其细胞膜构造具有适应低温的特点。那种严格依赖低温才能生存的嗜冷菌对热反应极为敏感,即使中温就足以阻碍其生长与代谢。
嗜压性
海洋中静水压力因水深而异,水深每增加10米,静水压力递增1个标准大气压。海洋最深处的静水压力可超过1000大气压。深海水域是一个广阔的生态系统,约56%以上的海洋环境处在100~1100大气压的压力之中,嗜压性是深海微生物独有的特性。来源于浅海的微生物一般只能忍耐较低的压力,而深海的嗜压细菌则具有在高压环境下生长的能力,能在高压环境中保持其酶系统的稳定性。研究嗜压微生物的生理特性必须借助高压培养器来维持特定的压力。对于那种严格依赖高压而存活的深海嗜压细菌,由于研究手段的限制,迄今尚难获得纯培养菌株。根据自动接种培养装置在深海实地实验获得的微生物生理活动资料判断,在深海底部微生物分解各种有机物质的过程是相当缓慢的。
海洋的化学模型示意图
低营养性
海水中营养物质比较稀薄,部分海洋细菌要求在营养贫乏的培养基上生长。在一般营养较丰富的培养基上,有的细菌于第一次形成菌落后即迅速死亡,有的则根本不能形成菌落。这类海洋细菌在形成菌落过程中因其自身代谢产物积聚过甚而中毒致死。这种现象说明常规的平板法并不是一种最理想的分离海洋微生物的方法。
趋化性与附着生长
海水中的营养物质虽然稀薄,但海洋环境中各种固体表面或不同性质的界面上吸附积聚着较丰富的营养物。绝大多数海洋细菌都具有运动能力。其中某些细菌还具有沿着某种化合物浓度梯度移动的能力,这一特点称为趋化性。某些专门附着于海洋植物体表而生长的细菌称为植物附生细菌。海洋微生物附着在海洋中生物和非生物固体的表面,形成薄膜,为其他生物的附着造成条件,从而形成特定的附着生物区系。
海洋生物的采集
多形性
在显微镜下观察细菌形态时,有时在同一株细菌纯培养中可以同时观察到多种形态,如球形椭圆形、大小长短不一的杆状或各种不规则形态的细胞。这种多形现象在海洋革兰氏阴性杆菌中表现尤为普遍。这种特性看来是微生物长期适应复杂海洋环境的产物。
发光性
在海洋细菌中只有少数几个属表现发光特性。发光细菌通常可从海水或鱼产品上分离到。细菌发光现象对理化因子反应敏感,因此有人试图利用发光细菌作为检验水域污染状况的指示菌。
‘陆’ 海洋生物技术的内容
主要以海洋生物为对象,综合应用基因工程、细胞操作技术和细胞培养技术等手段,对海洋生物资源进行研究、开发利用和保护。
① 开发、生产和改造海洋生物天然产物,以便用作药物、食品、新材料;
② 定向改良海洋动物、植物遗传特性,为海水养殖业提供具有生长快、品质高和抗病害的优良品种;
③ 培养具有特殊用途的“超级细菌”,用来清除海洋环境的污染,或者生产具有特定生物治理的物质。
例如,世界上第一个转基因的鱼,就是把人的一种生长基因从人的细胞里提取出来,移植到鱼的脱氧核糖核酸里去。这种转基因的鱼它的个体比一般同类鱼要大得多。这项技术是1985年由中国科学院水生所首次使用。1991年美国科学界公开承认了这项生物技术。这种生物技术的应用前景十分广阔,它广泛应用于海水养殖业中,包括育种、性别控制、养殖新技术和病害防治等。在欧洲的尤里卡计划中,就有支持挪威和西班牙开发改善牡蛎营养和遗传的新技术。1986年,美国科学家将虹鳟的生长激素基因转移到鲇鱼中,使鲇鱼的养殖期从18个月缩短到12个月。目前,世界各国海洋生物技术的研究又有新的发展。一是探索有价值的海洋生物种群;二是利用生物技术开发新的海洋动植物优良品种,用于水产养殖业;三是利用海洋生物技术从天然生物中提取或者加工各种化工产品;四是从基因工程理论上阐明生物的特殊功能,并在可能的范围内加以利用;五是用基因工程理论阐明海洋生态系统存在与发展的规律,并对其进行人为的控制;六是建立海洋生物利用系统,包括海水养殖新技术和海洋生物生产系统。
科学家认为,现代人类社会的进步,是由一系列的“技术时代”所构成,即从化学时代(塑料)到原子时代(核能),再到微电子时代(电脑);再下来,就是现代正初露端倪的生物技术时代。从广义上讲,生物技术就是利用有机体或其中的一部分,生产出各种生物制品,或者,为适用目的而定向改良动植物遗传特性,培养具有某种特殊用途的微生物技术。因此,生物技术是一门综合性很强的交叉学科,其研究基础是生物学、化学和生物工程学。那么,何为海洋生物技术呢?海洋生物技术,就是利用海洋生物或其组成部分,生产出有用的生物产品,以及定向改良海洋生物的某些遗传特性的综合性科学技术。
‘柒’ 海洋微生物
海洋生物资源是一个十分巨大的有待深入开发的生物资源,环境的多样性决定了生物的多样性,同时也决定了化合物的多样性。发掘新的海洋生物资源已成为海洋药物研究的一个重要发展趋势。
1、海洋微生物资源
海洋微生物种类高达100万种以上,其次生代谢产物的多样性也是陆生微生物无法比拟的。但能人工培养的海洋微生物只有几千种,不到总数的1%;目前为止,以分离代谢产物为目的而被分离培养的海洋微生物就更少。由于微生物可以经发酵工程大量获得发酵产物,药源得到保障。此外,海洋共生微生物有可能是其宿主中天然活性物质的真正产生者,具有重要的研究价值。
2、海洋罕见的生物资源
生长在深海、极地以及人迹罕至的海岛上的海洋动植物,含有某些特殊的化学成分和功能基因。在水深6000米以下的海底,曾发现具有特殊的生理功能的大型海洋蠕虫。在水温90摄氏度的海水中仍有细菌存活。对这些生物的研究将成为一个新的方向。
3、海洋生物基因资源
海洋生物活性代谢产物是由单个基因或基因组编码、调控和表达获得的。获得这些基因预示可获得这些化合物。开展海洋药用基因资源的研究对研究开发新的海洋药物将有着十分重大的意义。
(1)海洋动植物基因资源:活性物质的功能基因,如活性肽、活性蛋白等。
(2)海洋微生物基因资源:海洋环境微生物基因及海洋共生微生物基因。
4、海洋天然产物资源
海洋天然产物历经数十年的研究,已经积累了相当丰富的研究资料,为海洋药物的开发提供了科学依据。
(1)对已获得的上万种海洋天然产物进行多靶点和新模型的筛选,发现新的活性。
(2)对已获得的海洋天然产物进行结构修饰或结构改造。
(3)采用组合化学或生物合成技术,衍生更多的新的化合物,从中筛选出新的活性成分。
5、海洋中药资源
海洋中药是我国中药宝库的重要组成部分,是一种民间长期用药经验的总结。历代本草中经现代临床实践证明疗效确切的海洋药物有110多种,是寻找先导化合物和开发海洋药物的重要资源。从海洋中药中开发新药具有针对性强、见效快、周期短等特点。
‘捌’ 海洋微生物研究热点是什么
主要研究方向:
海泥中提取的化合物可杀灭耐抗生素极强的细菌
海洋深处的微生物可以提供燃料
有害赤潮消控的生物资源挖掘与研究
海域生产力提高的微生物的生态过程研究
微生物修复技术的海洋污染研究超级细菌可以防止水体污染
海产品微生态制剂的研究
研究热点其实就是与人相关的方方面面,另外海洋的一种微生物还能想成“蓝眼泪”
“蓝眼泪”是一种海底微生物,离开海水只能够生存100秒,只有吹南风,且涨潮,蓝眼泪才会出现。
‘玖’ 海洋微生物是什么,一般包括什么
海洋中的微生物一般以单细胞或以形式存在,能生活的生物,包括病、细菌、真菌、单细胞藻类及原生动物等等。。例如:螺旋藻、海洋革兰氏阴性杆菌、绿脓杆菌、小单孢菌、红球菌、链霉菌、灿烂弧菌、原绿球藻、远洋杆菌 等等