㈠ 生物化学的研究和目的
生物化学对其他各门生物学科的深刻影响首先反映在与其关系比较密切的细胞学、微生物学、遗传学、生理学等领域。通过对生物高分子结构与功能进行的深入研究,揭示了生物体物质代谢、能量转换、遗传信息传递、光合作用、神经传导、肌肉收缩、激素作用、免疫和细胞间通讯等许多奥秘,使人们对生命本质的认识跃进到一个崭新的阶段。
㈡ 什么叫生物化学研究对象包括哪些主要内容
生物化学(biochemistry)是一门研究生物体的化学组成及其变化规律,从分子水平上揭示生命现象本质的一门生命科学,又称生命的化学。
生物化学的研究对象:蛋白质、核酸、酶。
生物化学的主要内容:
1、人体的物质组成;
2、生物分子的结构与功能;
3、物质代谢及调控;
4、基因信息传递与表达及调控;
5、器官生化。
(2)化学生物学研究能达到哪些目的扩展阅读
生物化学若以不同的生物为对象,可分为动物生化、植物生化、微生物生化、昆虫生化等。若以生物体的不同组织或过程为研究对象,则可分为肌肉生化、神经生化、免疫生化、生物力能学等。因研究的物质不同,又可分为蛋白质化学、核酸化学、酶学等分支。
生物化学对其他各门生物学科的深刻影响首先反映在与其关系比较密切的细胞学、微生物学、遗传学、生理学等领域。
通过对生物高分子结构与功能进行的深入研究,揭示了生物体物质代谢、能量转换、遗传信息传递、光合作用、神经传导、肌肉收缩、激素作用、免疫和细胞间通讯等许多奥秘,使人们对生命本质的认识跃进到一个崭新的阶段。
㈢ 什么是生物化学生物化学的主要研究内容是什么
生物化学是研究生物体中的化学进程的一门学科,常常被简称为生化。主要用于研究细胞内各组分,如蛋白质、糖类、脂类、核酸等生物大分子的结构和功能。而对于化学生物学来说,则着重于利用化学合成中的方法来解答生物化学所发现的相关问题。
生物化学若以不同的生物为对象,可分为动物生化、植物生化、微生物生化、昆虫生化等。若以生物体的不同组织或过程为研究对象,则可分为肌肉生化、神经生化、免疫生化、生物力能学等。因研究的物质不同,又可分为蛋白质化学、核酸化学、酶学等分支。研究各种天然物质的化学称为生物有机化学。研究各种无机物的生物功能的学科则称为生物无机化学或无机生物化学。60年代以来,生物化学与其他学科融合产生了一些边缘学科如生化药理学、古生物化学、化学生态学等;或按应用领域不同,分为医学生化、农业生化、工业生化、营养生化等。
㈣ 生物化学的主要内容是什么生物化学都研究些什么
生物化学(自然科学)
运用化学的方法和理论研究生命物质的必学学科。其任务主要是了解生物的化学组成、结构及生命过程中各种化学变化。从早期对生物总体组成的研究,进展到对各种组织和细胞成分的精确分析。目前正在运用诸如光谱分析、同位素标记、X射线衍射、电子显微镜以及其他物理学、化学技术,对重要的生物大分子(如蛋白质、核酸等)进行分析,以期说明这些生物大分子的多种多样的功能与它们特定的结构关系。
㈤ 临床生物化学检验的作用有哪些
临床生物化学检验的作用有哪些
临床生物化学是在人体正常的生物化学代谢基础上,研究疾病状态下,生物化学病理性变化的基础理论和相关代谢物的质与量的改变,从而为疾病的临床实验诊断、治疗监测、药物疗效和预后判断、疾病预防等方面提供信息和决策依据的一门学科。
它是一门发展迅速的独立学科。
其主要任务是利用物理学、化学、生物学、遗传学、病理学、免疫学、生物化学和分子生物学的理论与技术,探讨疾病的发病机制,研究其病理过程中的特异性化学标志物或体内特定成分的改变。
也就是说对于治疗疾病有指导意义。
㈥ 生物化学在医学的应用
生物化学,顾名思义是研究生物体中的化学进程的一门学科,常常被简称为生化。[1]
它主要用于研究细胞内各组分,如蛋白质、糖类、脂类、核酸等生物大分子的结构和功能。而对于化学生物学来说,则着重于利用化学合成中的方法来解答生物化学所发现的相关问题。[1]
中文名
生物化学
外文名
Biochemistry
核心
用化学的方法、理论研究生命
简称
生化
快速
导航
历史
物质组成
物质代谢
结构与功能
繁殖与遗传
分类
研究内容
实际应用
发展简史
定义
生物的分支学科。它是研究生命物质的化学组成、结构及生命活动过程中各种化学变化的基础生命科学。
拉瓦锡
生物化学(Biochemistry)这一名词的出现大约在19世纪末、20世纪初,但它的起源可追溯得更远,其早期的历史是生理学和化学的早期历史的一部分。例如18世纪80年代,A.-L.拉瓦锡证明呼吸与燃烧一样是氧化作用,几乎同时科学家又发现光合作用本质上是植物呼吸的逆过程。又如1828年F.沃勒首次在实验室中合成了一种有机物──尿素,打破了有机物只能靠生物产生的观点,给“生机论”以重大打击。1860年L.巴斯德证明发酵是由微生物引起的,但他认为必需有活的酵母才能引起发酵。1897年毕希纳兄弟发现酵母的无细胞抽提液可进行发酵,证明没有活细胞也可进发这样复杂的生命活动,终于推翻了“生机论”。
历史
在尿素被人工合成之前,人们普遍认为非生命物质的科学法则不适用于生命体,并认为只有生命体能够产生构成生命体的分子(即有机分子)。直到1828年,化学家弗里德里希·维勒成功合成了尿素这一有机分子,证明了有机分子也可以被人工合成。[1]
生物化学研究起始于1883年,安塞姆·佩恩(Anselme Payen)发现了第一个酶,淀粉酶。1896年,爱德华·毕希纳阐释了一个复杂的生物化学进程:酵母细胞提取液中的乙醇发酵过程。“生物化学”(biochemistry)这一名词在1882年就已经有人使用;但直到1903年,当德国化学家卡尔·纽伯格(Carl Neuberg)使用后,“生物化学”这一词汇才被广泛接受。随后生物化学不断发展,特别是从20世纪中叶以来,随着各种新技术的出现,例如色谱、X射线晶体学、核磁共振、放射性同位素标记、电子显微学以及分子动力学模拟,生物化学有了极大的发展。这些技术使得研究许多生物分子结构和细胞代谢途径,如糖酵解和三羧酸循环成为可能。[1]
另一个生物化学史上具有重要意义的历史事件是发现基因和它在细胞中的传递遗传信息的作用;在生物化学中,与之相关的部分又常常被称为分子生物学。1950年代,詹姆斯·沃森、佛朗西斯·克里克、罗莎琳·富兰克林和莫里斯·威尔金斯共同参与解析了DNA双螺旋结构,并提出DNA与遗传信息传递之间的关系。[1]
到了1958年,乔治·韦尔斯·比德尔和爱德华·劳里·塔特姆因为发现“一个基因产生一个酶”而获得该年度诺贝尔生理学和医学奖。1988年,科林·皮奇福克成为第一个以DNA指纹分析结果作为证据而被判刑的谋杀犯,DNA技术使得法医学得到了进一步发展。2006年,安德鲁·法厄和克雷格·梅洛因为发现RNA干扰现象对基因表达的沉默作用而获得诺贝尔奖。[1]
生物化学的三个主要分支:普通生物化学研究包括动植物中普遍存在的生化现象;植物生物化学主要研究自养生物和其他植物的特定生化过程;而人类或医药生物化学则关注人类和人类疾病相关的生化性质。[1]
物质组成
生物体是由一定的物质成分按严格的规律和方式组织而成的。人体约含水55-67%,蛋白质15~18%,脂类 10~15%,无机盐3~4% 及糖类1~2%等。从这个分析来看,人体的组成除水及无机盐之外,主要就是蛋白质、脂类及糖类三类有机物质。其实,除此三大类之外,还有核酸及多种有生物学活性的小分子化合物,如维生素、激素、氨基酸及其衍生物、肽、核苷酸等。若从分子种类来看,那就更复杂了。以蛋白质为例,人体内的蛋白质分子,据估计不下100000种。这些蛋白质分子中,极少与其它生物体内的相同。每一类生物都各有其一套特有的蛋白质,它们都是些大而复杂的分子。其它大而复杂的分子,还有核酸、糖类、脂类等;它们的分子种类虽然不如蛋白质多,但也是相当可观的。这些大而复杂的分子称为“生物分子”。生物体不仅由各种生物分子组成,也由各种各样有生物学活性的小分子所组成
㈦ 你对化学生物学的理解和认识
我认为化学生物学,是以化学为科学依据和技术支撑来研究生物领域的现象和规律的科学,属于生物学的分支学科,研究对象仍是生物学,借助的手段和方法是化学.比如用氢氧化钠吸收二氧化碳来控制变量,验证光合作用的原料是二氧化碳的实验,就是以化学的知识和技术来做支撑的.
㈧ 人类开展化学研究的基本目的是什么
1、保证人类的生存并不断提高人类的生活质量。
如:利用化学生产化肥和农药,以增加粮食产量;利用化学合成药物,以抑制细菌和病毒,保障人体健康;
利用化学开发新能源、新材料,以改善人类的生存条件;利用化学综合应用自然资源和保护环境以使人类生活得更加美好。
2、化学是一门是实用的学科,它与数学物理等学科共同成为自然科学迅猛发展的基础。化学的核心知识已经应用于自然科学的各个区域,化学是改造自然的强大力量的重要支柱。
化学家们运用化学的观点来观察和思考社会问题,用化学的知识来分析和解决社会问题,例如能源问题、粮食问题、环境问题、健康问题、资源与可持续发展等问题。
3、化学与其他学科的交叉与渗透,产生了很多边缘学科,如生物化学、地球化学、宇宙化学、海洋化学、大气化学等等,使得生物、电子、航天、激光、地质、海洋等科学技术迅猛发展。
4、培养不断进取、发现、探索、好奇的心理,激发人类对理解自然,了解自然的渴望,丰富人的精神世界。
绿色化学定义
用化学的技术,原理和方法去消除对人体健康,安全和生态环境有毒有害的化学品,因此也称环境友好化学或洁净化学。实际上,绿色化学不是一门全新的科学。
绿色化学不但有重大的社会、环境和经济效益,而且说明化学的负面作用是可以避免的,显现了人的能动性。
绿色化学体现了化学科学、技术与社会的相互联系和相互作用,是化学科学高度发展以及社会对化学科学发展的作用的产物,对化学本身而言是一个新阶段的到来。
化学历史
化学的历史渊源非常古老,可以说从人类学会使用火,就开始了最早的化学实践活动。我们的祖先钻木取火、利用火烘烤食物、寒夜取暖、驱赶猛兽,充分利用燃烧时的发光发热现象。当时这只是一种经验的积累。
化学知识的形成、化学的发展经历了漫长而曲折的道路。它伴随着人类社会的进步而发展,是社会发展的必然结果。而它的发展,又促进生产力的发展,推动历史的前进。化学的发展,
㈨ 化学生物学的是什么
化学生物学是研究生命过程中化学基础的科学。疾病的发生发展是致病因子对生命过程的干扰和破坏;药物的防治是对病理过程的干预。化学生物学通过用化学的理论和方法研究生命现象、生命过程的化学基础,通过探索干预和调整疾病发生发展的途径和机理,为新药发现中提供必不可少的理论依据。
化学生物学是自90年代中期以来的新兴研究领域。哈佛大学的Schreiber博士和Scripps研究所的Schultz博士分别在东西海岸引领这个领域,他们的所在地所形成的重心地位甚至在加强。从源头来讲,化学是研究分子的科学,生物化学,分子生物学,还有生物学化学都是一样的。但是由于科学家们长期以来Schreiber博士的习惯称谓,我们通常使用生物化学指蛋白质结构和活性的研究,用分子生物学指基因表达和控制的研究,用生物学化学指分子水平上的生物现象的研究。
与这些相比,化学生物学使用小分子作为工具解决生物学的问题或通过干扰/调节正常过程了解蛋白质的功能。在某种意义上,使用小分子调节目标蛋白质与制药公司发展新药类似。但是,当所有公司的目标蛋白质到目前为止仅是约450种的时候,人类基因组计划为我们带来了至少几万个目标蛋白质。最终的目标是寻找特异性调节素或寻找解开所有蛋白质之谜的钥匙,但这需要更系统和整体的方法而并非传统方法。化学生物学看起来是有希望的答案。系统的化学生物学仅仅诞生于90年代中期,部份是由于基础条件到那时才刚刚完备。代表性的技术进步包括机器人工程,高通量及高灵敏度的生物筛选,信息生物学,数据采集工具,组合化学和芯片技术例如DNA芯片。化学生物学更普遍的被叫做化学遗传学(chemicalgenetics),而且它正在扩展到化学基因组学。和经典遗传学相比较,小分子Schultz博士并不是取代或超越基因表达,而是被用于抑制或活化翻译过程。
化学生物学、计算生物学与合成生物学,在生物芯片技术、计算模型方法与基因网络设计等方 面构成了现代系统生物学与系统遗传学的重要技术基础。