① 医学细胞生物学名词解释重点
细胞生物学名词解释
1. 细胞(cell)是组成包括人类在内的所有生物体的基本单位,这一基本单位的含义即包括结构上的,也包括功能上的。
2. 细胞生物学(cell biology)是在细胞水平上研究生物体的生长、运动、遗传、变异、分化、衰老、死亡等生命现象的学科。
3. 医学细胞生物学(medical cell biology)以人体或医学为对象的细胞生物学研究或学科。
4. 原核细胞(prokaryotic cell)是组成原核生物的细胞,这类细胞主要特征是细胞内没有分化为以膜为基础的具有专门结构与功能的细胞器和细胞核膜,且遗传信息量小,因此进化地位较低。
5. 真核细胞(eukaryotic cell)指含有真核(被核膜包围的核)的细胞,主要特征是有细胞膜、发达的内膜系统和细胞骨架体系。
6. 生物大分子(biological macromolecules)也称多聚体,由许多小分子单体通过共价键连接而成,相对分子质量比较大,包括蛋白质、核酸和多糖等。
7. 多肽链(polypeptide chain)多个氨基酸通过肽键组成的肽称为多肽链。
8. 细胞蛋白质组(proteome)将细胞内基因活动和表达后所产生的全部蛋白质作为一个整体,研究在个体发育的不同阶段,在正常或异常情况下,某种细胞内所有蛋白质的种类、数量、结构和功能状态,从而阐明基因的功能。
9. 拟核(nucleoid)原核细胞没有核膜包被的细胞核,也没有核仁,DNA位于细胞中央的核区就称为拟核。
10. 质粒(plasmid)很多细菌除了基因组DNA外,还有一些小的双链环形DNA分子,称为质粒。
11. 细胞膜(cell membrane)又称质膜,是指围绕在细胞最外层,由脂质、蛋白质和糖类所组成的生物膜。
12. 生物膜(biological membrane)人们把生物膜和细胞内各种模性结构统称为生物膜。
13. 单位膜(unit membrane)生物膜在电镜下呈现出较为一致的3层结构,即电子致密度高的内、外两层之间夹着电子密度较低的中间层。
14. 脂质体(liposome)脂质体是脂质分子在水相中形成的一种自我封闭的稳定的脂质双层膜。
15. 细胞外被(cell coat)细胞外被即为细胞膜中糖蛋白和糖脂伸出细胞外表面分支或不分支的寡糖链,其蛋白质和脂质部分参加了细胞膜本身的构造。
16. 细胞表面(cell surface)细胞膜、细胞外被、细胞内面的胞质溶胶、各种细胞连接结构和细胞膜的一些特化结构统称为细胞表面。
17. 内膜系统(endomembrane system)指真核细胞内在结构、功能及发生上有一定联系的有膜构成的细胞器。
18. 初级溶酶体(primary lysosome)只含水解酶而没有底物的溶酶体称为初级溶酶体。
19. 次级溶酶体(secondary lysosome)初级溶酶体与底物结合后的溶酶体称为次级溶酶体。
20. 残质体(resie body)吞噬溶酶体到达终末阶段,水解酶活性下降,还残留一些未被消化和分解的物质,形成在电镜下电子密度高、色调较深的残余物,这时的溶酶体称为残质体。
21. 类核体(nucleoid)有的过氧化物酶体中央含有电子密度高、呈规则形的结晶状结构,称类核体,实质是尿酸氧化酶的结晶。
22. 微粒体(microsome)利用蔗糖密度梯度离心法得到的由内质网碎片组成的封闭小泡。
23. 线粒体(mitochondrion)是细胞进行生物氧化和能量转换的主要场所,被称为能量转换器,细胞生命活动所需能量的80﹪由线粒体提供,所以线粒体被比喻为细胞的“动力工厂”。
24. 基粒(elementary particle)又称ATP合酶复合体,是产生ATP的部位,形态上分为三部分:头部,突出于内腔中,具有ATP酶活性,能催化ADP磷酸化生成ATP;柄部,连接头部与基部;基部,嵌入内膜内。
25. 嵴内空间(intracristal space)线粒体由于嵴向内腔突进造成的外腔向内伸入的部分称为嵴内空间。
26. 嵴间腔(intercristal space)线粒体嵴与嵴之间部分称为嵴空间。
27. 基质导入序列(matrix-targeting sequence,WTS)又称导肽,是输入线粒体的蛋白质在其N端具有的一段氨基酸序列,能够被线粒体膜上的受体识别并结合,从而定向蛋白质的转运。
28. 核糖体(ribosome)是由rRNA和蛋白质共同组成的非膜性细胞器,是细胞内蛋白质合成的场所。
29. 多聚核糖体(polyribosome)蛋白质合成时,多个核糖体结合到1个mRNA分子上,成串排列,形成蛋白质合成的功能单位,称为多聚核糖体。
30. 细胞骨架(cytoskeleton)是细胞内蛋白质成分组成的一个复合网架系统,包括微管、微丝和中间丝。
31. 微管组织中心(microtuble organizing center,MTOC)包括中心体、基体和着丝点等,它们提供了微管组装所需要的核心,在微管装配过程中起重要作用。
32. 动态微管(dynamic microtuble)细胞中有的微管存在时间很短,发生快速组装和去组装,称动态微管,如纺锤体。
33. 染色质(chromatin)是细胞核内能被碱性染料着色的物质,也是遗传性息的载体。
34. 染色体(chromosome)当细胞进入有丝分裂时,伸展、弥散的丝状染色质高度折叠、盘曲而凝缩成条状或棒状的特殊形态,称为染色体。
35. 核孔复合体(nuclear pore complex)核孔并非单纯的孔道,而是一个复杂的盘状结构体系,每个复合体由一串大的排列成八角形的蛋白质颗粒组成,中央是含水的通道。
36. 核小体(nucleosome)是构成染色质的基本单位结构。每个核小体由5种组蛋白和200bp左右的DNA组成,其中H2A、H2B、H3、H4各两分子形成八聚体,构成核心颗粒。DNA分子以左手螺旋缠绕在核心颗粒表面,每圈约80bp,共1.75圈,约146bp,相邻核心颗粒之间为一段60bp的连接DNA,H1位于DNA进出核心颗粒的结合处,功能与染色质的浓缩有关,形成直径为11nm的核小体。
37. 常染色质(euchromatin)指间期细胞核内染色质纤维压缩程度低,处于伸展状态,用碱性染料染色时着色浅的染色体。
38. 异染色质(heterochromatin)指间期细胞核内,染色质纤维压缩程度高,处于聚缩状态的染色质组分,碱性染料染色较深的组分,分结构和兼性异染色质。
39. 端粒(telomere)是染色体末端特化部位,具有维持染色体结构稳定性的作用,端粒DNA为高度重复DNA序列,富含GC。
40. 核仁组织者区(nucleolair organizing region,NOR)位于某些染色体的次缢痕处,具有缔合核仁的功能,称为核仁组织者区,即NOR。
41. 核型(karyotype)根据染色体的相对大小、着色粒的位置、臂的长短、次缢痕及随体的有无乃至带型等特征,把某种生物体细胞中的全套染色体按照同源染色体配对,依次排列起来,就构成了这一个体的核型。
42. 核骨架(nuclear skeleton)也称核基质,是间期细胞核内,除去染色质和核仁之外的网架体系和均质物质。其基本形态与细胞质内的细胞骨架相似,且在结构上有一定的联系,因此也称为核骨架。与DNA复制和染色体的构建有关。核骨架由3~30um的蛋白纤维和一些颗粒结构组成,主要成分是蛋白质,还含少量的RNA和DNA。核基质可能参与染色体DNA的包装和构建、DNA复制、基因表达以及核内的一系列生物活动。
43. 细胞外基质(extracellular matrix,ECM)是基体发育过程中,由细胞合成并分泌到细胞外的生物大分子构成德纤维网状物质,分布于细胞与组织之间、细胞周围或形成上皮细胞的基膜,将细胞与细胞或细胞与基膜相联系,构成组织与器官,使其连成有机整体。为细胞的生存及活动提供适宜的场所,并通过信号转导系统影响细胞的形态、代谢、功能、迁移、增殖和分化。
44. 胶原(collagen)是动物体内含量最丰富的蛋白质,约含人体蛋白质总量的30%以上。它遍布于体内各种器官和组织,是细胞外基质中的框架结构,可由成纤维细胞、软骨细胞、成骨细胞及某些上皮细胞合成并分泌到细胞外。
45. 前胶原(procollagen)是指带有前肽的3股螺旋胶原分子。
46. 纤连蛋白(fibronectin.FN)是一种大型的糖蛋白,存在于所有脊椎动物。以可溶的形式存在于血浆及各种体液中,以不溶的形式存在于细胞外基质及细胞表面,可将细胞连接到细胞外基质上。
47. 层粘连蛋白(laminin)是一种大型的糖蛋白,与IV胶原一起构成基膜,是胚胎发育过程中出现最早的细胞外基质成分。
48. 氨基聚糖(glycosaminoglycan,GAC)是重复二塘单位构成德无分支长链多糖,二糖单位通常由氨基己糖和糖醛酸组成,但硫酸角质素中糖醛酸由半乳糖代替。
49. 蛋白聚糖(proteoglycan)是氨基聚糖(除透明质酸外)与线性多肽形成的共价结合物,能形成水性的胶状物。
50. 锚定依赖性(anchorage dependence)正常真核细胞除成熟血细胞外,大多需黏附于细胞外基质才能抑制凋亡而存活,称为锚定依赖性。
51. 基膜(basement membrane)是上皮细胞下方一层柔软的特化的细胞外基质,也存在于肌肉、脂肪和神经膜细胞周围。它不仅起保护和过滤的作用,还决定细胞的极性,影响细胞的代谢、存活、迁移、增殖和分化。
52. 被动运输(passive transport)物质顺浓度梯度,从高浓度到低浓度运输,不消耗能量。
53. 单纯运输(simple diffusion)不需要膜运输蛋白帮助,不消耗能量,物质从高浓度到低浓度运输。
54. 帮助运输(facilitated diffusion)借助于细胞膜上载体蛋白的构象改变而顺浓度的物质运输方式。
55. 协同运输(coupled transport)载体蛋白在运转一种溶质分子的同时或随后转运另一种溶质分子。
56. 主动运输(active transport)物质逆浓度梯度,从低浓度到高浓度运输,消耗能量。
57. 结构性分泌途径(constitutive pathway of secretion)分泌蛋白合成后,立即包装入高尔基复合体的分泌泡中,然后迅速带到细胞膜处排出。
58. 调节性分泌途径(regulated pathway of secretion)分泌蛋白或小分子合成后,储存在分泌泡中。只有当接受细胞外信号的刺激时,分泌泡才移到细胞膜处,将分泌泡中的物质排出。
59. 信号肽(signal peptide)是位于蛋白质上的一段连续氨基酸序列,一般有15~60个残基,在引导蛋白质到达目的地后被切除。
60. 信号斑(signal patch)是位于蛋白质不同部位的氨基酸序列,在多肽链折叠后形成的一个斑块区,它是一种三维结构。
61. 信号识别颗粒(signal recognition particle,SRP)是由6个多肽亚单位和1个分子7SrRNA组成的11S核糖体蛋白。它既能识别特异的信号肽,又可以与核糖体的A位点结合。
62. 细胞通讯(cell communication)是指在多细胞生物的细胞社会中,细胞间或通过高度精确和高效发送与接收信息的通讯机制,并通过放大引起快速的细胞生理反应,或者引起成为基因活动,尔后发生一系列的细胞生理活动来协调各组织活动,使之成为生命的统一整体对多变的外界环境作出综合反应。
63. 信号转导(signal transction)指细胞外因子通过与受体(膜受体或核受体)结合,引起细胞内的一系列生物化学反应以及蛋白间相互作用,直至细胞生理反应所需基因开始表达、各种生物学效应形成的过程
64. 信号分子(signaling molecules)是指生物体内的某些化学分子,即非营养物,又非能源物质和结构物质,而且也不是酶,它们主要是用来在细胞间和细胞内传递信息,如激素、神经递质、生长因子等统称为信号分子,它们的唯一功能是同细胞受体结合,传递细胞信息。
65. 受体(receptor)是指任何能够同激素、神经递质、药物或细胞内的信号分子结合并能引起细胞功能改变的生物大分子,通常是指位于细胞膜表面或细胞内与信号分子结合的蛋白质。
66. 离子通道偶联受体(into-channel linked receptor)具有离子通道作用的细胞质膜受体称为离子通道受体。
67. G蛋白偶联受体(G-protein linked receptor)配体与受体结合后激活相邻的G蛋白,被激活的G蛋白又可激活或抑制一种产生特异第二信使的酶活离子通道,引起膜电位的改变。由于这种受体参与的信号转导作用要与GTP结合的调节蛋白相偶联,因此它称为G蛋白偶联受体。G蛋白偶联受体是最大的一类细胞表面受体。
68. 酶联受体(enzyme linked receptor)这种受体蛋白即是受体,又是酶。一旦被配体激活既具有酶活性并将信号放大,又称催化受体。酶联受体也是跨膜蛋白,细胞内结构域常常具有某种酶的活性,故称为酶联受体。按照受体的细胞内结构域是否具有酶活性将此类受体分成两大类:缺少细胞内催化活性的酶联受体和具有细胞内催化活性的受体。
69. 信号级联放大(signaling cascade)从细胞表面受体接收外部信号到最后作出综合性应答是一个将信号逐步放大的过程,称为信号的次级联放大反应。组成次级联反应的各个成员称为一个级联,主要是由磷酸化和去磷酸化的酶组成。
70. 第二信使(second messengers)细胞表面受体接受细胞外信号后转换而来的细胞内信号称为第二信使。细胞内有5种最重要的第二信使:cAMP、cGMP、1,2-二酰甘油、1,4,5-三磷酸肌醇、Ca2+等。
71. GTP结合蛋白(GTP binding protein,G蛋白)与GTP或GDP结合的蛋白质,又叫鸟苷酸结合调节蛋白。从组成上看,有单体G蛋白(一条多肽链)和多亚基G蛋白(多条多肽链组成)。G蛋白参与细胞的多样生命活动,如细胞通讯、核糖体与内质网的结合、小泡运输、蛋白质合成等。
72. 腺苷酸环化酶(adenylate cyclase,AC)是膜整合蛋白,它的N端和C端都朝向细胞质。腺苷酸环化酶在膜的细胞质面有两个催化结构域,还有两个膜整合区,每个膜整合区分别有6个跨膜的a螺旋。哺乳动物中已发现6个腺苷酸环化酶异构体。由于腺苷酸环化酶能够将ATP转成cAMP,引起细胞的信号应答,因此,腺苷酸环化酶是G蛋白偶联系统中的效应物。
73. 钙调蛋白(calmolin)是真核生物细胞中的胞质溶胶蛋白,每个末端有两个Ca2+结构域,每个结构域可以结合一个Ca2+。这样,一个钙调蛋白可以结合4个Ca2+,钙调蛋白与Ca2+结合后的构型相当稳定。在非刺激的细胞中钙调蛋白与Ca2+结合的亲和力很低。如果由于刺激使细胞中Ca2+浓度升高时,Ca2+同钙调蛋白结合形成Ca2+-钙调蛋白复合物,就会引起钙调蛋白构型的变化,增强了钙调蛋白与许多效应物结合的亲和力。
74. SH结构碱(SH domain)SH结构域是“Src同源结构域”(Src homology domain)的缩写(Src是一种癌基因,最初在Rous sarcoma病毒中发现)。这种结构域是能够与受体酪氨酸激酶磷酸化残基紧紧结合,形成多蛋白的复合体进行信号传导。
75. Ras蛋白(Ros protein)Ras是大鼠肉瘤(rat sarcoma,Ras)的英文缩写。Ras蛋白质是原癌基因c-ras的表达产物,属单体GTP结合蛋白,具有弱的GTP酶活性。
76. Grb2蛋白(growth factor receptor-bound protein 2)Grb2是生长因子受体结合蛋白2,又叫Ash蛋白。该蛋白参与细胞内各种受体激活后的下游调节,它能够直接与激活的表皮生长因子(EGF)受体磷酸化的酪氨酸结合,参与EGF受体介质的信号转导,也能通过与Shc磷酸化的酪氨酸结合间接参与由胰岛素受体介导的信号转导。Grb2蛋白含有一个SH2结构域和两个SH3结构域,属SH蛋白。
77. Sos蛋白是编码鸟苷释放蛋白的基因sos的产物(sos是son of sevenless的缩写)。Sos蛋白在Ras信号转导途径中的作用是促进Ras释放GDP,结合GTP,使Ras蛋白由非活性状态变为活性状态,所以Sos蛋白是Ras激活蛋白。Sos蛋白不含SH结构域,不属于SH蛋白。
78. 信号趋异(divergence)是指同一种信号与受体作用后在细胞内分成几个不同的信号途径进行传播,最典型的是受体酪氨酸激酶的信号转导。
79. 窜扰(crosstalk)是指不同信号传导途径间的相互影响,即通常所说的“相互作用”(interaction)。
80. 受体钝化(receptor desensitization)受体对信号分子失去敏感性称为受体钝化,一般是通过对受体的修饰进行钝化的。如肾上激素受体在丝氨酸和苏氨酸残基磷酸化后,则失去对肾上腺素的信号转导作用。分为同源钝化(homologousdesensitization)和异源钝化(heterologousdesensitization)。
81. 受体减量调节(receptor down-regulation)通过内吞作用减少质膜中受体量来调节信号传导,称为受体减量调节。
82. 自养生物(autotroph)能够通过光合作用,将无机物转化为可被自身利用的有机物的生物,包括含叶绿素的植物和一些有光合作用的细菌。
83. 细胞生物(cellular respiration)细胞内特定的细胞器在O2的参与下,分解各种大分子产生CO2,同时将分解代谢所释放的能量储存于ATP中的过程,称细胞氧化。
84. 氧化磷酸化(oxidative phosphorylation)由高能底物水解放能,直接将高能磷酸键从底物转移到ATP上,使其磷酸化成为ATP的作用。
85. 电子传递呼吸链(electron transport respiratory chain)在内膜上有序地排列成相互关联的链状传递电子的酶体系,它们能够可逆地接收和释放H+和电子。
86. ATP合酶(ATP synthase)基粒位于线粒体的内膜上,由头部、柄部和基片组成,是生成ATP的关键部位,因此称为ATP合酶。
87. 细胞松弛素(cytochalasins)真菌产生的一种代谢物(生物碱),可以切断微丝并结合在微丝(+)端,阻抑肌动蛋白聚合,但对解聚没有影响。
88. 鬼笔环肽(phalloidin)由毒性蘑菇毒蕈产生的一种双环杆肽生物碱,与微丝有强亲和力,使肌动蛋白纤维稳定,抑制解聚,且只与F-肌动蛋白结合,不与G-肌动蛋白结合。
89. 肌球蛋白(myosin)与微丝运动有关的动力蛋白,分头部、颈部和尾部。头部能结合肌动蛋白和ATP。
90. 驱动蛋白(kinesin)与微丝运动有关的动力蛋白,分头部、颈部和尾部。头部是产生力的活性部位,尾部能与膜泡结合。
91. 有丝分裂器(mitotic apparatus)有丝分裂中期的一个动态结构,由纺锤体和星体组成。其中星体有3种微管组成;动力微管、极间微管和星体微管。
92. 转录(transcription)在细胞核中以DNA为模板合成mRNA的过程,成为转录。
93. 翻译(translasion)mRNA从细胞核进入细胞质,在核糖体上合成蛋白质的过程,称为翻译。
94. 转座子(transposon)即移动基因,是指可以从染色体的一个位置转移到另一个位置或在不同染色体之间移动的基因。
95. 重叠基因(overlapping gene)是指在同一段DNA序列中存在两个基因的核苷酸序列彼此重叠的现象。
96. 基因表达(gene expression)DNA分子中由4种碱基不同组合而构成的遗传信息通过转绿“传抄”给mRNA,进而mRNA通过遗传密码将其翻译成特定蛋白质氨基酸序列的过程,称为基因表达。
97. 遗传密码(genetic code)遗传信息由DNA通过碱基互补转录至mRNA后,mRNA分子上相邻的3个核苷酸能合成一种氨基酸或是终止信号者称为密码子,所有密码子统称为遗传密码。
98. 引发体(primosome)由6种蛋白与DNA单链结合所形成的引发前体和引物酶组装而成,能够识别DNA复制起点位置。
99. DNA复制体(replisome)是指在DNA复制过程中,在复制叉附近,形成的由两套DNA聚合酶Ⅲ全酶分子、引发体和螺旋酶构成的类似核糖体大小的复合体。
100. 转录子(transcription)DNA链上从启动子到终止子为止的长度称为一个转录单位,即转录子。
101. 模板链(template strand)在DNA的两条链中只有其中一条链可作为模板,这条链叫作模板链。又叫作义链。
102. 启动子(promoter)转录是从DNA模板上的特定部位开始的,这个部位也是RNA聚合酶结合的部位,称为启动子。
103. 中心法则(central dogma)是指细胞内遗传信息的流动方向。遗传信息的流动时从DNA转录至RNA,最后流向蛋白质;同时也包括mRNA通过反转录酶形成DNA的方式。
104. 细胞增殖(cell proliferation)细胞通过生长和分裂获得和母细胞一样遗传特性的子细胞,使细胞数目成倍增加的过程。
105. 细胞增殖周期(cell generation cycle)从亲代细胞分裂结束到子代细胞分裂结束之间的间隔时期。
106. 限制点(restriction point,R点)细胞周期中G1期的特殊调节点,在控制细胞增殖周期起到开和关的“阀门”作用。
107. 有丝分裂促进因子(mitosis-promoting factor,MPF)M期细胞质中存在的异二聚体,由调节细胞进出M期所必须的蛋白质激酶和细胞周期蛋白组成,通过促进靶蛋白的磷酸化调节细胞周期。
108. 纺锤体(mitotic spindle)有丝分裂前期,中心粒分别移向细胞两级,微管加速聚合,形成纺锤形结构,称为纺锤体。
109. 细胞周期蛋白(cyclin)是一类随细胞周期的变化呈周期性出现或消失的蛋白质,可以时相形地激活CDK,从而调控细胞周期。
110. 细胞分裂周期基因(cell division cycle,cdc)细胞内的与细胞周期运转和调控有关的基因,产物调节细胞周期的进程。
111. 原癌基因(proto-oncogene)正常细胞基因组中存在与病毒癌基因相似的一类基因,产物是正常细胞增殖所必不可少的,突变为癌基因则导致细胞生长失控。
112. 抑癌基因(tumor suppression oncogene)正常细胞中存在可抑制恶性增殖的一类基因,产物可以抑制细胞的生长和分裂。
113. 联会(synapsis)第1次减数分裂偶线期,同源染色体发生配对现象,称为联会。
114. 四分体(tetrad)同源染色体联会的结果是形成二价体,每个二价体都由两条同源染色体组成,这样一个二价体有4条染色单体,称为四分体。
115. 生长因子(growth factor,GF)通过与膜上受体相结合诱发一系列生理反应,对细胞的增殖活动进行调节的多肽类物质。
116. 抑素(chalone)是一类细胞中产生的对细胞增殖具有抑制作用的调节因子,有些是小分子可溶性蛋白,有些是糖蛋白。
117. 收缩环(contractile ring)有丝分裂末期,胞质分裂开始时,大量肌动蛋白和肌球蛋白在细胞膜下聚集形成收缩环。
118. 分裂沟(cleavage furrow)收缩环通过微丝滑动、直径逐渐变小、使细胞膜凹陷,产生与纺锤体轴相垂直的分裂沟。
119. 细胞分化(cell differentiation)细胞后代在形态、结构和功能上发生稳定性差异的过程称为细胞分化。
120. 细胞决定(cell determination)通常情况下,细胞在发生可识别的形态变化前,已经受到约束向着特定的方向分化,确定了未来的发育命运,因此细胞从分化方向确定开始到出现特异形态特征之前这一时期,称为细胞决定。
121. 细胞全能性(cell totipotency)是单个细胞在一定条件下增殖、分化发育成为完整个体的能力,具有这种能力的细胞称为全能型细胞(totipotent cell)
122. 管家基因(housekeeping gene)是维持细胞最低限度功能所不可缺少的基因,对细胞分化一般只有协助作用。
123. 奢侈基因(luxury gene)是指与各种分化细胞的特殊性状有直接关系的基因,丧失这类基因对细胞的生存并无直接影响。
124. 同源框基因(homeobox gene)凡是含有同源异型基因序列的基因,均称为同源框基因。
125. DNA甲基化(DNA methylation)是指DNA分子上的胞苷加上甲基形成甲基胞嘧啶的现象,特别多见于CG序列中。
126. 细胞诱导(cell inction)是指一部分细胞对邻近细胞的形态发生影响,并决定其分化方向的作用。
127. 细胞抑制(cell inhibition)是在胚胎发育中,分化的细胞受到邻近细胞产生抑制物质的影响,其作用与诱导相对。
128. 癌基因(oncogenes)是控制细胞生长和分裂的正常基因的一种突变形式,能引起正常细胞癌变。
129. 干细胞(stem cell)是处于分化过程中仍具有增殖分裂能力,并能分化产生一种以上的“专业”细胞的原始细胞。根据其存在的部位以及分化潜能的大小,将其分为胚胎干细胞和成体干细胞。胚胎干细胞是具有分化成为机体任何一种组织器官潜能的细胞,如囊胚内细胞团中的细胞;成体干细胞是存在于成熟个体各种组织器官中的干细胞,具有自我更新能力,但通常只能分化成为相应或相邻组织器官的专业细胞。
130. 成体干细胞(alt stem cell)是在成体组织中具有自我更新能力,能分化产生一种或一种以上组织细胞的未成熟细胞。例如造血干细胞、间充质干细胞、神经干细胞、表皮干细胞、肠干细胞、肝干细胞等。
131. 转分化(trans-differentiation)由一种组织类型的干细胞在适当条件下分化为另一种组织类型细胞的现象。
132. 不对称分裂(asymmetry division)是细胞分裂时产生异型的细胞,如两个子细胞一个是干细胞,而另一个是分化细胞。
133. 过渡放大细胞(transit amplifying cell)是介于干细胞和分化细胞之间的过渡细胞,其分裂较快,经若干次分裂后产生分化细胞,起作用是可以通过较少的干细胞产生较多的分化细胞。
134. 衰老(aging)又称老化,通常指在正常状况下生物发育成熟后,随年龄增加,自身功能减退,内环境稳定能力与应激能力下降,结构、组分逐步退行性变,趋向死亡的不可逆转的现象。
135. 自由基(free radical)是指在外层轨道上具有不成对电子的分子或原子基团,是一种高度活化的分子,它可夺取其他物质的电子,使该物质氧化,进而对细胞产生有害的生物效应。
② 细胞是生物体什么的基本单位
细胞是生物体结构和功能的基本单位。
③ 为什么说细胞培养是细胞生物学研究的最基本技术之一
你好
细胞生物学是生物领域的一门基础学科,它主要研究细胞的组成,以及各个细胞器的功能和基因表达。细胞是生命活动的基本单位,也是生命活动的执行者和体现者,做这些研究当然离不开细胞。而现在生物学上的基因工程、酶工程、蛋白质工程、细胞工程、发酵工程等等这些以细胞生物学为基础的研究,他们的基本操作单元都是细胞,做这些研究也离不开了细胞培养技术,另一方面,大多数的研究都是为了产生经济效益,细胞培养技术的高低可以直接影响到一些生物产业的生产能力。细胞培养技术无疑就成为了细胞生物学的基本技术。
④ 基体材料是什么
中文名称:基体 英文名称:basal body;basal granule 其他名称:毛基体(kinetosome,生毛体(blepharoplast) 定义:真核细胞的纤毛或鞭毛基底部由微管及其相关蛋白质构成的短筒状结构。与中心粒的结构十分相似,是轴丝生长的根基。 所属学科: 细胞生物学(一级学科) ;细胞结构与细胞外基质(二级学科)
材料学:
matrix 为复合材料中起到粘接增强体成为整体并转递载荷到增强体的主要组分之一。 基体基本上按原材料的类别区分,即高聚物(树脂)基、金属基、陶瓷基、玻璃与玻璃陶瓷基、碳基(包括石墨基)和水泥基等。 其中高聚物(树脂)基又可分热固性高聚物基(如环氧树脂、不饱和聚酯和聚酰亚胺等)和热塑性高聚物基(如各种通用型塑料以及聚醚酚、聚苯硫醚、聚醚醚酮等高性能品种)。高聚物(树脂)基体在复合材料中应用很广泛,其工艺成熟,尤其是热固性高聚物使用历史长,但一般只能在300℃以下使用。金属基体常用的有Al、Mg、Ti等,高温合金和难熔金属也在试用中。它们的使用温度范围为400~1100℃,但工艺尚不成熟。玻璃与陶瓷基体仍处在试验阶段,工艺很不成熟,但由于使用温度范围为600~1400℃,是很有吸引力的。碳(石墨)基体使用温度在有抗氧化措施的条件下可超过2000℃。水泥基体用于复合材料历史较短,但可望成为用量很大的基体。
分析学:
matrix 在X射线荧光分析中,基体为分析元素以外的整个试样。因此,在多元素体系中,同一试样的基体,对试样中每一分析元素而言,是不同的。
[编辑本段]地质学
基体(matrix palaeosome,palaeosome)又称古成体(palaeosome)、中色体(mesosome)。在混合岩化程度较弱的岩石中,通常可分为原来变质岩的“基体”和新生成的“脉体”两个部分。基体部分基本上代表原来变质岩的成分,一般暗色矿物较多,有时由于受交代作用的影响,可有一定程度的变化,如粒度变粗、长英质增多、角闪石发生黑云母化等。随着混合岩化程度的增强,基体与脉体之间的界线逐渐消失。[1]
⑤ 什么是构成生物体的基本单位
细胞 (英文名:cell)并没有统一的定义,比较普遍的提法是:细胞是生物体基本的结构和功能单位。已知除病毒之外的所有生物均由细胞所组成,但病毒生命活动也必须在细胞中才能体现。
一般来说,细菌等绝大部分微生物以及原生动物由一个细胞组成,即单细胞生物,高等植物与高等动物则是多细胞生物。细胞可分为原核细胞、真核细胞两类,但也有人提出应分为三类,即把原属于原核细胞的古核细胞独立出来作为与之并列的一类。研究细胞的学科称为细胞生物学。
细胞体形极微,在显微镜下始能窥见,形状多种多样。主要由细胞核与细胞质构成,表面有细胞膜。高等植物细胞膜外有细胞壁,细胞质中常有质体,体内有叶绿体和液泡,还有线粒体。动物细胞无细胞壁,细胞质中常有中心体,而高等植物细胞中则无。细胞有运动、营养和繁殖等机能。
研究历史
细胞(Cells)是由英国科学家罗伯特·胡克(Robert Hooke,1635~1703)于1665年发现的。当时他用自制的光学显微镜观察软木塞的薄切片,放大后发现一格一格的小空间[1] ,就以英文的cell命名之,而这个英文单字的意义本身就有小房间一格一格的用法,所以并非另创的字汇。而这样观察到的细胞早已死亡,仅能看到残存的植物细胞壁,虽然他并非真的看见一个生命的单位(因为无生命迹象),后世的科学家仍认为其功不可没,一般而言还是将他当作发现细胞的第一人。而事实上真正首先发现活细胞的,还是荷兰生物学家列文虎克。
1809年,法国博物学家(博物学即二十世纪后期所称的生物学、生命科学等的总称)拉马克(Jean-Baptiste de Lamarck,1744—1829)提出:“所有生物体都由细胞所组成,细胞里面都含有些会流动的‘液体’。”却没有具体的观察证据支持这个说法。
细胞图片
1824年,法国植物学家杜托息(Henri Dutrochet,1776~1847)在论文中提出“细胞确实是生物体的基本构造”又因为植物细胞比动物细胞多了细胞壁,因此观察技术还不成熟的时候比动物细胞更容易观察,也因此这个说法先被植物学者接受。
19世纪中期,德国动物学家施旺(Theodor Schwann,1810~1882)进一步发现动物细胞里有细胞核,核的周围有液状物质,在外圈还有一层膜,却没有细胞壁,他认为细胞的主要部分是细胞核而非外圈的细胞壁。
1830年后,随着工业生产的发展,显微镜制作克服了镜头模糊与色差等的缺点,分辨率提高到1微米,显微镜也开始逐渐普及。改进后的显微镜,细胞及其内含物被观察得更为清晰。1839年,德国植物学家施莱登(Matthias Schleiden,1804~1881)从大量植物的观察中得出结论:所有植物都是由细胞构成的。与此同时,德国动物学家施旺做了大量动物细胞的研究工作。当时由于受胡克的影响,对细胞的观察侧重于细胞壁而不是细胞的内含物,因而对无细胞壁的动物细胞的认识就比植物细胞晚得多。施旺进行了大量研究,第一个描述了动物细胞与植物细胞相似的情况。[2]
在德国施旺和施莱登之后的十年,科学家陆续发现新的证据,证明细胞都是从原来就存在的细胞分裂而来,而至21世纪初期的细胞学说大致上可以简述为以下三点:细胞为一切生物的构造单位、细胞为一切生物的生理单位、细胞由原已生存的细胞分裂而来。
“细胞”一词最早出现在日本兰学家宇田川榕庵1834年的着作《植学启原》。
中国自然科学家李善兰1858年在其着作《植物学》中使用“细胞”作为Cell的中文译名[3]。有学者认为李善兰此时并未接触过《植学启原》,因而是独自发明。
细胞壁
分类在细菌、真菌、植物的生物,其组成的细胞都具有细胞壁(Cell Wall),而原生生物则有一部分的生物体具有此构造,但是动物没有。
植物细胞壁主要成分是纤维素,经过有系统的编织形成网状的外壁。可分为中胶层、初生细胞壁、次生细胞壁。中胶层是植物细胞刚分裂完成的子细胞之间,最先形成的间隔,主要成份是果胶质(一种多糖类),随后在中胶层两侧形成初生细胞壁,初生细胞壁主要由果胶质、木质素和少量的蛋白质构成。次生细胞壁主要由纤维素组成的纤维排列而成,如同一条一条的线以接近直角的方式排列,再以木质素等多糖类黏接。
真菌细胞壁则是由几丁质、纤维素等多糖类组成,其中几丁质是含有碳水化合物和氨,性柔软,有弹性,与钙盐混杂则硬化,形成节肢动物的外骨骼。几丁质不溶于水、酒精、弱酸和弱碱等液体,有保护功能。
细菌细胞壁组成以肽聚糖为主。
细胞膜
细胞壁的内侧紧贴着一层极薄的膜,叫做细胞膜(Cell Membrane)。这层由蛋白质分子和磷脂双分子层组成的薄膜,水和氧气等小分子物质能够自由通过,而某些离子和大分子物质则不能自由通过。因此,它除了起着保护细胞内部的作用以外,还具有控制物质进出细胞的作用:既不让有用物质任意地渗出细胞,也不让有害物质轻易地进入细胞。此外,它能进行细胞间的信息交流。
细胞膜在光学显微镜下不易分辨。用电子显微镜观察,可以知道细胞膜主要由蛋白质分子和脂类分子构成。在细胞膜的中间,是磷脂双分子层,这是细胞膜的基本骨架。在磷脂双分子层的外侧和内侧,有许多球形的蛋白质分子,它们以不同深度镶嵌在磷脂分子层中,或者覆盖在磷脂分子层的表面。这些磷脂分子和蛋白质分子大都是可以流动的,可以说,细胞膜具有一定的流动性。细胞膜的这种结构特点,对于它完成各种生理功能是非常重要的。[4]
物质跨膜运输的方式分为被动运输和主动运输两种。
(1)被动运输,是顺着膜两侧浓度梯度扩散,即由高浓度向低浓度。分为自由扩散和协助扩散。
⑥ 细胞基本生物学属性
虽然细胞学说是根据光学显微镜对不同类型的细胞进行形态观察得出的结论,但是它们在结构和功能上的相似性甚至超过形态上的相似性。
无论何种来源的细胞,都具有基本相似的功能。
● 细胞能够进行自我增殖和遗传细胞能够以一分为二的分裂方式进行增殖,动植物细胞、细菌细胞都是如此。
● 细胞都能进行新陈代谢 细胞内有机分子的合成和分解反应都是由酶催化的,即细胞的代谢作用是由酶控制的。细胞代谢包括物质代谢和能量代谢,这也是细胞的基本特性。
● 细胞都具有运动性所有细胞都具有一定的运动性,包括细胞自身的运动和细胞内的物质运动。细胞:是细胞宇宙有机界一个非常重要的层次。它一方面是由质膜包围的,相对独立的功能单位,能够自我调节和独立生存;另一方面它又是不断与外界进行物质、能量和信息交换的开放体系。细胞是生命结构和功能的基本单位。一切生命现象,诸如生长、发育、增殖、分化、遗传、代谢、应激、运动、衰老和死亡等都在细胞的基本属性中得到体现。
细胞生物学:细胞生物学以“完整细胞的生命活动”为着眼点,从分子、亚细胞、细胞和细胞社会的不同水平,用动态和系统的观点来探索和阐述生命这一基本单位的特征。
2.请说明细胞生物学研究的层次和内容,
层次:分子、亚细胞、细胞、细胞社会。
内容:细胞这一生命基本单位的特征。
3.请阐述细胞生物学与医学的关系,
细胞生物学是基础医学的一门重要课程,它和基础医学的其他学科,尤其是医学分子生物学、发育生物学、遗传学、生理学等学科的关系非常密切。细胞生物学也是临床医学的基础学科。目前细胞生物学研究的主要热点领域及其在医学中的意义举例如下:细胞分化;细胞信号转导;肿瘤发生;干细胞。
1/33页
名词翻译:
cell biology:细胞生物学(以“完整细胞的生命活动”为着眼点,从分子、亚细胞、细胞和细胞社会的不同水平,用动态和系统的观点来探索和阐述生命这一基本单位的特征。)
⑦ 细胞的基本结构是什么
细胞主要由细胞核与细胞质构成,表面有细胞膜。高等植物细胞膜外有细胞壁,细胞质中常有质体,体内有叶绿体和液泡,还有线粒体。动物细胞无细胞壁,细胞质中常有中心体,而高等植物细胞中则无。
细胞并没有统一的定义,比较普遍的提法是:细胞是生物体基本的结构和功能单位。已知除病毒之外的所有生物均由细胞所组成,但病毒生命活动也必须在细胞中才能体现。
一般来说,细菌等绝大部分微生物以及原生动物由一个细胞组成,即单细胞生物,高等植物与高等动物则是多细胞生物。
细胞可分为原核细胞、真核细胞两类,但也有人提出应分为三类,即把原属于原核细胞的古核细胞独立出来作为与之并列的一类。研究细胞的学科称为细胞生物学。
(7)细胞生物学基体是什么扩展阅读
组成细胞的基本元素是:O、C、H、N、Si、K、Ca、P、Mg,其中O、C、H、N四种元素占90%以上。细胞化学物质可分为两大类:无机物和有机物。在无机物中水是最主要的成分,约占细胞物质总含量的75%-80%。
组成细胞的主要元素是C、H、O、N、P、S。组成细胞的最基本元素是C ;基本元素是C、H、O、N;大量元素是C、H、O、N、P、S、K、Ca、Mg。
C,组成细胞内各种有机物,比如核酸中的五碳糖、蛋白质等,是细胞的碳骨架。
H,存在于体内自由水、结合水度等。
O,存在于水、糖类、构成细胞膜答系统的磷脂等。
P,组成核酸、蛋白质、磷脂。
N,存在于核酸中的含氮碱基、蛋白质中的氨基、磷脂等。
S,某些氨基酸的组成元素。如甲硫氨酸、半胱氨酸。
⑧ 细胞是生物最基本的什么单位也是生物最基本的什么单位
细胞是生物体基本的结构和功能单位。
在德国施旺和施莱登之后的十年,科学家陆续发现新的证据,证明细胞都是从原来就存在的细胞分裂而来,而至21世纪初期的细胞学说大致上可以简述为以下三点:细胞为一切生物的构造单位、细胞为一切生物的生理单位、细胞由原已生存的细胞分裂而来。
一般来说,细菌等绝大部分微生物以及原生动物由一个细胞组成,即单细胞生物,高等植物与高等动物则是多细胞生物。细胞可分为原核细胞、真核细胞两类,但也有人提出应分为三类,即把原属于原核细胞的古核细胞独立出来作为与之并列的一类。研究细胞的学科称为细胞生物学。
组成细胞的基本元素是:O、C、H、N、Si、K、Ca、P、Mg,其中O、C、H、N四种元素占90%以上。细胞化学物质可分为两大类:无机物和有机物。在无机物中水是最主要的成分,约占细胞物质总含量的75%-80%。
细胞体形极微,在显微镜下始能窥见,形状多种多样。主要由细胞核与细胞质构成,表面有细胞膜。高等植物细胞膜外有细胞壁,细胞质中常有质体,体内有叶绿体和液泡,还有线粒体。动物细胞无细胞壁,细胞质中常有中心体,而高等植物细胞中则无。细胞有运动、营养和繁殖等机能。
⑨ 细胞生物学复习资料
复习资料很多,下面的只是一部分
第一章 绪论
细胞生物学从显微水平、超微水平和分子水平等不同层次研究细胞结构、功能及生活史。
细胞生物学由细胞学Cytology发展而来,Cytology是指对细胞形态(特别是染色体形态)的观察。
在我国的基础学科发展规划中,细胞生物学与分子生物学,神经生物学和生态学并列为生命科学的四大基础学科。
第一章 绪论
本章内容提要:
第一节 细胞生物学研究的内容与现状
一、 细胞生物学是现代生命科学的重要基础学科
二、细胞生物学的主要研究内容
三、当前细胞生物学研究的总趋势与重点领域
第二节 细胞学与细胞生物学发展简史
附录 细胞生物学参考书:
第一节 细胞生物学研究的内容与现状
一、 细胞生物学是现代生命科学的重要基础学科
生命体是多层次、非线性、多侧面的复杂结构体系,而细胞是生命体的结构与生命活动的基本单位,有了细胞才有完整的生命活动。
细胞生物学 是研究细胞基本生命活动规律的科学,它是在不同层次(显微、亚显微与分子水平)上以研究细胞结构与功能、细胞增殖、分化、衰老与凋亡、细 胞信号传递、真核细胞基因表达与调控、细胞起源与进化等为主要内容。核心问题是将遗传与发育在细胞水平上结合起来。
二、细胞生物学的主要研究内容
1、细胞核、染色体以及基因表达的研究
2、生物膜与细胞器的研究
3、细胞骨架体系的研究
4、细胞增殖及其调控
5、细胞分化及其调控
6、细胞的衰老与凋亡
7、细胞的起源与进化
8、细胞工程
三、当前细胞生物学研究的总趋势与重点领域
1、细胞生物学研究的总趋势
细胞生物学与分子生物学(包括分子遗传学与生物化学) 相互渗透与交融是总的发展趋势;
当前细胞生物学研究中的三大基本问题:
(1)、细胞内基因组是如何在时间和空间上有序表达的?
(2)、基因表达产物----主要是结构蛋白、核酸、脂质、多糖及其复合物,他们如何逐级装备成能行使生命活动的基本结构体系及各种细胞器?
(3)、基因表达产物----主要是大量活性因子与信号分子,他们是如何调节细胞最重要的生命活动过程的?
2 、当前细胞基本生命活动研究中的重要领域:
(1)、染色体DNA与蛋白质相互作用关系-----主要是非组蛋白对基因组的作用;
(2)、细胞增值、分化、凋亡的相互关系及其调控;
(3)、细胞信号转导的研究;
(4)、细胞结构体系的装配。
3、细胞重大生命活动的相互关系
第二节 细胞学与细胞生物学发展简史
一、生物科学发展的三个阶段:
1.形态描述生物学时期,19世纪以前;
2.实验生物学时期,20世纪前半世纪;
3.分子生物学时期,20世纪50-60年代至今。
二、细胞生物学发展简史
1. 细胞的发现
2. 细胞学说的建立其意义
细胞学说内容:1) 认为细胞是有机体,一切动植物都是由细胞发育而来,并由细胞和细胞产物所构成;
2) 每个细胞作为一个相对独立的单位,既有它“自己的”生命,又对与其它细胞共同组成的整体的生命有所助益;3) 新的细胞可以通过老的细胞繁殖产生。
3. 细胞学的经典时期
1)原生质理论的提出2)细胞分裂的研究3)重要细胞器的发现
4. 实验细胞学与细胞学的分支及其发展
1)细胞遗传学的发展
2)细胞生理学的研究
3)细胞化学
5. 细胞生物学学科的形成与发展
三、细胞学说
Jean-Baptiste de Lamark (1744~1829),获得性遗传理论的创始人,法国退伍陆军中尉,50岁成为巴黎动物学教授,1809年他认为只有具有细胞的机体,才有生命。Charles Brisseau Milbel(1776~1854),法国植物学家,1802年认为植物的每一部分都有细胞存在, Henri Dutrochet (1776~1847),法国生理学家,1824年进一步描述了细胞的原理,
Matthias Jacob Schleiden(1804~1881),德国植物学教授,1838年发表“植物发生论”(Beitr?ge zur Phytogenesis),认为无论怎样复杂的植物都有形形色色的细胞构成。
Theodor Schwann(1810~1882),德国解剖学教授,一开始就研究Schleiden的细胞形成学说,并于1838年提出了“细胞学说”(Cell Theory)这个术语;1939年发表了“关于动植物结构和生长一致性的显微研究”
Schwann提出:有机体是由细胞构成的;细胞是构成有机体的基本单位。
1855 德国人R. Virchow 提出“一切细胞来源于细胞”(omnis cellula e cellula)的着名论断;进一步完善了细胞学说。
把细胞作为生命的一般单位,以及作为动植物界生命现象的共同基础的这种概念立即受到了普遍的接受。
恩格斯将细胞学说誉为19世纪的三大发现之一
第二章 细胞基本知识概要
本章内容提要:
第一节 细胞的基本概念
第二节 非细胞形态的生命体-------病毒及其与细胞的关系
第三节 原核细胞与古核细胞
第四节 真核细胞基本知识概要
第一节 细胞的基本概念
一、细胞是生命活动的基本单位
1、一切有机体都由细胞构成,细胞是构成有机体的基本单位;
2、细胞具有独立的、有序的自控代谢体系,细胞是代谢与功能的基本单位
3、细胞是有机体生长与发育的基础
4、细胞是遗传的基本单位,细胞具有遗传的全能性
5、没有细胞就没有完整的生命
二、细胞的基本共性
1.所有的细胞表面均有由磷脂双分子层与镶嵌蛋白质构成的生物膜,即细胞膜。
2.所有的细胞都含有两种核酸:即DNA与RNA作为遗传信息复制与转录的载体。
3.作为蛋白质合成的机器—核糖体,毫无例外地存在于一切细胞内。
4.所有细胞的增殖都以一分为二的方式进行分裂。
第二节 非细胞形态的生命体 —病毒及其与细胞的关系
一、病毒与细胞在起源与进化中的关系
病毒是非细胞形态的生命体,它的主要生命活动必须要在细胞内实现。病毒与细胞在起源上的关系,目前存在3种主要观点:
1.生物大分子→病毒→细胞 病毒
2.生物大分子 细胞
3.生物大分子→细胞→病毒
现在来说,第二种观点和第三种观点比较容易接受,而且第三种观点越来越有说服力。
认为病毒是细胞演化的产物的观点主要依据如下:
彻底的寄生性;
病毒核酸与哺乳动物细胞DNA某些片断的相似性;
病毒可以看成是核酸与蛋白质形成的复合大分子。
第三节 原核细胞与古核细胞
一、Basic characteristics of Prokaryotic cell
1. 遗传的信息量小,遗传信息载体仅由一个环状DNA或RNA构成;
2. 细胞内没有分化为以膜为基础的具有专门结构与功能的细胞器和细胞核膜。
二、原核细胞的主要代表
1、支原体
为什么说支原体是一个细胞
(1)能在培养基上生长,具有典型的细胞膜;
(2)具有环状的双螺旋DNA作为遗传信息量的载体;
(3)mRNA与核糖体结合形成多聚核糖体,指导蛋白质的合成;
(4)以一分为二的方式分裂繁殖。
支原体是最小、最简单的细胞。
2、细菌
1)、细菌的三种形态:球状、杆状和螺旋状
2)、细菌细胞的核区与基因组:细菌的核区实际主要由一个环状的DNA分子组成;现在也可以把细菌的环状DNA理解为细菌基因组。
3)、细菌细胞的表面结构:
A. 细胞膜:主要功能是选择性的交换物质----吸收营养物质,排出代谢废物,并且有分泌与运输蛋白的作用。
B. 细胞壁: 所有细菌的细胞壁的共同成分是肽聚糖,由乙酰氨基葡萄糖、乙酰胞壁酸与四五个氨基酸短肽聚合而成的多层网状大分子结构。
C. 细胞壁特化结构:a. 中膜体-----细胞膜内陷而形成的;b. 荚膜-----是一层松散的粘液物质,有一定程度的保护作用;c. 鞭毛-----细菌的运动器官,与真核生物的鞭毛不同,它是由一种称为鞭毛蛋白的弹性蛋白所构成。
4)、细菌细胞的核糖体——部分附着在细胞膜内侧,大部分游离于细胞质中,与蛋白质的合成密切相关。
5)、细菌细胞核外DNA------质粒,是裸露环状DNA,在遗传工程研究中很重要。
6)、细菌细胞的内生孢子,即芽孢,是细菌对不良环境或营养耗尽时的反应。
3. 蓝藻细胞:是最简单的自养植物类型之一。
基本特征:1)中心质------相当于细菌的核区,是遗传物质DNA所在部位。
2)光合片层-----位于细胞质部分,是同心环状的膜片层结构,上边附着有藻胆蛋白体(包括藻蓝蛋白,一藻蓝蛋白和藻红蛋白),能够把光能传递给叶绿素a,进行原始光和作用。
3)细胞质内含物
4)细胞表面结构
5)细胞分裂
四、原核细胞与真核细胞的比较
1、原核细胞与真核细胞最根本的区别 :
(1)、细胞膜系统的分化和演变。 细胞内部结构和职能的分工是真核细胞区别于原核细胞的重要标志。
(2)、遗传信息量与遗传装置的扩增与复杂化。 遗传信息重复序列与染色体多倍性的出现是真核细胞区别于原核细胞的另一重要标志。
(3)、真核细胞内,遗传信息的转录与翻译有严格的阶段性和区域性,而在原核细胞内则是转录与翻译可以同时发生
五、原核细胞与真核细胞基本特征的比较(p36)
六、原核细胞与真核细胞的遗传结构装置和基因表达的比较(p37)
七、古细菌
古细菌(archaebacteria)与真核细胞曾在进化上有过共同历程
主要证据
(1)细胞壁的成分与真核细胞一样,而非由含壁酸的肽聚糖构成,因此抑制壁酸合成的链霉素, 抑制肽聚糖前体合成的环丝氨酸,抑制肽聚糖合成的青霉素与万古霉素等对真细菌类有强的抑制生长作用,而对古细菌与真核细胞却无作用。
(2)DNA与基因结构:古细菌DNA中有重复序列的存在。此外,多数古核细胞的基因组中存在内含子。
(3)有类核小体结构:古细菌具有组蛋白,而且能与DNA构建成类似核小体结构。
(4)有类似真核细胞的核糖体:多数古细菌类的核糖体较真细菌有增大趋势,含有60种以上蛋白,介于真核细胞(70~84)与真细菌(55)之间。抗生素同样不能抑制古核细胞类的核糖体的蛋白质合成。
(5)5S rRNA:根据对5S rRNA的分子进化分析,认为古细菌与真核生物同属一类,而真细菌却与之差距甚远。5S rRNA二级结构的研究也说明很多古细菌与真核生物相似。
第四节 真核细胞基本知识概要
一、真核细胞的基本结构体系
1.生物膜系统:以脂质及蛋白质成分为基础的生物膜结构系统;
2.遗传信息表达结构系统:以核酸(DNA或RNA)与蛋白质为主要成分的遗传信息表达系统
3.细胞骨架系统:由特异蛋白分子装配构成的细胞骨架系统。
二、细胞的大小及其分析
各类细胞直径的比较
三、植物细胞与动物细胞的比较
植物细胞特有的结构: 1. 细胞壁 2. 液泡 3. 叶绿体
第三章 细胞生物学研究方法
本章内容提要:
第一节 细胞形态结构的观察方法
第二节 细胞组分的分析方法
第三节 细胞培养、细胞工程与显微操作技术
第一节 细胞形态结构的观察方法
一、光学显微镜技术
(一)普通光学显微镜
? 1. 构成:
? ①照明系统
? ②光学放大系统
? ③机械装置
? 2. 原理:经物镜形成倒立实像,经目镜进一步放大成像。
? 3. 分辨率:指分辨物体最小间隔的能力。
(二)荧光显微镜 Fluorescence microscope
特点:光源为紫外线,波长较短,分辨力高于普通显微镜;
有两个特殊的滤光片;
照明方式通常为落射式。
用于观察能激发出荧光的结构。用途:免疫荧光观察、基因定位、疾病诊断。
(三)激光共聚焦扫描显微境
Laser confocal scanning microscope, LCSM
用激光作光源,逐点、逐行、逐面快速扫描。
能显示细胞样品的立体结构。
分辨力是普通光学显微镜的3倍。
用途类似荧光显微镜,但能扫描不同层次,形成立体图像。
(四)相差显微镜
? 把透过标本的可见光的光程差变成振幅差,从而提高了各种结构间的对比度,使各种结构变得清晰可见。在构造上,相差显微镜有不同于普通光学显微镜两个特殊之处。
? 环形光阑(annular diaphragm):位于光源与聚光器之间。
? 相位板(annular phaseplate):物镜中加了涂有氟化镁的相位板,可将直射光或衍射光的相位推迟1/4λ。
原理
用途:观察未经染色的玻片标本
(五)微分干涉差显微镜 Differential interference contrast microscope (DIC)
? 1952年,Nomarski发明,利用两组平面偏振光的干涉,加强影像的明暗效果,能显示结构的三维立体投影。标本可略厚一点,折射率差别更大,故影像的立体感更强。
二、电子显微镜
1、电子显微镜的基本知识
电镜与光镜的比较
显微镜 分辨本领 光源 透镜 真空 成像原理
LM 200nm 可见光(400-700) 玻璃透镜 不要求真空 利用样品对光的吸收形成明暗反差和颜色变化
100nm 紫外光(约200nm) 玻璃透镜 不要求真空
TEM 0.1nm 电子束(0.01-0.9) 电磁透镜 要求真空 利用样品对电子的散射和透射形成明暗反差
2、 原理
? 以电子束作光源,电磁场作透镜。电子束的波长短,并且波长与加速电压(通常50~120KV)的平方根成反比。
? 由电子照明系统、电磁透镜成像系统、真空系统、记录系统、电源系统等5部分构成。
? 分辨力0.2nm,放大倍数可达百万倍。
? 用于观察超微结构(ultrastructure),即小于0.2μm、光学显微镜下无法看清的结构,又称亚显微结构(submicroscopic structures)。
3、主要电镜制样技术
? 1)超薄切片
? 电子束穿透力很弱,用于电镜观察的标本须制成厚度仅50nm的超薄切片,用超薄切片机(ultramicrotome)制作。
? 通常以锇酸和戊二醛固定样品,丙酮逐级脱水,环氧树脂包埋,以热膨胀或螺旋推进的方式切片,重金属(铀、铅)盐染色。
? 2)负染技术
用重金属盐(如磷钨酸)对铺展在载网上的样品染色;吸去染料,干燥后,样品凹陷处铺了一层重金属盐,而凸的出地方没有染料沉积,从而出现负染效果,分辨力可达1.5nm左右。
3)冰冻蚀刻 freeze-etching
? 亦称冰冻断裂。标本置于干冰或液氮中冰冻。然后断开,升温后,冰升华,暴露出了断面结构。向断裂面上喷涂一层蒸汽碳和铂。然后将组织溶掉,把碳和铂的膜剥下来,此膜即为复膜(replica)。
三、扫描隧道显微镜
scanning tunneling microscope,STM
? 原理:根据隧道效应而设计,当原子尺度的针尖在不到一个纳米的高度上扫描样品时,此处电子云重叠,外加一电压(2mV~2V),针尖与样品之间形成隧道电流。电流强度与针尖和样品间的距离有函数关系,将扫描过程中电流的变化转换为图像,即可显示出原子水平的凹凸形态。
? 分辨率:横向为0.1~0.2nm,纵向可达0.001nm。
? 用途:三态(固态、液态和气态)物质均可进行观察。
第二节 细胞组分的分析方法
一、离心分离技术
用途:于分离细胞器与生物大分子及其复合物
转速为10~25kr/min的离心机称为高速离心机。
转速>25kr/min,离心力>89Kg者称为超速离心机。
目前超速离心机的最高转速可达100000r/min,离心力超过500Kg。
(一)差速离心 Differential centrifugation
? 特点:
– 介质密度均一;
– 速度由低向高,逐级离心。
? 用途:分离大小相差悬殊的细胞和细胞器。
? 沉降顺序:核——线粒体——溶酶体与过氧化物酶体——内质网与高基体——核蛋白体。
? 可将细胞器初步分离,常需进一步通过密度梯离心再行分离纯化。
(二)密度梯度离心
? 用介质在离心管内形成一连续或不连续的密度梯度,将细胞混悬液或匀浆置于介质的顶部,通过离心力场的作用使细胞分层、分离。
? 类型:速度沉降(velocity sedimentation)、等密度沉降(isopycnic sedimentation)。
? 常用介质:氯化铯、蔗糖、多聚蔗糖。
? 分离活细胞的介质要求:
– 1)能产生密度梯度,且密度高时,粘度不高;
– 2)PH中性或易调为中性;
– 3)浓度大时渗透压不大;
– 4)对细胞无毒。
二、 细胞内核酸、蛋白质、酶、糖与脂类等的显示方法
?原理:利用一些显色剂与所检测物质中一些 特殊基团特异性结合的特征,通过显 色剂在细胞中的定位及颜色的深浅来判断某种物质在细胞中的分布和含量。
Feulgen Staining
三、特异蛋白抗原的定位与定性
1、免疫荧光技术: 快速、灵敏、有特异性,但其分辨率有限
2、蛋白电泳(SDS-PAGE)与免疫印迹反应(Western-Blot)
3、免疫电镜技术:
?免疫铁蛋白技术
?免疫酶标技术
应用:通过对分泌蛋白的定位,可以确定某种蛋白的分泌动态;胞内酶的研究;膜蛋白的定位与骨架蛋白的定位等
四、细胞内特异核酸的定位与定性
?光镜水平的原位杂交技术(同位素标记或荧光素标记的探针)
?电镜水平的原位杂交技术(生物素标记的探针与抗生物素抗体相连的胶体金标记结合)
?PCR技术
五、放射自显影技术
1、原理及应用:
?利用同位素的放射自显影,对细胞内生物大分子进行定性、定位与半定量研究;
?实现对细胞内生物大分子进行动态和追踪研究。
2、步骤:
?前体物掺入细胞(标记:持续标记和脉冲标记)
———放射自显影
六、定量细胞化学分析技术
1、显微分光光度术(Microspectrophotometry)
?利用细胞内某些物质对特异光谱的吸收,测定这些物质(如核酸与蛋白质等)在细胞内的含量。
包括: 紫外光显微分光光度测定法
可见光显微分光光度测定法
? 流式细胞仪(Flow Cytometry)
?主要应用:
用于定量测定细胞中的DNA、RNA或某一特异蛋白的含量;
测定细胞群体中不同时相细胞的数量;
从细胞群体中分离某些特异染色的细胞;
分离DNA含量不同的中期染色体。
第三节 细胞培养、细胞工程与显微操作技术
一、细胞的培养
1、动物细胞培养
(1) 类型:A 原代培养细胞(primary culture cell)---从机体取出后立即 培养的细胞。1-10代以内的细胞培养称为原代培养细胞。
B 继代培养细胞(sub-culture cell)---适宜在体外培养条件下持续传代培养的细胞称为传代培养细胞
(2) 细胞株(cell strain) 正常二倍体,接触抑制.10~50代
(3) 细胞系(cell line) 亚二倍体或非整倍体,接触抑制丧失,容易传代培养。50代以后。
2、植物细胞
(1)、 原生质体培养 (体细胞培养)
(2)、单倍体细胞培养(花药培养)
3、非细胞体系(cell-free system):
只来源于细胞,而不具有完整的细胞结构,但包含了进行正常生物学反应所需的物质组成体系。
二、细胞工程
1、细胞工程:
在细胞水平上有计划的保存、改变和创造细胞遗传物质,以产生新的物种和品系,或大规模培养组织细胞以获得生物产品。
其所使用的技术主要是:细胞培养、细胞分化的定向诱导、细胞融合与显微注射。
2、细胞融合(cell fusion)与细胞杂交(cell hybridization)技术
? 用人工方法把同种或不同种的两个或两个以上的细胞,通过介导物作用,融合成一个细胞的技术。亦称细胞杂交(cell hybridization)
? 同核融合细胞
? 异核融合细胞
3、单克隆抗体(monoclone antibody)技术
单克隆抗体技术
? 正常淋巴细胞(如小鼠脾细胞)具有分泌抗体的能力,但不能长期培养,瘤细胞(如骨髓瘤)可以在体外长期培养,但不分泌抗体。于是英国人Kohler和Milstein 1975将两种细胞杂交而创立了单克隆抗体技术,获1984年诺贝尔奖。
第四章 细胞质膜与细胞表面
第一节 细胞质膜与细胞表面特化结构
第二节 细胞连接
第三节 细胞外被与细胞外基质
第一节 细胞质膜与细胞表面特化结构
? 细胞膜(cell membrane)又称质膜(plasma membrane),是指围绕在细胞最外层,由脂质和蛋白质组成的生物膜。细胞膜只是真核细胞生物膜的一部分,真核细胞的生物膜(biomembrane)包括细胞的内膜系统(细胞器膜和核膜)和细胞膜(cell membrane)。
一、细胞膜的结构模型
1、结构模型
1) 三明治质膜结构模型: E.Gorter和F.Grendel(1925), 提出 “protein-lipid-protein”三夹板或三明治质膜结构模型,这一模型影响20年之久。
2) 单位膜模型(unit membrane model):J.D.Robertson(1959年),提出单位膜模型,大胆的推断所有的生物膜都是由蛋白质-脂类-蛋白质单位膜构成,在电镜下观察,细胞膜显示出 暗---亮----暗三条带,两侧的暗带的厚度约2nm, 推测是蛋白质,中间的亮带厚度约3.5nm,推测是脂双层分子。整个膜的厚度约是7.5nm。
3) 流动镶嵌模型(fluid mosaic model): S.J.Singer和G.Nicolson(1972),提出生物膜的流动镶嵌模型(fluid mosaic model),这种模型认为细胞膜是由脂质双分子层组成,蛋白质以不同的方式,镶嵌,覆盖或横跨双分子层。流动镶嵌模型强调了,a 膜的流动性,b 膜蛋白分布的不对称性。
4) 脂筏模型(lipid rafts model): K.Simons et al(1997),提出了脂筏模型(lipid rafts model)Functional rafts in Cell membranes. Nature 387:569-572。
2、生物膜结构
目前对生物膜结构的认识可以归纳如下:
1)磷脂双分子层是组成生物膜的基本结构成分,尚未发现膜结构中起组织作用的蛋白;
2)蛋白分子以不同方式镶嵌在脂双层分子中或结合在其表面, 膜蛋白是赋予生物膜功能的主要决定者;
3)生物膜可以看成是蛋白质在双层脂分子的二维溶液。
二、生物膜的组成成分
(一)、膜脂成分:膜脂主要包括磷脂、糖脂和胆固醇三种类型。
? 1、磷脂:1)膜脂的基本成分(50%以上)
? 2)分为二类: a 甘油磷脂(磷脂酰胆碱、磷脂酰丝氨酸、磷脂酰乙醇胺和磷脂酰肌醇)
? b 鞘磷脂
? 3) 主要特征:①具有一个极性头和两个非极性的尾(脂肪酸链) (心磷脂除外);
? ②脂肪酸碳链为偶数,多数碳链由16,18或20个组成;
? ③既具有饱和脂肪酸(如软脂酸)又有不饱和脂肪酸(如油酸);
? 2、糖脂:糖脂普遍存在于原核和真核细胞的质膜上(5%以下),神经细胞糖脂含量较高;
? 3、胆固醇: 1)胆固醇存在于真核细胞膜上(30%以下),细菌质膜不含有胆固醇,但某些细菌的膜脂中含有甘油脂等中性脂类。
? 2)胆固醇的作用:
? ① 调节膜的流动性;
? ② 增加膜的稳定性;
? ③ 降低水溶性物质的通透性。
(二)、膜脂的运动方式
? 1、侧向运动: 沿膜平面的侧向运动(基本运动方式)
? 2、自旋运动: 脂分子围绕轴心的自旋运动;
? 3、 摆 动: 脂分子尾部的摆动;
? 4、 翻转运动:双层脂分子之间的翻转运动,发生频率还不到脂分子侧向交换频率的
? 10-10。但在内质网膜上,新合成的磷脂分子翻转运动发生频率很高。�
? 1、定义:脂质体是根据磷脂分子可在水相中形成稳定的脂双层膜的趋势而制备的人工膜。
三、膜蛋白
(二)、膜内在蛋白与膜脂结合的方式
1、膜蛋白的跨膜结构域与脂双层分子的疏水核心的相互作用。
2、跨膜结构域两端携带正电荷的氨基酸残基与磷脂分子带
负电的极性头形成离子键,或带负电的氨基酸残基通过Ca2+、Mg2+等阳离子与带负电的磷脂极性头相互作用。
3、某些膜蛋白在细胞质基质一侧的半胱氨酸残基上共价结合脂肪酸分子,插入脂双层之间,进一步加强膜蛋白与脂双层的结合力,还有少数蛋白与糖脂共价结合。
(三)、去垢剂
1、定义:去垢剂是一端亲水、另一端疏水的两性小分子,是分离与研究膜蛋白的常用试剂。
四、膜的流动性(sk)
(一)、膜脂的流动性
膜脂的流动性主要由
1 脂分子本身的性质决定的,脂肪酸链越短, 不饱和程度越高,膜脂的流动性越大。
2 温度对膜脂的运动有明显的影响。
3 在细菌和动物细胞中常通过增加不饱和脂肪酸的含量来调节膜脂的相变温度以维持膜脂的流动性。
4 在动物细胞中,胆固醇对膜的流动性起重要的双向调节作用。
(二)、 膜蛋白的流动�
荧光抗体免疫标记实验�成斑现象(patching)或成帽现象(capping) �
(三)、膜的流动性受多种因素影响;细胞骨架不但影响膜蛋白的运动,也影响其周围的膜脂的流动。膜蛋白与膜脂分子的相互作用也是影响膜流动性的重要因素
荧光抗体免疫标记实验
(二)、膜脂与糖脂的不对称性�
? 膜脂的不对称性:指同一种膜脂分子在膜的脂双层中呈不均匀分布;
? 糖脂的不对称性:糖脂分子仅存在于质膜的ES面,是完成其生理功能的结构基础
⑩ 构成大多生物体的基本单位是什么
构成大多生物体的基本单位是细胞。
细胞是生物体基本的结构和功能单位。已知除病毒之外的所有生物均由细胞所组成,但病毒生命活动也必须在细胞中才能体现。
一般来说,细菌等绝大部分微生物以及原生动物由一个细胞组成,即单细胞生物,高等植物与高等动物则是多细胞生物。细胞可分为原核细胞、真核细胞两类,但也有人提出应分为三类,即把原属于原核细胞的古核细胞独立出来作为与之并列的一类。研究细胞的学科称为细胞生物学。
(10)细胞生物学基体是什么扩展阅读:
细胞的种类
1、真核细胞
真核细胞指含有真核(被核膜包围的核)的细胞。其染色体数在一个以上,能进行有丝分裂。还能进行原生质流动和变形运动。而光合作用和氧化磷酸化作用则分别由叶绿体和线粒体进行。
2、原核细胞
原核细胞没有核膜,遗传物质集中在一个没有明确界限的低电子密度区,称为拟核(nucleoid)。
DNA为裸露的环状分子,通常没有结合蛋白,环的直径约为2.5nm,周长约几十纳米。大多数原核生物没有恒定的内膜系统,核糖体为70S型,原核细胞构成的生物称为原核生物,均为单细胞生物。
3、古核细胞
古核细胞也称古细菌:是一类很特殊的细菌,多生活在极端的生态环境中。具有原核生物的某些特征,如无核膜及内膜系统;也有真核生物的特征,如以甲硫氨酸起始蛋白质的合成、核糖体对氯霉素不敏感、RNA聚合酶和真核细胞的相似、DNA具有内含子并结合组蛋白。