① 飞行员再飞行中所遇到的黑视现象是如何产生的
以飞机做圆周运动来解释:当飞行员头朝着圆心时,飞机给飞行员向圆心的力(相对于飞行员就是向上的力),但血管里的血液仍然会向下聚集,导致头部缺血。这就跟人蹲久了突然站起来那种眼睛发黑,晕厥一个道理。黑视发生在2.9G以上的过载。一般人可以忍受5G过载-几秒钟,经过训练可以忍耐更高的G数
另一种情况,飞行员头朝外,脚朝着圆心时,飞机给飞行员向下的力,但血管里的血液会向头部聚集,这是很危险的情况,头部会充血,大脑刺痛,睁不开眼睛,而且这比黑视持续的时间还久,黑视在飞行姿态改出后就消失了,这就是 红视。一般人可以忍受3G红视5秒钟,4G以上会死人的。而且这种俯冲机动在一战时曾经把一个飞行员眼睛甩出来,但他凭借剩下一只眼睛飞回了机场。
② 红外线的主要生物学效应有哪些
红外线(Infrared rays)是太阳光线中众多不可见光线中的一种,由德国科学家霍胥尔于1800年发现,又称为红外热辐射(Infrared radiation)。太阳光谱上红外线的波长大于可见光线,波长为0.75~1000μm。红外线可分为三部分,即近红外线,波长为0.75~1.50μm之间;中红外线,波长为1.50~6.0μm之间;远红外线,波长为6.0~l000μm 之间。近年来,由于检测设备的完善及研究的深入,人们对红外线的物理性能及其生物学效应有了比较全面的认识,获得了许多进展。红外线特别是远红外线已被广泛运用在医疗保健产业中,与日常生活有关的各种红外线产品也大量出现。本文在此主要对红外线的生物学效应机理及其临床应用研究的现况进行介绍。
一、红外线生物学效应的机理
红外线是一种电磁波,当它通过放射方式辐射到物体时,被物体吸收的辐射能传递给物体内的原子、分子等粒子,使这些粒子发生不规则运动,引起物体的升温作用,称为远红外线的一次效应,也称为增温效应。产生一次效应的同时,物体也随之发生其他的化学、物理等改变,这称之为物体吸收远红外线辐射后产生的二次效应,也称为继发效应。
红外线对人体皮肤、皮下组织具有强烈的穿透力。外界红外线辐射人体产生的一次效应可以使皮肤和皮下组织的温度相应增高,促进血液的循环和新陈代谢,促进人的健康[1] 。红外线理疗对组织产生的热作用、消炎作用及促进再生作用已为临床所肯定,通常治疗均采用对病变部位直接照射。近红外微量照射治疗对微循环的改善效果显着,尤以微血流状态改善明显。表现为辐照后毛细血管血流速度加快,红细胞聚集现象减少,乳头下静脉丛淤血现象减轻或消失,从而对改善机体组织、重要脏器的营养、代谢、修复及功能有积极作用[2]。
红外线对人体产生二次效应的机理目前尚未完全清楚。
有学者认为远红外线可对细胞产生共振作用,主要是引起细胞内外水分子的振动,使细胞活化,发生一系列有益于健康的细胞生物化学及细胞组织化学改变[1]。也有人认为波长8~14微米的远红外线可称为“生命光线”,能够显着改善人体微循环。它作用于人体水分子时可对人体内老化了的大分子团产生共振使之裂化,重新组合成较小的水分子团,在这个过程中,吸附在老化的分子团表面的污染物质得以去除,水的比重上升,附着于细胞膜表面的水分子增加,增强了细胞的活性和表面张力。由于渗透细胞膜的水分子增加,细胞内钙离子活性加强,因此增强了人体细胞的正常机能,使杀菌能力、免疫能力等均有所提高。此外,生命光线还可以使血液中不饱和脂肪酸的二重键或三重键被切断,饱和脂肪酸不容易再被氧化成血脂[过氧化脂质],减少了血管内脂质的沉积,使血管壁光滑,从而减少动脉硬化、白内障等心血管疾病或眼科疾病的发生,对人体健康起着良好的促进功效[3]。
庞小峰研究了由ATP 分子水解释放的生物能量传递的机制和特点,认为红外线对生物(包括人)所具有的生物效应和医学功能主要来自红外线的非热生物效应。1~7μm 的红外线波可以透射过皮肤到细胞上,被蛋白质分子吸收。蛋白质分子能够而且也只能吸收或发射出1~3.5μm 和5~7μm 波长 的红外线,这一范围波长的红外线吸收后能导致蛋白质分子中的酰胺键的量子振动,从而可使生物能量顺利地从一处传递到另一处,使生命体处于正常状态,保持生命体的生长、发育及健康。维持生命系统正常运行的生物能量是由ATP 的水解提供的,但是,一旦ATP 分子或ATP 酶(ATP 的水解需要酶的参与) 或水不足,或者蛋白质的结构和构象改变或畸变等等原因,便可使提供的生物能量不足以引起酰胺键的正常振动或生物能量不能正常传递. 生物组织在得不到足够能量时,便不能正常生长,会诱发出各种疾病. 在这种情况下,若能用具有上述波长的红外线照射,并能被蛋白质吸收,就可以使蛋白质分子恢复正常和正常传递生物能量,从而可能使生物组织从病态恢复到正常状态,使疾病得到治疗. 在红外线医疗仪的临床试验中也证明,对生物体或人有一定医疗效果的红外线也正好是在此波长范围内, 即0.8~1.6μm 和4.8~7μm[4]。
红外线对机体免疫功能影响的研究还处于刚起步状态,在各波段的红外线中以中波红外线更易作用于免疫细胞,促进其生物学功能。红外线的作用除与其波长有关外, 还与其发射的光子数目有关, 即与辐射强度和辐射时间有关, 过量的红外线辐射还可能对机体造成不良的影响, 其详细机制有待进一步阐明。曹志然等认为红外线照射对机体免疫系统具有间接作用和直接作用。间接作用是指红外线辐射可调节机体其它系统如神经系统和内分泌系统的状态, 从而达到调节免疫系统的目的。直接作用是指红外线被机体吸收后能增强免疫细胞和免疫器官周围的生物场, 使其活性及相互调控作用增强,红外光子可直接作用于免疫细胞的受激点, 这些受激点包括免疫细胞表面的受体(如T 细胞表面的PHA-R, TCR, L-2R 等) 和一些酶类, 从而激活细胞, 使细胞增殖和分化 [5]。毛文等推测其作用机理在于红外线可能激活组织深部感受器,其生理生化效应一方面通过神经—体液反射途径,另一方面可能通过目前尚未十分了解的经络传导途径,对生物大分子、细胞及脏器的活动产生了积极的影响,从而有整体良性效应[2]。
二、红外线对人体可能造成的不利影响
热辐射又称红外辐射,钢铁冶金企业高温作业环境的主要特点是强热辐射性高温。特别是在钢铁冶炼、红钢热轧和中型烧结机,是典型的红外热辐射接触作业。波长0.8~1.2μm的短波红外线可透过角膜进入眼球、房水、虹膜、晶状体和玻璃体液吸收一部分红外线而导致白内障,称之为“红外线白内障”,国内外均首先见于玻璃工、钢铁冶炼工人。曹多志等发现铁冶金各炉前作业热辐射危害仍十分严重,随作业工龄增加视力有明显下降趋势,晶体混浊检出率达9.46% ,并发现与热源距离及本岗位工龄有关[6]。有研究也指出紫外线(UVR) 和红外线( IFR) 对眼及皮肤的损伤是电焊作业职业损害的一个重要方面,电焊作业时的紫外线和红外线可引起角膜和晶体损伤[7]。
太阳光中的红外线对皮肤的损害作用不同于紫外线。紫外线主要引起光化学反应和光免疫学反应, 而红外线照射所产生的反应是由于分子振动和温度升高所引起的。红外线引起的热辐射对皮肤的穿透力超过紫外线。其辐射量的25%~65% 能到达表皮和真皮, 8%~17% 能到达皮下组织。红外线通过其热辐射效应使使皮肤温度升高, 毛细血管扩张, 充血, 增加表皮水分蒸发等直接对皮肤造成的不良影响。其主要表现为红色丘疹、皮肤过早衰老和色素紊乱。皮肤温度升高, 毛细血管扩张充血, 增加表皮水分蒸发等直接对皮肤造成不良影响。
红外线还能够增强紫外线对皮肤的损害作用, 加速皮肤衰老过程。使用同样的防晒产品和同样能量的紫外线强度下, 在户外自然阳光下所测到的SPF 值(防晒系数)明显低于在实验室人工光源下所测得的防晒效能,这是由于在自然阳光下, 皮肤受到紫外线和红外线的双重作用而引起的。红外线和紫外线在加速组织变性中的作用是一样的。红外线也能促进紫外线引起的皮肤癌的发展[8]。
三、红外线生物学效应的临床应用研究
红外线可被体表浅表组织吸收, 有显着干燥脱水作用, 使局部组织血液循环加快, 起到消炎镇痛作用。临床上采用局部外用红花油加远红外线照射来治疗褥疮,发现疗效好且见效快[9]。利用远红外线对带状疱疹进行治疗,结果止痛、止疱和结痴时间均短于对照组[10]。有实验表明,生物陶瓷远红外线对烧伤治疗具有显着疗效。对损伤疼痛的治疗,以慢性软组织损伤疗效最好[11]。临床护理观察发现,在传统的纺织品材料中加入超细陶瓷微粒制成的远红外线护具如护腰、护膝、护肘、护腕、颈围等,在消炎、消肿、活血、止痛、通经活络、改善微循环方面有显着效果。比硫酸镁湿热敷、热水袋热敷及药物封闭等方法效果好,同时可以避免因封闭给病人带来的痛苦[12]。新生儿红臀和溃疡以往多采用外用消毒药物洗涤及保持干燥等方法加以防治,疗效差且易复发。采用远红外线辐射加温床对红臀和臀部溃疡患儿进行治疗,治疗组和对照组相比,平均治愈时间缩短,有效率更高[13]。新生儿硬肿症治疗中的复温问题是治疗能否成功的重要环节,过去采用普通暖箱逐渐复温效果较差,现在采用远红外线快速复温后患儿病死率明显下降,抢救成功率显着提高[14]。
皮瓣坏死是整形外科等临床上常见的术后并发症, 主要是因为微循环障碍,目前尚无理想的防治办法。姜平等通过活体直接观察大鼠背部随意皮瓣的微循环变化,探讨了2.5~15μm 波段的远红外线对皮瓣成活的影响。发现远红外线局部辐射具有类似于血管扩张剂的生物学作用,能改善微循环提高皮瓣成活率,且在治疗剂量范围内无明显副作用[15]。
日本有学者报道使用直线偏振光红外线治疗多种类型的斑秃有明显疗效[16]。
直线偏振光近红外线用于风湿性关节炎引起的颞下颌关节痛治疗疗程短、疗效好[17]。变形性关节炎采用点式直线偏振光近红外线治疗仪照射治疗和传统的局部神经阻滞治疗相比较, 虽然近红外线组治疗次数多于传统神经阻滞组, 但治疗范围广,可避免局部神经阻滞治疗给病人带来的痛苦,显效率较高,作用持久不易复发。其机理可能为光照起到光电能的刺激作用,电磁波作用及光化学作用,因而能抑制神经的兴奋、松弛肌肉、舒张血管、增加血流,促进淋巴循环,促进活性因子的产生,从而起到治疗作用[18]。
有人对66例心脑血管病人经低温激发远红外线治疗前后的血液粘度进行观察,发现低温激发远红外线具有以低温热功率效应为主的广泛的生物学效应,能降低心脑血管疾病患者的血液粘度、防止血栓形成,改善微循环,减轻胸闷、心悸、头昏、麻木等症状[19]。
近红外线治疗对CAH 患者免疫功能有一定调节作用,患者SG、IgG、γ-球蛋白下降,ANA、RF转阴, SA、CH50、C3上升, 体液免疫有正常化趋向[20]。红外线辐射还能促进Con-A 诱生产生L-2 的作用,显着提高大鼠脾细胞的ADCC 效应,使小鼠对PHA 刺激的T淋巴细胞转化率增高, 脾指数增大,提高小鼠外周血中淋巴细胞的数目和脾内巨噬细胞的数目[5],对机体自由基代谢及N K 细胞活性也有良好影响[2]。
应用红外线照射膀胱区治疗尿潴留和其它药物疗法相比,产妇无痛苦, 不增加产后出血量, 易被产妇接受。红外线作用于皮肤后, 被吸收的能量转化为热能引起皮温升高, 刺激皮肤内热感受器, 通过丘脑反射使血管平滑肌松弛, 血管扩张, 血循环加强, 促使渗出液吸收, 利于炎肿消退, 减轻肌肉的紧张和痉挛, 因而对尿潴留治疗效果明显 [21]。
盖启凤等用波长2~25μm的远红外线照射下腹部压痛区(包括气海、关元、带脉等穴位)来治疗盆腔炎性包块,患者62 例,均经妇产科临床检查与B超确诊,均有下腹部疼痛及压痛,妇科检查均触到囊性包块,痊愈显效率88.6 % ,总有效率96.6 %。采用远红外线照射治疗盆腔炎性包块可以增加局部的微循环功能,增强白细胞的游走和吞噬能力,促进炎症吸收[22]。
有人采用远红外线照射治疗小儿肠痉挛208 例,发现其疗效明显优于药物治疗, 且简便易行, 无副作用, 儿童乐于接受[23]。
红外辐射对糖尿病兔的高血糖症有明显的缓解作用,其代谢调节机制为对环核苷酸环化酶(AC) 活性抑制的同时激活磷酸二酯酶(PDE)活性,使环磷酸腺苷(cAMP)合成受阻而水解加速,cAMP 水平下降,血糖随之降低[24]。
有人通过体内实验探讨了远红外线对荷瘤鼠S180大脑内源性鸦片类物质的影响,发现应用中远红外线治疗各组大脑β—内啡肽、亮氨酸脑啡肽含量明显增加。脑啡肽能中间神经元被认为能与痛觉传入轴突形成轴—轴突触,能产生有力的抑痛作用。这为临床上应用中远红外线治疗和减轻肿瘤患者疼痛和缓解带状疱疹、肢体疼痛提供了理论依据[25]。
在许多疾病状态下,由于活性氧产生过度或抗氧化酶类活性降低,可引起脂质过氧化反应损伤细胞膜并进而导致了细胞死亡。有资料表明,肿瘤宿主清除自由基的能力降低,表明天然抗氧化剂的抗氧化酶不足。滕艳杰等通过体内实验,探讨了中远红外线治疗对荷瘤鼠肝脏自由基代谢的变化,发现应用中运红外线治疗,肝脏SOD、GSH-Px活性明显升高,MDA含量明显降低。MDA是双键脂肪酸过氧化产物,它的含量反应了脂质过氧化物的浓度。中远红外线由于活化细胞而使荷瘤鼠肝脏组织MDA含量明显减少,肝脏SOD和GSH—Px活力明显升高,从而使肿瘤宿主清除自由基的能力增强,抑制肿瘤细胞的生长、增殖[26]。
微量元素在体内生物化学过程中起着十分重要的作用。它们作为机体多种物质的重要组成部分、与机体生长发育、心脑血管疾病、免疫功能、机体衰老等有着十分密切的关系,然而对各种疾病引起的微量元素的过多或减少,目前尚无肯定的治疗方法。王建杰等研究了全科广谱治疗仪照射对小鼠肝脏微量元素的影响,发现峰值波长7~10μm的中远红外线照射对微量元素的失衡能够进行双向调节,对于正常含量也可促进其吸收,起到很好的防病、治病、保健作用[27]。
电光性眼炎是由于电焊工防护不当,眼部受紫外线过度照射所引起的角膜和结膜炎症反应。目前在治疗电光性眼炎上,还没有特效的疗法。有人根据红外线可抑制紫外线红斑反应的原理,用远红外线治疗电光性眼炎,收到了较好的疗效。推测其原理:红外线是长波光线,其量子能较少,但其光流较为强大,具有明显的热效应,它对紫外线造成眼部的光电性损害有缓解作用。红外线的热作用还能降低神经末梢的兴奋性,对肌肉组织有松弛作用。所以对眼部解痒止痛的效果很好[28]。
Schramm JM等报道联合应用红外线和微波治疗可以加速伤口的愈合[29]。远红外按摩理疗床对急、慢性腰腿痛、颈椎病、落枕及肩周炎有较好的疗效[30]。
红外线治疗与磁疗适用于多种疾病所致的关节肌肉的损害与功能障碍,综合的应用红外线治疗与磁疗两种理疗方法,与单纯治疗比较,不仅起到相加和协同作用, 同时又可以缩短病程, 提高疗效,达到满意的效果[31]。现在已有多款产品在临床上应用,如远红外线磁疗型腰椎牵引器在家庭中治疗腰椎间盘突出症,其疗效与在医院中牵引治疗的疗效相近[32]。光磁按摩保健治疗器经多家医院试用验证,具有明显的镇痛、消肿、舒经通络、活血化窃及温中理气等功效,治疗痛经及慢性腹痛及增生等症取得了满意效果,特别对急性扭挫伤和肩周炎、腰肌劳损等病症有显着疗效[33]。
③ 谁来帮我回答下面八道生物题(200高分,高手请进)
1.简述诺贝尔奖的由来,并指出在遗传学学科科学发展过程中,哪一位科学家那一年因为什么贡献而首次获得诺贝尔生理医学奖。
答:a.阿尔费里德·伯恩纳德·诺贝尔,1833年10月21日生于瑞典首都斯德哥尔摩。他没有妻子、儿女,连亲兄弟也去世了。诺贝尔发明了炸药,取得了成千上万的科研成果
,成功地开办了许多工厂,积聚了巨大的财富。在即将辞世之际,诺贝尔立下了遗嘱:“请将我的财产变做基金,每年用这个基金的利息作为奖金,奖励那些在前一年为人类
做出卓越贡献的人。”根据他的这个遗嘱,从1901年开始,具有国际性的诺贝尔创立了。诺贝尔在遗嘱中还写道:“把奖金分为5份:一、奖给在物理学方面有最重要发现或
发明的人;二、奖给在化学方面有最重要发现或新改进的人;三、奖给在生理学和医学方面有最重要发现的人;四、奖给在文学方面表现出了理想主义的倾向并有最优秀作品
的人;五、奖给为国与国之间的友好、废除使用武力与贡献的人。”为此,诺贝尔分设了5个奖。1969年,诺贝尔新设了第6个奖——诺贝尔经济学奖。1990年诺贝尔的一位重
侄孙克劳斯·诺贝尔又提出增设诺贝尔地球奖,授予杰出的环境成就获得者。该奖于1991年6月5日世界环境日首次颁发。诺贝尔还在遗嘱中强调:“不分国籍、肤色以及宗教
信仰,必须要把奖金授予那些最合格的获奖者。”获奖者名单在每年的10月中旬公布,授奖仪式于诺贝尔的逝世日12月10日在斯德哥尔摩音乐厅举行。瑞典国王亲自出席大会
并授奖。诺贝尔奖获得者在授奖仪式上接受奖状、金质奖章和奖金支票,还要在晚宴上作3分钟的即席演讲。每个诺贝尔奖可以由两个研究领域的人共同获得,最多可以有3个
人共同获得,不过必须是仍活着的人。科学奖和医学奖已证明很少引起争论;而文学奖与和平奖,则因其本身性质特殊,最易导致意见分歧。和平奖常常保留。
b.1933年诺贝尔生理学医学奖授予美国科学家摩尔根,表彰他在研究染色体方面基因理论的杰出贡献。
2.“国王和仆人的传说”阐述了什么内容?
答:细菌中限制和锈蚀现象的本质,是分子生物学领域中的重大发现之一。
3.为什么说细菌是分子遗传学家的宠物?
答:细菌可作遗传研究的材料。
4.什么是“一个基因一个酶”学说?该学说是那几位科学家的观点,并因此获得那一年的诺贝尔生理医学奖?
答:一个基因一个酶假说 one-gene-one-enzy-me hypothesis 这是一种学说,认为一个基因仅仅参与一个酶的生成,并决定该酶的特异性和影响表型。G.W.Bea-dle和
E.L.Tatum在1941年发表了链孢霉中生化反应遗传控制的研究;进而使应用各种生化突变型对基因作用的研究有了发展。Beadle在1945年总结了这些结果,提出了一个基因一
个酶的假说。以后发现,不仅链孢霉,而且细菌和酵母菌等各种生物由于生化突变都会引起特定酶的缺损,从而导致了特定的代谢反应阻滞,这进一步证明了这个假说的正确
性。但是有些酶是由不同的多肽链特异地聚合起来才会呈现有活性,也有一个基因所决定的同样多肽链是两种或两种以上不同酶的组成成分。此外,有的基因能决定具有两种
或两种以上作用的酶,也有几个基因所决定的多肽链通过聚合才能发挥作用。随着酶学、蛋白质化学的进展、遗传学方法的进步,进一步弄清楚了基因与酶的关系是建立在基
因与多肽链严密对应的关系基础上的。表示这种对应关系的学说就是一个基因一条多肽链假说。
5.阐述DNA双螺旋模型的内容。
答:DNA双螺旋(DNA double helix):一种核酸的构象,在该构象中,两条反向平行的多核甘酸链相互缠绕形成一个右手的双螺旋结构。碱基位于双螺旋内侧,磷酸与糖基
在外侧,通过磷酸二脂键相连,形成核酸的骨架。碱基平面与假象的中心轴垂直,糖环平面则与轴平行,两条链皆为右手螺旋。双螺旋的直径为2nm,碱基堆积距离为0.34nm
, 两核甘酸之间的夹角是36゜,每对螺旋由10对碱基组成,碱基按A-T,G-C配对互补,彼此以氢键相联系。维持DNA双螺旋结构的稳定的力主要是碱基堆积力。双螺旋表面有
两条宽窄`深浅不一的一个大沟和一个小沟。
大沟(major groove)和小沟(minor groove):绕B-DNA双螺旋表面上出现的螺旋槽(沟),宽的沟称为大沟,窄沟称为小沟。大沟,小沟都、是由于碱基对堆积和糖-
磷酸骨架扭转造成的。
DNA超螺旋(DNAsupercoiling):DNA本身的卷曲一般是DNA双`螺旋的弯曲欠旋(负超螺旋)或过旋(正超螺旋)的结果。
1953年4月25日,克里克和沃森在英国杂志《自然》上公开了他们的DNA模型。经过在剑桥大学的深入学习后,两人将DNA的结构描述为双螺旋,在双螺旋的两部分之间,
由四种化学物质组成的碱基对扁平环连结着。他们谦逊地暗示说,遗传物质可能就是通过它来复制的。这一设想的意味是令人震惊的:DNA恰恰就是传承生命的遗传模板。
1953年沃森和克里克提出着名的DNA双螺旋结构模型,他们构造出一个右手性的双螺旋结构。当碱基排列呈现这种结构时分子能量处于最低状态。沃森后来撰写的《双螺
旋:发现DNA结构的故事》(科学出版社1984年出版过中译本)中,有多张DNA结构图,全部是右手性的。这种双螺旋展示的是DNA分子的二级结构。那么在DNA的二级结构中是
否只有右手性呢?回答是否定的。虽然多数DNA分子是右手性的,如A-DNA、B-DNA(活性最高的构象)和C-DNA都是右手性的,但1979年Rich提出一种局部上具有左手性的Z-
DNA结构。现在证明,这种左手性的Z-DNA结构只是右手性双螺旋结构模型的一种补充。21世纪是信息时代或者生命信息的时代,仅北京就有多处立起了DNA双螺旋的建筑雕塑
,其中北京大学后湖北大生命科学院的一个研究所门前立有一个巨大的双螺旋模型。人们容易把它想象为DNA模型,其实是不对的,因为雕塑是左旋的,整体具有左手性。就
算Z-DNA可以有左手性,也只能是局部的。因此,雕塑造形整体为一左手性的双螺旋是不恰当的,至少用它暗示DNA的一般结构是错误的。
DNA双螺旋模型(包括中心法则)的发现,是20世纪最为重大的科学发现之一,也是生物学历史上惟一可与达尔文进化论相比的最重大的发现,它与自然选择一起,统一
了生物学的大概念,标志着分子遗传学的诞生。这门综合了遗传学、生物化学、生物物理和信息学,主宰了生物学所有学科研究的新生学科的诞生,是许多人共同奋斗的结果
,而克里克、威尔金斯、弗兰克林和沃森,特别是克里克,就是其中最为杰出的英雄。
6.什么是生化遗传病?1902年英国医生Garrod报道了黑尿酸尿的代谢疾病,结合所学知识列出白化病、黑尿病、苯丙酮尿症的代谢途径。
答:1902年,Garrod对尿黑酸尿症的开拓性的研究开辟了生化遗传学这一领域,并提出了先天代谢缺陷(inborn errors metabolism)这一概念。1941年,Beadle和Tatum提
出一个基因一个酶的概念,明确了机体的所有生化过程都是在遗传控制下进行的,每个生化反应受控于一个特定的基因,一个基因突变只改变细胞的某一步生化反应的能力,从而
确立了生化遗传学这一领域.1949年,Pauling等通过对镰状细胞贫血的研究,提出分子病(molecular disease)的概念.人们在研究分子病的实践中发现,血红蛋白病是常见的遗
传病之一,从其分子结构到发病机理研究的较为清楚,是研究人类分子病的最好模型。原因:
1)红细胞取材方便,来源丰富。
2)血红蛋白浓度高,不需纯化。
3)网织
红细胞含有α- 、β- 珠蛋白mRNA ,便于克隆α、β珠蛋白 cDNA。
4)血红蛋白异常引起的疾病种类多,因此对其 研究透彻。
分子病Molecular disease :
Gene突变导致蛋白质分子质和量异常,从而引起机体功能障碍的一类疾病,称为分子病。
血红蛋白病 Hemoglobinopathy :
是指由于珠蛋白分子结构或合成量异常所
引起的疾病。7.什么是原癌基因,什么是抑癌基因,比较两者之间的差异性。
答:原癌基因(oncogene)是细胞内与细胞增殖相关的基因,是维持机体正常生命活动所必须的,在进化上高等保守。当原癌基因的结构或调控区发生变异,基因产物增多或
活性增强时,使细胞过度增殖,从而形成肿瘤。
肿瘤细胞中存在着显形作用的癌基因,在正常细胞中有与之同源的正常基因,被称为原癌基因。
原癌基因表达的特点:
l、正常细胞中原癌基因的表达水平一般较低,而且是受生长调节的,其表达主要有三个特点:①具有分化阶段特异性;②细胞类型特异性; ③细胞周期特异性。
2、肿瘤细胞中原癌基因的表达有2个比较普遍和突出的特点:
①一些原癌基因具有高水平的表达成过度表达?
②原癌基因的表达程度和次序发生紊乱,不再具有细胞周期特异性。
3、细胞分化与原癌基因表达 .
在分化过程中,与分化有关的原癌基因表达增加,而与细胞增殖有关的原癌基因表达受抑制。
原癌基因产物的功能
大多数原癌基因编码的蛋白质都是复杂的细胞信号转导网络中的成份,在信号转导途径中有着重要的作用.
原癌基因产物可作为:
1、生长因子,如sis(PDGF-β),fgf家族(int-2,csf-1等)
2、生长因子受体(质膜):具酪氨酸蛋白激酶活性,如neu,ht,met,erbB,trk,fms,ros-1等。
3、非受体酪氨酸蛋白激酶(质膜/胞质)
如src家族:src,syn,fyn,abl,lck,ros,yes,fes,ret等.
4、丝氨酸/苏氨酸蛋白激酶(胞质):如raf,raf-1,mos,pim-1,
5、G蛋白(质膜内侧),具GTP结合作用和GTP酶活性,如ras家族中的 H-ras,K-ras,N-ras,以及mel和ral等. ,
6.核内DNA结合蛋白(转录因子)
如myc家族,fos家族,Jun家族,ets家族,rel,erb A(类固醇激素受体)
抑癌基因也称为抗癌基因。早在1960s,有人将癌细胞与同种正常成纤维细胞融合,所获杂种细胞的后代只要保留某些正常亲本染色体时就可表现为正常表型,但是随着
染色体的丢失又可重新出现恶变细胞。这一现象表明,正常染色体内可能存在某些抑制肿瘤发生的基因,它们的丢失、突变或失去功能,使激活的癌基因发挥作用而致癌。
抑癌基因的产物是抑制细胞增殖,促进细胞分化,和抑制细胞迁移,因此起负调控作用,通常认为抑癌基因的突变是隐性的。
抑癌基因的产物主要包括(表16-2):①转录调节因子,如Rb、p53;②负调控转录因子,如WT;③周期蛋白依赖性激酶抑制因子(CKI),如p15、p16、p21;④信号通
路的抑制因子,如ras GTP酶活化蛋白(NF-1),磷脂酶(PTEN);⑥DNA修复因子,如BRCA1、BRCA2。⑥与发育和干细胞增殖相关的信号途径组分,如:APC、Axin等。
8.什么是基因敲除,请解释其遗传机制。
答:基因敲除是自80年代末以来发展起来的一种新型分子生物学技术,是通过一定的途径使机体特定的基因失活或缺失的技术。通常意义上的基因敲除主要是应用DNA同源重
组原理,用设计的同源片段替代靶基因片段,从而达到基因敲除的目的。随着基因敲除技术的发展,除了同源重组外,新的原理和技术也逐渐被应用,比较成功的有基因的插
入突变和iRNA,它们同样可以达到基因敲除的目的。
④ 色盲是怎么被发现的
所谓色盲,就是不能辨别色彩,即辨色能力丧失。
根据三原色学说,不能分辨红色者为红色盲,不能分辨绿色者为绿色盲,不能分辨蓝色者为蓝色盲,三种颜色都不能辨认者为全色盲。有人虽然能辨别所有的颜色,但辨认能力迟钝,或经过反复考虑才能辨认出来,这种人即为色弱,指辨别颜色的能力减弱。色盲和色弱是一种先天遗传性疾病,到目前为止还没有有效治疗方法。
色盲又分先天性色盲和后天性色盲,先天性色盲为性连锁遗传,男多于女,双眼视功能正常而辨色力异常。患者常主觉辨色无困难,而在检查时发现。后天性多继发于一些眼底疾病,如某些视神经、视网膜疾病,故又称获得性色盲。单眼色觉障碍见于中央性视网膜变性或视神经病,视觉受累明显,色觉相应受累。双眼色觉障碍也可由药物中毒引起。屈光间质浑浊如角膜白瘢和白内障都可引起辨色力低下。
我国男色盲率:4.71+_0.074%
我国女色盲率:0.67+-0.036%
我国色盲基因携带者的频率 :8.98%
一、光线和物体的颜色
太阳光线是由极其多数的不同波长的电磁波所组成。电磁波波长范围很广,但只有800~400nm(通常是780~380nm)波长的光线,人眼才能看见,因之将这段范围的波长所构成的光谱叫做可视光谱。最简章的实验是将一束太阳光线通过三棱镜,光线就屈折而成一条彩色光带即光谱(spectrum)。它由红、橙、黄、绿、青、蓝、紫七色所组成。其中波长最长的红色光,居于此可视光谱的一端;最短的是紫色光,居于可视光谱的另一端。它们和其它各色光的波长大体如下:
颜色
波长(nm)
红色光
750~630
橙色光
630~600
黄色光
600~570
绿色光
570~490
青色光
490~460
蓝色光
460~430
紫色光
430~380
红和紫色光线以外的部分,实际上也有“光谱”,但人眼不能识辨。人眼可见的可视光谱,它的波长范围,因人而稍有不同,因光强度不同也有所差异。
在光谱中,从红端到紫端中在两个相邻的波长范围中间带(区)尚可见到各种中间颜色,如红与橙之间的叫橙红;绿与黄之间的叫绿黄;蓝与绿之间的叫蓝绿等。人的视觉在辨识波长的变化方面因波长不同而不同,也因光强度不同而不同。在某些光谱部位,只要改变波长1nm,便能看出差别;而在多数部位改变要在数nm以上才能看出其变化。人眼大约可辨识出一百多种不同的颜色。
物体的颜色是由物体的反射光或透过光线的波长而决定的。例如当太阳光(白光)照到物体上,物体表面就反射一部分光线而吸收其它部分,如果反射出来的是红色光线,而吸收了黄、橙、绿、青等色的光线,此时我们就感觉那个物体是红色的。又如反射出来的是绿色光线,就感觉那个物体是绿色的。因为物体反射出来的光线常不是单一波长的光线,所以物体的颜色就非常之多了。
透明物体就有些不些不同了,因透明物体受白光照射时,反射比较少,主要为吸收和透过光线,它们的颜色是由透过光线的波长来决定的如红玻璃主要透过红色光,我们就感觉它是红色的玻璃。
二、颜色视觉的理论
人眼非但能辨识物体的形状、大小,且能辨别各种颜色。这种辨别颜色的能力,叫做颜色视觉,通称色觉。它的理论主要有Young-Helmholtz的三色学说与Hering的四色说。
Young-Helmhotzr 三色说是Young根据红、绿、蓝三种原色适当混合可以产生各种颜色,从而推想视网膜上的有感觉三色的要素,就是感红光的红色要素,感绿光的绿色素和感蓝光的蓝色要素,各种素接受一定颜色的刺激而形成色觉。1860年他又加以补充,认为视网膜上的感色要素,不仅接受一定的颜色刺激,而且多少也能接受它种颜色的刺激。如此不难了解三种要素中缺乏一种要素时的色觉情况:如缺少红色要素者不能感受红色光线,但此红色光线也能刺激绿色和蓝色要素,因而此人会将红色误认为是它色,但此人所感觉的绿色也并非正常人所感觉的绿色,因为绿色光线除刺激绿色要素外,也刺激红色和蓝色要素,而此人缺乏红色要素,故其所感觉的绿色,也就和正常人所感觉的绿色不同了。这就不难理解红色盲者何以难于正确辨认绿色,绿色盲者也难于正确地辨认红色了。所以通常把红色盲与绿色盲混称为“红绿色盲”。当然红色盲或绿色盲者对于蓝色也多少难于正确辨认。此三色说最初是臆说,但经近年来各学者的研究,渐渐形成了有解剖、组织、生理学等根据的理论了。
人类视网膜有两种视细胞,即杆体细胞和锥体细胞。前者在暗光下作用,司所谓暗视觉;后者在明亮光线下作用,司明视觉,而且还能辨别颜色。杆细胞分布于视网膜中心窝以外部分,约有1亿多个,愈至周边数目愈多,真正中心小凹处无杆体细胞。锥体细胞约有600多万个,主要分布于视网膜视物最敏锐的黄斑部,愈至中心数目愈多,真正中心小凹处只有锥体细胞而无杆体细胞。视网膜各个区域因视细胞分布不同,对颜色感受性也各不相同。正常色觉者视网膜中央部能分辨各种颜色,其外围部分颜色力就逐渐减弱以至消失。
据实验报道,杆体细胞外节段中有视紫红质(rodopsin),它的光谱吸收曲线与暗视觉的视力敏度完全致。这就说明了人眼暗视觉的感光物质(色素)就是视紫红质,它对385-670nm波长的光线皆能被漂白,而对502nm波长的光线最为敏感。
锥体细胞的感光物质也存在于外节段中。Wald(1937)在鸡视网膜内提出一种视紫质(iodopsin)对560nm光波最敏感。又Wald、Brown和Macnichol等实验证明,视网膜中有一种锥体细胞对红色有最大敏感性,一种对绿色有最大敏感性和一种对蓝色最敏感。富田等人用微电极记录鱼类的单个锥体细胞的电反应,发现红锥体细胞对611nm、绿锥体细胞对529nm和蓝锥体细胞对462nm的光发生反应。Marks测定灵长类动物视网膜也有三种锥体细胞。Rushton等也发现有红、绿锥体细胞的不同光谱吸收曲线。我国的刘育民等对不同动物视网膜的感光物质测定结果,都证实在锥体细胞的外节段存在上述三种感觉物质。以上许多学者的实验者有力地支持三色说学说。
Hrting四色说,是Hrting(1878)所创立的。它假定视网膜中有三对视色素物质,即红视素-绿色素物质、黄视素-蓝视素物质,和黑视素-白视素物质。这三对视素物质受光刺激后发生分解(dissimlation)与合成(assimilation)作用,就形成颜色感觉与非彩色的黑白感觉。
以上两种学说,长期以来虽说是并存的,但以三色说占优势,因为它对三原色混合解释地比较完善,所以得到数学者的支持。
近代根据Svaetichin与Devaloes等在研究灵长类和鱼类动物视网膜和视神经传导通路的实验中,发现有一类细胞对光谱全部波长的光线都起反应,而对波长575nm一带的反应最强。根据这个实验,认为这类细胞是司明视觉的,而另一类细胞(视网膜深层细胞即双极细胞和神经节细胞)和外侧膝状体核细胞,对红光发生正电位反应,对绿光发生负电位反应;还有的细胞对黄光发生正电位反应,对蓝光发生负电位反应。因此推想在神经系统中可发生三种反应,即①光反应,红-绿反应和③黄-蓝反应。后两对反应,红+绿-(红兴奋绿抑制)与黄+蓝-(黄兴奋蓝抑制),这四种兴奋与抑制的对立反应,恰好符合Hering的四种感色视素物质,给四色说找到了实验根据。近代学者们综合上述两种学说,设想颜色视觉的过程可以分为两个阶段(第二阶段,也是信息加工阶段):
第一阶段:视网膜中有三种独立感色物质(色素)或三种锥体细胞,各有选择地吸收光谱各色光的作用,同时又产生黑白反应:即在强光下产生白反应;在无光刺激时,产生黑反应。
第二阶段:在锥体感受器向视中枢传导过程中又重新组合(即信息加工),最后形成三对对立的神经反应,即红-绿、黄-蓝和黑-白反应传入视中枢,产生红、绿、黄、蓝的各种颜色和黑白的感觉。这就是近代所谓阶段学说的理论,即符合Young-Helmholtz三色说,也符合Hering四色说。
三、色盲与色弱
色觉正常者,在明处能辨别太阳光谱的红、橙、黄、绿、青、蓝、紫多种色调以至宇宙间万紫千红的色彩。而色觉异常者,对于这些色调,就或多或少不能感觉,这叫色觉异常(色觉障碍),习惯上称做“色盲”。色盲可分先天性色盲与后天性色盲。
先天性色盲与后天性色盲两者的不同于前者是一种遗传性眼病,妈在人出生后就具有这种眼病。而后者是原来正常色觉的人,因为患某些眼底疾病,如急、慢性视神经炎、视神经萎缩或黄斑病变、青光眼等眼病所引起的,所以患者除了有色觉障碍外,还伴有视力障碍及中心暗点,而且这种色觉异常也常常是一时性的,就是在疾病过程中呈现的暂时性色盲,一旦疾病痊愈,视力恢复,中心暗点消失,则色觉障碍也随之消失。
一色视(rodmonochromat):先天性完全色盲不能辨别颜色,看物体只有黑、白和灰色的感觉,似正常人看黑白照片、黑白电视那样。称为全色盲,此类色盲又分为杆体一色视(rodmonochromat)与锥体一色视两型,在人群中10万~20万人中才有一例,极少见。
二色视(dichromatism):为不全色盲或部分色盲。他们除不能辨识某些颜色外与正常人一样,视力良好。其中又可分为红色盲、绿色盲与紫色盲(青黄色盲)。
红色盲不能看见光谱中的红色光线,在他们看来,光谱中的红色端缺了一段,光谱就缩短了一段,只能见由黄至蓝色段,而且光谱的亮度也和正常人所见不同:正常人所见最亮的是在黄色部分(波长约在589nm),红色盲所见光谱中最亮的部分是在黄绿部分,又在光谱中见有一个非彩色的部位(“中心点”),位置约在波长490nm处。
红色盲者看颜色的主要错误是对淡红色与深绿色诸色,青蓝色与绛色(紫红色,此色是光谱上所没有的)、紫色不能分辨,而最容易混淆的是红与深绿、蓝与紫。
绿色盲看光谱并不像红色盲那样缩短一段,但光谱中最亮部位在橙色部分,中心点约在波长500nm处。全部光谱呈淡黄色、灰色和蓝色。绿色盲不能分辨淡绿与深红,紫与青。绛色与青色虽不混淆,但对绛色与灰色则造成混乱。
紫色盲又称青黄色盲,在二色视中极为罕见,他们看光谱在紫色端有些缩短。光谱上最亮部分在黄色部分,且光谱上有两上中心点:一个在黄色部位(波长约是580nm),另一个在蓝色部位(波长470nm)。他们似乎只有红与青两种色调,对于黄绿与蓝绿色,绛色与橙色都不能分辨。
三色视(anomaolus trchromatism):又分红色弱、绿色弱、紫色弱(或青黄色弱),他们是色觉障碍中最轻型的。
附:正常人、红色盲、绿色盲所见光谱。
⑤ 俯冲轰炸机的“黑视”现象是什么
当飞行员在飞行中受到比较大的正加速度作用时,眼睛会感到发黑,看东西模模糊糊,甚至什么也看不见,这就是黑视。黑视也是晕厥的先兆,对飞行安全危害较大。据统计,发现引起黑视的加速度,最低值是2.9G,最高值达9.1G,大多数人在5G左右。
部分或暂时丧失意识或视觉。在航空航天活动中,人体在正加速度的影响下,血液受惯性力作用而向下半身流动,头部血压下降,因而发生视觉模糊。正加速度若继续增大,则周边视觉消失,视野缩小,发生灰视。加速度若再继续增大,则中心视觉消失,两眼发黑,这就是黑视。一旦正加速度环境消失,飞行员或航天员意识和视觉会很快恢复正常。
⑥ 生物竞赛历届试题
生物试题
一.单选题(本大题共40小题,每小题1.5分,共60分)
1.神经元接受刺激后产生兴奋并传导兴奋过程中,发生了机械刺激(或其它刺激)转变为电信号、电信号转变成化学信号和化学信号转变为电信号等变化,上述这些转变依次发生在:
A.突触小体、突触前膜、突触后膜 B.刺激部位、突触前膜、突触后膜
C.刺激部位、突触小体、突触后膜 D.刺激部位、突触间隙、突触后
2. 下列四个图中,能正确反映生长素浓度与芽位置关系的是:
3. 红眼(R)雌果蝇和白眼(r)雄果蝇交配,F1代表全是红眼,自交所得的F2代中红眼雌果蝇121头,红眼雄果蝇60头,白眼雌果蝇0头,白眼雄果蝇59头,则F2代卵中具有R和r及精子中具有R和r的比例是:
A.卵细胞:R:r=1:1 精子:R:r=3:1 B.卵细胞:R:r=3:1 精子:R:r=3:1
C.卵细胞:R:r=1:1精子:R:r=1:1D.卵细胞:R:r=3:1 精子:R:r=1:1
4. 一种植物的叶落入潮湿的土壤后,可发育成一株完整的幼苗,这一过程涉及
①呼吸作用、光合作用、激素调控 ②细胞分裂、脱分化、再分化、组织器官形成
③DNA的复制、转录、蛋白质的合成 ④等位基因的分离、非等位基因的自由组合
A.①②③ B.①③④ C. ②④ D.①③
5已知某一动物种群中仅有Aabb和AAbb两种类型个体,Aabb:AAbb=1:2,且该种群中雌雄个体比例为1:1,个体间可以自由交配,则该种群自由交配产生的子代中能稳定遗传的个体比例为
A.5/8 B.5/9 C.13/16 D.13/18
6.某种鼠中,毛的黄色基因 Y 对灰色基因 y 为显性,短尾基因 T 对长尾基因 t 为显性,且基因 Y 或 T 在纯合时都能使胚胎致死,这两对基因是自由组合的。现有两只黄色短尾鼠交配,它们所生后代的表现型比例为
A.9∶3∶3∶1 B.4∶2∶2∶1 C.3∶3∶1∶1 D.1∶1∶1∶1
7.下图为人体细胞的分裂、分化、衰老和死亡过程的示意图,图中①—⑥为各个时期的细胞,a-c表示细胞所进行的生理过程。据图分析,下列叙述正确的是
A.与①相比,②的表面积与体积的比值增大,与外界环境进行物质交换的能力增强
B.⑤与⑥细胞内的基因容易发生突变
C.⑤⑥细胞内遗传信息的流动方向为:DNA→RNA→蛋白质
D.细胞衰老与死亡会引起人体的衰老与死亡
8.WNK4基因部分碱基序列及其编码蛋白质的部分氨基酸序列示意图。已知WNK4基因发生一种突变,导致1169位赖氨酸变为谷氨酸。该基因发生的突变是
A.①处插入碱基对G-C B.②处碱基对A-T替换为G-C
C.③处缺失碱基对A-T D.④处碱基对G-C替换为A-T
9.下列生理活动与生物膜无关的是
A、叶肉细胞中水在光照下分解 B、唾液腺细胞分泌唾液淀粉酶
C、tRNA携带氨基酸进入核糖体 D、突触小体释放递质到突触间隙
10. 肺炎双球菌具有荚膜的S型菌株和不具有荚膜的R型菌株。艾弗里将S型菌株加热杀死后,分别提取其中的蛋白质、DNA和荚膜多糖等成分,再分别与活R型菌株混合后倒平板。上述实验最可能出现下列哪种现象,使艾弗里发现DNA是遗传物质?
A.与DNA混合后所倒的平板出现的菌落全部是具有荚膜的
B.与蛋白质混合后所倒的平板出现的菌落全部都不具有荚膜
C.比较各种混合后所倒的平板,与DNA混合的那一组出现具有荚膜的菌落的比例大
D.除了与DNA混合那一组外,其余各组都没有出现具有荚膜的菌株
11. 下列关于人类遗传病的叙述,错误的是
①一个家族仅一代人中出现过的疾病不是遗传病 ②一个家族几代人中都出现过的疾病是遗传病 ③携带遗传病基因的个体会患遗传病 ④不携带遗传病基因的个体不会患遗传病
A.①② B.③④ C.①②③ D.①②③④
12. 植物激素中的赤霉素与生长素都能促进茎杆伸长,两者促进植物生长及关系可用下图表示,请据图中信息和相关知识分析下列说法错误的是
A.赤霉素和生长素都是植物细胞内合成的微量有机物
B.赤霉素促进茎杆伸长是通过提高生长素的含量而实现的
C.图中赤霉素对①过程是促进,而对②过程是抑制
D.赤霉素与生长素在植物体内表现为协同作用,因此他们的化学成分应该是相同的
13. 某肠痉挛截瘫患者在炎热环境中服用阿托品后,出现发热副作用,将其转移至凉爽环境后,未做出其他处理,体温自行恢复正常,该患者最可能发热的原因是:
A.散热中枢功能障碍 B.产热中枢功能障碍
C.发汗功能障碍 D.下丘脑体温调节功能障碍
14.乙肝疫苗的接种需在一定时期内间隔注射三次,其目的是
A.使机体积累更多数量的疫苗
B.使机体产生更多种类的淋巴细胞
C.使机体产生更多数量的抗体和淋巴细胞
D.使机体产生更强的非特异性免疫
15. 如图表示枪乌贼离体神经纤维在Na+浓度不同的两种海水中受刺激后的膜电位变化情况。下列描述错误的是
A。曲线a代表正常海水中膜电位的变化
B。两种海水中神经纤维的静息电位相同
C。低Na+海水中神经纤维静息时,膜内Na+浓度高于膜外
D。正常海水中神经纤维受刺激时,膜外Na+浓度高于膜内
16.近年来在疫苗家族中增加了第三代疫苗—DNA疫苗,它们是由病原微生物中的一段表达抗原的基因制成,这段基因编码的产物仅仅引起机体的免疫反应。以下关于DNA疫苗的叙述正确的是
A.能引起特异性免疫反应是因为DNA疫苗具有抗原决定簇
B.DNA疫苗引起免疫反应前必须经过转录和翻译的过程
C.DNA疫苗导入人体后效应B细胞分化为记忆细胞
D.接种后若感染此病原微生物则体内记忆细胞会产生大量抗体
17. 如图的纵坐标表示甲乙个体的对数的比,虚线表示甲乙个体的对数的比相等,则
A.甲种群与乙种群为捕食关系, 甲种群依赖于乙种群
B.甲种群与乙种群为竞争关系,竞争程度由强到弱
C.乙为S型增长,其增长受本身密度制约
D.乙为J型增长,始终受到甲种群的制约
18.下列属于特异性免疫的一组是( )
A.白细胞的吞噬作用和接种卡介苗
B.种牛痘预防天花与皮肤的屏障作用
C.患过麻疹的人不再患麻疹和注射百日咳针后不再患百日咳
D.溶菌酶的杀菌作用与服用小儿麻痹预防糖丸
19. 、图Ⅰ是某组织局部结构模式图。图Ⅱ是人体甲状腺激素分泌的分级调节示意图,甲、乙、丙分别代表腺体名称, X、Y代表激素名称。下列叙述正确的是:
A.图Ⅰ中,组织液中的氧气进入组织细胞被线粒体利用,需至少穿过6层磷脂分子层。
B.图Ⅰ中B液渗透压的大小差异与无机盐、 血糖的含量有关。
C.图Ⅱ中甲和乙所代表的结构名称分别是下丘脑和腺垂体,激素Y的名称是促甲状腺激素
D.图Ⅱ中①②③④四个过程,具有抑制作用的是②③ ④.
20.下列三种生物学现象:①给小白鼠注射一定量的胰岛素后,小白鼠休克;②当细菌进入人体后,机体产生特异性的抗体与之结合,从而抑制细菌繁殖;③小猪听到主人“噜噜”叫声就奔向主人。产生的机理依次属于( )
A.体液调节、免疫调节、反射 B.反射、细胞免疫、激素调节
C.体液调节、过敏反应、反射 D.反射、自身免疫、体液调节
21.下列决定动物种群增长的参数中,最重要的是( )
A.出生率和食物供应 B.死亡率和迁移
C.死亡率和种群占据的地域面积 D.出生率和死亡率
22.冬虫夏草是一味名贵中药。虫草的幼虫在土壤中越冬时,被虫草属真菌侵入体内,虫体内部组织被破坏,菌丝充满虫体成为菌核,夏季菌核萌发,长出具柄的子座,似直立小草。这种真菌与幼虫的关系属于( )
A.共生 B.寄生 C.竞争 D.捕食
23.在下列的四个种群年龄分布类型中,哪一类型种群灭绝的可能性最大
A B C D
24.在森林中雀鸟总爱在上层采食,柳莺 却爱在中层筑巢,只有血雉喜欢寻觅底层的昆虫与苔藓,这种现象从生物群落的结构上看属于( )
A.垂直分布 B.水平分布 C.结构的分区 D.结构的组成
25.群落不断发展变化,按照一定的规律进行着演替。下列关于演替的叙述,正确的是( )
A.初(原)生演替历程短.速度慢
B.在正常情况下,群落演替的最终结果使生物多样性降低
C.在演替早期,群落中的优势种群的基因频率发生显着变化
D.在森林遭受火灾后的地段上重新形成森林,是次生演替的一个例子
26.某人血液中甲状腺激素浓度过高时会引起线粒体原有功能的改变,即虽然进行有机物的氧化及电子传递但无ATP生成。根据这一事实,可以预料此人
A. 食量小,耗氧量低,肥胖,皮肤温度比正常人高
B. 食量大,耗氧量高,消瘦,皮肤温度比正常人低
C. 食量小,耗氧量高,肥胖,皮肤温度比正常人高
D. 食量大,耗氧量高,消瘦,皮肤温度比正常人高
27.激素、二氧化碳、组织胺都可对动物生理活动进行调节,其调节过程中最根本的相同点是
A. 都是化学物质 B. 都是细胞产生的
C. 都通过体液的传送 D. 都能促进机体的生理活动
28.右下图为反射弧结构示意图,下列有关说法不正确的是
A.由ABCDE组成了一个完整的反射弧
B.若从③处剪断神经纤维,刺激①处,效应器仍能产生反应
C.图中②的结构决定了神经元之间的兴奋传递只能是单向的
D.若从①处剪断神经纤维,刺激③处,效应器仍能产生反应
29.可以成为人体第三道防线的结构或物质是
①骨髓 ②扁桃体 ③淋巴细胞 ④抗体 ⑤红细胞 ⑥吞噬细胞 ⑦抗原决定簇
A.①③④⑤⑥ B.③④⑥⑦ C.①②③④⑥ D.①③⑤⑥
30.关于过敏反应的叙述正确的是( )
A.是机体再次受到相同物质的刺激时发生的反应
B.是机体首次受到一种物质刺激时就可以发生的反应
C.凡发生过敏反应的人,对过敏原都可发生反应
D.过敏反应能够使组织细胞发生结构破坏
31.如图所示,如果茎a侧生长素在B点以下的浓度范围内,下列对b侧生长素浓度范围的描述哪项较为准确?( )
A.在OA段范围内 B.在BC段范围内
C.在BD段范围内 D.在BA段范围内
32.下列关于兴奋沿神经纤维向前传导的叙述中,正确的是( )
A.膜内电流由非兴奋部位流向兴奋部位 B.膜外电流由兴奋部位流向非兴奋部位
C.神经纤维在未受到刺激时,膜内为负电荷
D.兴奋在细胞间的传导方向是树突→另一个神经元的轴突和细胞体
33.下列关于正常人体内环境稳态的调节,前者随后者变化的情况与右图走势不相符的是
A.抗利尿激素分泌量--饮水量
B.T细胞浓度--HIV浓度
C.胰岛素浓度--血糖浓度
D.促甲状腺激素浓度--甲状腺激素浓度
34.人们常用人工合成的生长素类似物作为小麦田双子叶植物除草剂,其原理是( )
A.尖端优势 B.不同植物对生长素的敏感度不同
C.生长素对小麦无害 D.生长素对双子叶植物有害
35.与激素调节相比,高等动物神经调节的特点是 ( )
①调节速度快 ②调节速度慢 ③作用的范围广泛
④作用的部位准确 ⑤作用的时间短 ⑥作用的时间比较长
A.①③⑤ B.②④⑥ C.①③⑥ D.①④⑤
36.关于体液免疫的叙述正确的是( )
A.有的抗原可以直接刺激B淋巴细胞,产生浆细胞 B.抗体是由B淋巴细胞分泌的
C.抗体一般可以直接杀死入侵的病毒
D.记忆B细胞经迅速增殖分化,可形成大量的B细胞
37、下列各组化合物中,全是内环境成分的一组是( )
A.CO2、血红蛋白、H+、尿素 B.呼吸氧化酶、抗体、激素、H2O
C.Na+、O2、葡萄糖、血浆蛋白 D.Ca2+、载体、氨基酸
38.在一起交通事故中,某人大脑受伤,不能说话但能听懂别人的话。那么受损的部位是大脑皮层的 ( )
A.W区(书写性语言中枢) B.V区(视觉性语言中枢)
C.S区(运动性语言中枢) D.H区(听觉性语言中枢)
39风湿性关节炎、风湿性心脏病、系统性红斑狼疮等一类疾病是( )
A.病原体感染机体而引发的疾病,有传染性
B.机体免疫功能不足或缺乏而引起的疾病,无传染性
C.人体免疫系统对自身的组织和器官造成损伤而引发的疾病
D.已免疫的机体再次接受相同物质的刺激而引发的过敏发应
40.按下表设计进行实验。分组后,在相同的适宜条件下培养8-10小时,并对实验结果进行分析下列叙述正确的是
A.甲组不产生CO2而乙组产生 B.甲组的酒精产量与丙组相同
C.定制能量转换率与丙组相同 D.丁组的氧气消耗量大于乙组
二、非选择题
41.(9分)动作电位的产生与细胞膜离子通透性的变化直接相关。细胞膜对离子通透性的高低可以用电导(g)表示,电导大,离子通透性高,电导小,离子通透性低。右
图表示神经细胞接受刺激产生动作电位过程中,细胞膜对Na+和K+的通透性及膜电位的变化(gNa+、gK+分别表示Na+、K+的电导)。
请据图回答问题。
(1)细胞膜对离子通透性大小的控制是通过控制细胞膜上的 来实现的。在动作电位的产生过程中,细胞内ADP的含量会 。
(2)静息状态下神经细胞膜电位的特点是 。
(3)接受刺激时,细胞膜对Na+、K+的通透性分别发生了怎样的变化?
(4)根据该过程中膜电位的变化和离子通透性的变化可以推测,动作电位的产生主要是由哪种离子如何变化造成的? 。
42.(8分)右图为某种群在不同环境中的增长曲线,请回答
(1)如果种群呈a曲线增长,说明种群处在__________________ _______的环境中,称为___________曲线增长。用达尔文进化观点分析,这是生物具有_____________________的特性。
(2)如果种群呈b曲线增长,说明该种群处在_____________________________的环境中,称为____________曲线增长,用达尔文进化的观点分析,图中阴影部分表示_______________ _________)
43.为了更好的揭示人体生理功能的调节机制,可用猴进行科学实验(如下图)。请回答下列问题: (1)实验猴右手指受到电刺激时,会产生缩手反应。在此反射的反射弧中,神经冲动是____ 向传递的。头部电极刺激大脑皮层某区域引起猴右手运动,其兴奋传递过程是:中枢兴奋——传出神经兴奋——神经末梢释放——____——____——后膜电位变化——右手部肌肉收缩。
若某动物离体神经纤维在两端同时受到刺激,产生两个同等强度的神经冲动,两冲动传导至中点并相遇后会_____。
(2)试验猴受到寒冷刺激,皮肤温度传感器兴奋,经传入神经引起____兴奋,导致____分泌增加,机体产热增多以维持体温稳定。此调节方式为_____。
(3)试验猴对屏幕上呈现的某些影像会产生明显的应激反应。在受到多次此类影像刺激后,猴出现应激性高血糖症。长生这一结果的直接原因是____分泌减少 分泌增加导致了糖代谢异常。
(4)猴大脑皮层下的某区域出现病理性损伤后,表现为日排尿量异常增多、饮水剧增。推测脑内____区域被损伤,引起了_____缺乏。
44.(10分)赤霉素广泛存在于高等植物体内。某一研究小组欲验证赤霉素的某一生理功能,请你帮助完成设计方案。
实验材料:一定浓度的赤霉素溶液、表面未经消毒的辣椒种子200粒、蒸馏水、脱脂棉、培养皿、恒温培养箱、消毒液等。
①实验原理:___________________________________________________________。
②填写简单实验程序:
并编号→浸种、 →分装设置→恒温、催芽→观察记录
③下表是实验记录:
第4天 第6天 第8天 第10天 第12天 第14天 第16天
A:实验组 10% 50% 80% 97% 97% 97% 97%
B:对照组 0 10% 50% 70% 80% 90% 97%
请根据表中实验所得数据和已学习的知识分析说明A、B两组数据不同的各自原因:A组种子:__ _ 。
B组种子: 。
高二生物竞赛答案
1CBDAD 6BCBCC,11DCCCC,16BCCCA,21DBDAD,26DCBCA,31CCCBD,36ABCAD
41:
(1)离子通道(载体蛋白) 增加
(2)外正内负
(3)对Na+的通透性迅速增加,并且增加的幅度较大;对k+的通透性增加较慢,并且增加的幅度较小。
(4)Na+通过细胞膜快速内流。
42(1)食物和空间条件充裕、气候适宜、没有敌害等理想条件) “J” 、 过度繁殖能力
(2)食物和空间有限 、“S” 、生存斗争中不适者被淘汰的个体
43:(1)单 神经递质(或乙酰胆碱) 与受体结合 停止传导(或消失,抵消)
(2)下丘脑体温调节中枢 甲状腺激素(或甲状腺激素与肾上腺素) 神经—体液
(3)胰岛素 和胰高血糖素
(4)下丘脑或垂体 抗利尿激素(或ADH)
44. (10分)①一定浓度的赤霉素能促进种子萌发
44. (10分)①一定浓度的赤霉素能促进种子萌发
② 分组 消毒
③A组种子:在赤霉素溶液作用下,辣椒种子提前开始萌发,并提前完成萌发
B组种子:自身产生赤霉素,开始萌发较晚,结束萌发时间显着延长
⑦ 回光返照的生物生理学原理是什么
很惭愧,我曾经见到过这方面问题的解说,可惜忘了。我好象记得:因为人(包括某类动物)在濒临死亡前,身体内会“释放出”大量的象肾上腺素等或某些有关物质,这样就会使在昏迷中的病人醒来,使濒死状态的人“神智”变得清醒些,甚至有可能出现“即将痊愈的”假象。但是由于濒死状态下的病人的很多器官已经衰竭,“应有”的正常功能无法恢复到正常的状态,而在“清醒状态”下的肌体更需要“健全”的器官来维持生命中的各项功能,这样无疑就更增加了器官(脏器)的负担。所以当这个“回光返照”的现象过去之后,人就进入死亡状态而再也无法“恢复”了。至于说这个“回光返照”的状态所能“维持”的时间,那是不一定的,有的时间比较长些(可能会有一天左右),有的可能只有几分钟的时间。
看到你的补充,我也来补充一句:人的“回光返照”现象,和油灯的“残灯复明”现象,看起来似乎很相象,但是原因却完全不同的;人的“原因”,上面我已经说了,而油灯的情况就不是这个“原理”了,那是因为原来油灯的灯芯在油里,而油对灯芯还油一个“冷却”的作用(燃烧的“三要素”为必须具备可燃物、氧气、温度,缺一不可),所以在油灯“正常点亮”时,由于油对灯芯的冷却作用而不会使灯芯“烧毁”;但是到了没有油的时候,由于失去了油对灯芯的冷却,使灯芯的温度很快升高,这样灯芯就在氧气的作用下很快燃烧,发出比较亮的光来(可能比正常点亮时还要亮些),之后灯也就灭了,这就是“油干灯草尽”的道理。
⑧ 什么是生理现象
生理现象即个体受到外界刺激而使机体有所反应的一种紧张状态。生理就是正常的机能反应,如沙子飞到眼里会不自主闭眼属于正常的反应。病理反应就是不正常的反应的状态。
人类睡眠就是人类不可缺少的一种生理现象。人的一生中,睡眠占了近1/3的时间,它的质量好坏与人体健康与否有密切关系,由此可见睡眠对每一个人是多么重要。
(8)1发生黑视现象的生物学机理是什么扩展阅读
相关生理现象:
1、黑视:
因头部缺血而造成,因此大多数黑视现象是在超重情况下发生。在最低点处最为严重。
2、泪:
在眼球外上方有泪腺,分泌出来的液体就是泪。泪的主要成分是血液中的水份。水从泪腺中排出后,进入位于结膜内的泪囊。然后再排入泪管。
3、窒息:
人体的呼吸过程由于某种原因受阻或异常,所产生的全身各器官组织缺氧,二氧化碳潴留而引起的组织细胞代谢障碍、功能紊乱和形态结构损伤的病理状态称为窒息。
4、高原现象:
练习成绩的并非直线式地上升,有时会出现暂时停顿的现象,这种现象就叫“高原现象”。
⑨ 具有夜视能力的动物有那些
丢失的基因帮助早期哺乳动物夜间生存?
研究者发现使人类细胞能感受光的一个基因丢失了。他们说像鸟、鱼、和两栖动物等一些动物有两种这样光感受器,然而包括人类在内的哺乳动物只有一种。这些发现发表在科学公共图书杂志上。生物学揭示了和其他脊椎动物相比,我们对光环境的体验如何可能被竭尽,这和早期哺乳动物曾经一度完全是夜间活动生物的现象吻合。“传统的观点认为眼睛是通过位于视网膜的称柱状细胞和锥体细胞的光感受细胞来视物的” 在曼彻斯特大学领导这项研究的Dr Jim Bellingham博士解释道,“但是,目前,第三种光感受器被发现了,它被一个叫黑视蛋白的基因激活。黑视蛋白光感受器与视力无关,但利用光线进行非视觉过程,例如调节我们的日夜节律和瞳孔收缩。”尽管黑视蛋白基因存在于所有脊椎动物中,但存在于哺乳动物里的与鱼、两栖动物和鸟类的版本通常不一样。“起初,我们认为哺乳动物与其他脊椎动物之间这个基因的变异是进化不同所致,” 在生命科学学院工作的Bellingham博士说,“但是我们现在认识到其他脊椎动物有另外一种黑视蛋白基因和在早期哺乳动物和人类发现的黑视蛋白基因相对应。这个首次在其他脊椎动物发现的黑视蛋白不存在于哺乳动物中。”这两种黑视蛋白功能如何不同尚未清楚,但有不同的锥体基因或视蛋白帮助脊椎动物去探测到不同波长的光和识别颜色。曼彻斯特团队现在希望发现这两种黑视蛋白基因在非哺乳动物的非视觉光线探测方面起类似还是不同作用,从而为只有一种黑视蛋白的关联提供线索。这两个基因及他们相关的蛋白已经在脊椎动物中维持了成千上万年,当中只有一种在哺乳动物中丢失了。“我们强烈渴望发现为什么这会发生,或许早期的哺乳动物在某个时期是夜出的而并不需要第二个基因。我们同时也想知道丧失其中一个基因对于人类来说意味着什么。”
⑩ 生物学角度的机理
生物学(Biology)是自然科学的一个门类。研究生物的结构、功能、发生和发展的规律。以及生物与周围环境的关系等的科学。生物学源自博物学,经历了实验生物学、分子生物学而进入了系统生物学时期。生物学这名词最早由法国博物学家拉马克于1802年提出。近年来在分子生物学进展跃进下,以核酸为物种间的共同语言,探讨范围除生物体本身,更包括生物体和环境,心理学等等领域,成为一门综合性的科学。