‘壹’ 如何判断两个基因是连锁遗传还是自由组合
判断如下:
1、F1自交,如果后代出现了四种表现型,并且比例为9∶3∶3∶1,那么可以判断这两对等位基因分别位于两对同源染色体上,其遗传遵循自由组合定律。
2、F1测交,如果测交后代出现四种表现型,且比例为1∶1∶1∶1,那么可以知道这两对基因分别位于两对不同的同源染色体上,它们遵循自由定律。
当具有两对(或更多对)相对性状的亲本进行杂交,在子一代产生配子时,在等位基因分离的同时,非同源染色体上的基因表现为自由组合。
(1)生物中的连锁怎么测交扩展阅读:
关于自由组合定律:
一、发生时期:减数第一次分裂后期。
二、适用范围:不连锁基因。对于除此以外的完全连锁、部分连锁以及所谓假连锁基因,遵循连锁互换规律。
三、适用条件:
1、有性生殖生物的性状遗传。
2、真核生物的性状遗传。
3、细胞核遗传。
4、两对或多对性状遗传。
5、控制两对或两对以上相对性状的等位基因位于不同对的同源染色体上。
‘贰’ 高中生物基因连锁问题AaBb,不是9331
连锁你懂?
9331是指一条染色体就一个基因这样算出来的。
连锁以后,连锁的两个基因永远在一条染色体上。你再按9331的做法做做看。
自由组合就是AaBb与AaBb杂交,测交是AaBb与aabb交。
‘叁’ 连锁群同一条基因怎么看连锁还是独立
首先选用具有这两对基因控制的相对性状(前题是这两对基因分别控制两对相对性状)的生物个体(纯合体)进行杂交,得到F1。例如AABB×aabb,F1为AaBb。然后可以用两种方法进行判断:
(1)F1自交,如果后代出现了四种表现型,并且比例为9∶3∶3∶1,那么可以判断这两对等位基因分别位于两对同源染色体上,其遗传遵循自由组合定律。分析:因为Aa、Bb分别位于两对同源染色体上,则AaBb可以产生四种配子,即AB∶Ab∶aB∶ab=1∶1∶1∶1,雌雄配子随机结合,子代会出现A-B-∶A-bb∶aaB-∶aabb=9∶3∶3∶1。
如果后代不是这样的结果,可以知道这两对等位基因位于同一对同源染色体上,遵循连锁遗传定律。设A与B在一条染色体上,a与b在一条染色体上。又有两种情况:一种是不发生交叉互换,那么AaBb只产生两种配子,即AB∶ab=1∶1,雌雄配子随机结合,子代会出现A-B-∶Aaabb=3∶1,这种情况属于完全连锁。一种情况是发生交叉互换,那么AaBb会产生四种配子,即AB、Ab、aB、ab,其中AB、ab占多数,Ab、aB占少数,这样随着雌雄配子的随机结合,后代也会出现四种表现型,但表现为A-B-与aabb性状的占多数,A-bb与aaB-的性状占少数。这种情况属于不完全连锁。
(2)F1测交。根本(1)的分析,可以顺利推知,如果测交后代出现四种表现型,且比例为1∶1∶1∶1,那么可以知道这两对基因分别位于两对不同的同源染色体上,它们遵循自由定律。如果测交后代出现两种表现型,那么可以知道这两对基因位于同一对同源染色体上,为完全连锁。如果测交后代出现四种表现型,但与亲本性状相同的个体占多数,重组类型的个体占少数,为不完全连锁。
‘肆’ 生物中的 正交 测交 反交 是什么意思
自交:同一植物体有性交配、
杂交:不同植物或动物有性交配、
测交:F1或其他生物体与隐形纯和个体交配、
正交:自由定义
反交:将以上正交的父方和母方交换
自交:雌雄同体的植物自己的和自己受精。
杂交:让2种不同品种但染色体数相同的植物或动物交配。
测交:用有关基因全为隐性纯合体的个体与F1进行的杂交。测交则是对基因组成的推断是否正确的一种检验形式,它是在明确目的要求下使用隐性纯合体进行的杂交,所以试验的意义是不同的。在两因子杂种时,2组基因是连锁,还是独立的,从F2的分离比可以估算,但为了进一步验证,所以要进行测交试验。因为从隐性纯合个体与F1杂交产生后代的表现型能反映出F1配子的基因型的种类及其比率。
正交:人们习惯将外来品种 ( 如约克夏猪等 ) 公猪与当地品种 ( 如金华猪等 ) 母猪杂交 , 称为正交。
反交:将本地品种公猪与外来品种母猪杂交称为反交。
正交与反交的结果往往不间 , 一般杂种后代在某些性状上更趋向于母本品种 , 这是由于母体效应造成的。
‘伍’ 生物遗传学连锁与交换问题
因为和隐性个体测交,所以得到的表现型就是产生的配子类型。
即AaBbCc产生的配子:abc211 ABC209 aBc212 AbC208
可以看出比例是 : 1 : 1 : 1 : 1(数量巨大,需进行适度忽略)
其实到这一步就可以看出,根本没有发生连锁换,因为无论如何计算,重组值也是50%——由定义得重组值必定低于50%,而达到50就可认为满足自由组合定律。即不发生连锁互换。
如果不满意,我们可以进行猜测,发现AC(ac)总在一起,即AC连锁,并没有发现Ac或aC,那么就没有互换。B是在另一条染色体上,与连锁互换无关。
解决此类问题的方法是,先找到表现型特别少的个体,一般情况下,其他几种都是3位数,而有两种只有个位数,那么这两种特别少的就是产生交换的。
重组值=重组型配子数/总配子数
‘陆’ 生物竞赛中基因连锁与互换的题怎么做有啥规律没特别是双交换的,谢谢!!!
给你一些材料,好好看看,希望对你有帮助
(七)、基因的连锁和互换及基因定位
引言:前面我们学了豌豆的杂交,现在我们来温习一下,它的二对等位基因的自由组合遗传。黄色圆粒X绿色皱粒→黄色圆粒测交→1黄色圆粒:1黄色皱粒:1绿色圆粒:1绿色皱粒
2.完全连锁的发现。美国科学家摩尔根,用果蝇做杂交实验:纯种的灰身长翅与黑身残翅杂交, F1代为灰身长翅,所以,灰身长翅为显性,黑身残翅为隐性,对 F1代中的雄性个体测交,测交后代的表现型是1灰身长翅:1黑身残翅,与F1代完全相同。(遗传图式)
比较豌豆的测交与果蝇测交的遗传图式,可以看出:
①二组杂交的P代与 F1代情况相同。
②豌豆的测交后代与果蝇的测交后代不同,果蝇测交后代只有二种表现型,豌豆有四种,所以,果蝇的测交结果无法用基因的自由组合来解释。
3.完全连锁的原理。我们知道人体有十万个基因,这些基因线性分布在23对同源染色体上,可见,每对同源染色体上,有许多对等位基因。
果蝇也是这样,它的灰身长翅基因位于同一条染色体上,用来表示,我们把B与V串在一条染色体上的这种hv情况叫连锁,同样,它的同源染色体上的,也是连锁。
由于B(b)与V(v)完全连锁,所以果蝇F1代中的雄性个体,减数分裂时产生的配子只有两种:和而且相等。
果蝇的杂交遗传图式,详细写出来就应该是这样,这就可以圆满地解释,果蝇的测交后代中为什么只有两种表现型,而且相等。即理论分析与测交结果完全吻合。
4.完全连锁与自由组合的本质区别。
豌豆的黄色(Y)与绿色(y),圆粒(R)与皱粒(r)二对等位基因分别位于二对同源染色体上,由于Y(y)与R(r)没有连锁,减数分裂时Y与y,R与r分离的同时,Y(y)与R(r)自由组合。即:
豌豆的测交遗传图式,详细写出来就应该是这样,这就可以圆满地解释,豌豆的测交后代中有四种表现型,而且相等。即理论分析与测交结果完全吻合。
5.小结。
(1)自由组合是分析分别位于二对同源染色体上的二对等位基因的遗传规律,A(a)与B(b)由于自由组合,产生四种数量相等的配子。表达式为AaBb→1AB:1Ab:1aB:1ab。
(2)完全连锁是分析共同位于一对同源染色体上的二对等位基因的遗传规律,A(a)与B(b)由于完全连锁,所以,产生两种数量相等的配子。表达式为AaBb→1AB:1ab或)1Ab:
1aB。
6.判别自由组合与完全连锁的方法。
(1)如果AaBbxaabb→1:1:l:1,则为自由组合。
(2)如果AaBbxaabb→1:1,则为完全连锁。
不完全连锁遗传
1.不完全连锁杂交实例。
摩尔根用果蝇做了另一组杂交实验,所用果蝇的性状和基因型与完全连锁的相同,但结果不同,请看具体过程。
BBVV X bbvv→F1BbVv
选择F1中的雌性BbVv测交:
BbVv X bbvv→BbVv bbvv Bbvv bbVv
42% 42% 8% 8%
2.比较完全连锁与不完全连锁的异同。
(1)相同点:二组杂交的P代与F1代情况相同。
(2)不同点:完全连锁的测交后代只有两种基因型,与亲本相同,数量比1:1。不完全连锁的测交后代有四种基因型,其中亲本基因型(与其亲本相同的基因型)各占42%,重组基因型(与其亲本不同的基因型)各占8%。
3.连锁着的两个基因是可以改变的。
例如果蝇的卵原细胞,减数分裂过程中,同源染色体联会形成四分体,此时,同源染色体之间的染色单体交叉互换,就有可能改变B(b)与V(v)之间的连锁关系。
如果交叉互换点在B(b)与V(v)之间,就会改变连锁关系(如n路径),产生四种配子;如果交叉互换点在B(b)与V(v)之外,或者没有实现交叉互换,则不会改变连锁关系(如m路径),产生两种配子。
事实上,果蝇F1代的卵原细胞减数分裂时,走m路径的细胞多,走n路径的细胞少,所以,总体上产生BV与bv连锁型的配子就多,产生Bv与bV重组型的配子就少。这样,就可以圆满地解释果蝇的不完全连锁。
4.完全连锁是不完全连锁的特殊情况。
从生物界的总体情况来看,连锁关系的改变与否,取决于连锁着的二个基因()之间的距离,如果A(a)与B(b)
之间的距离长,则互换的可能性大,产生的重组型配子就多;如果A(a)与B(b)之间的距离短,则互换的可能性小,产生的重组型配子就少;如果A(a)与B(b)之间没有发生互换,则不产生重组型配子,即表现为完全连锁。
所以,不完全连锁产生的四种配子,数量上没有固定的比值,只有连锁型配子多,重组型配子少的规律。当重组型配子少到零时,即为完全连锁、
5.判别完全连锁、不完全连锁与自由组合遗传的方法。
(1)自由组合
AaBb x aabb→1AaBb:1aabb:1Aabb:laaBb
特点:后代有四种基因型,且比值1:1:l:1。
(2)完全连锁
AaBb x aabb→1AaBb:1aabb
AaBb x aabb→1Aabb:1aaBb
特点:后代只有两种基因型,且比值1:1。
(3)不完全连锁
AaBb x aabb→AaBb多:aabb多:Aabb少:aabb少
AaBb x aabb→AaBb少:aabb少:Aabb多:aaBb多
特点:后代有四种基因型,其中亲本基因型多,重组基因型少。
总而言之, AaBbXaabb的测交:
①如果后代为1:1:1:1,则A(a)与B(b)自由组合。
②如果后代为1:1,则A(a)与B(b)完全连锁。
③如果后代为多:多:少:少,则A(a)与B(b)不完全连锁。
3.基因定位与连锁图
基因定位就是确定基因在染色体上的位置,其主要内容是确定基因之间的距离和顺序。只要准确地估算出连锁基因的交换值,就能确定基因之间的遗传距离。根据紧密连锁的多个基因之间的距离,可以决定它们之间的相对顺序。将生物已知基因的相对位置标记在染色体上,绘制成图,称为连锁图或遗传学图。两点测验和三点测验是经典遗传学中基因定位的主要方法。
(1)两点测验:
两点测验又称两点测交,是基因定位最基本的一种方法。两点测验首先进行杂交获得双基因杂种(F1),然后对F1进行测交,以判断这两对基因是否连锁。如果是连锁的,根据其交换值确定它们在同一染色体上的遗传距离。前面提到的果蝇测交试验就是一次两点测验。根据测交结果,b和v之间的交换值:
RF(b—v)=(4+4)/(21+21+4+4)×100%=16%
因此b-v之间的遗传距离为16cM(图距单位)。
如果对紧密连锁的三个基因a、b、c分别进行三次两点测验,每两个基因之间的距离分别是:a-b为5cM,b-c为10cM,a-c为15cM,那么,连锁基因a、b、c在同一染色体上的连锁如右图。
(2)三点测验:
根据连锁的三个非等位基因的交换行为确定它们在同一染色体上相对位置的杂交试验称为三点测验,又称三点测交。它是基因定位最常用的方法。三点测验的主要过程是:通过杂交获得三对基因杂种(F1),再使F1与三隐性基因纯合体测交,通过对测交后代(Ft)表现型及其数目的分析,分别计算三个连锁基因之间的交换值,从而确定这三个基因在同一染色体上的顺序和距离。通过一次三点测验可以同时确定三个连锁基因的位置,即相当于进行三次两点测验,而且能在试验中检测到所发生的双交换。此外,三点测验中得到的三个交换值是在相同的遗传背景和环境条件下取得的,因此使估算的交换值更加准确。现在以玉米籽粒的饱满(Sh)与凹陷(sh),非糯性(Wx)与糯性(wx),有色(C)与无色(c)三对性状的杂交为例,说明三点测验的具体步骤。为了方便起见,以“+’代表各显性基因,其对应的隐性基因仍分别以sh,wx和c表示。
三点测验的主要步骤:
(1)通过杂交和测交获得 F1的测交后代(Ft),其过程如下所示:
(2)根据F1确定连锁基因的顺序:
从上述测交后代(Ft)的资料可以看出,在群体中亲型个体①和②数目最多(2708+2538),无疑是两种亲型配子(sh++和+wx c)受精产生的。⑦和⑧两种个体数目最少(4+2),是双交换型配子受精的结果。所谓双交换型配子,是在三个连锁基因所在区域内同时发生二次交换所产生的配子。例如下图所示:
+b+和a+c就是双交换型配子。
根据两个杂交亲本的表现型推测,F1中三个连锁基因的顺序有三种可能:一是 wx在sh和c之间,即: ;二是sh在wx和c之间,即: ;三是c在sh和wx之间,即: 。这三者之中,只有第二种情况才能产生+++和sh wx c。两种双交换型配子,其他两种情况都不可能产生。据此可以确定三个连锁基因在染色体上的次序是sh位于 wx和c之间,即:。
(3)计算交换值,确定基因距离:
首先分别计算wx–sh和sh–c的交换值,确定它们之间的遗传距离。
在杂交亲本产生的亲型配子中,sh与wx之间的连锁状态是sh+和+wx,即相斥相,但是F1产生的③、④、⑦、⑧四种配子中这两个基因是++和sh wx,即相引相,可见它们是上sh–wx之间发生交换形成的重组型配子。因此,sh–wx之间的交换值是:
RF(sh–wx)=(③+④+⑦+⑧)/ 总配子数×100%=(626+601+4+2)/ 6708×100%=18.4%
同理,sh–c之间发生交换的重组型配子是⑤、⑥、⑦、⑧,那么sh–c 的交换值是:
RF(sh–wx)=(⑤+⑥+⑦+⑧)/ 总配子数×100%=(113+116+4+2)/ 6708×100%=3.5%
根据基因在染色体上呈直线排列的原理,
RF(wx–c)=18.4%+3.5%=21.9%
基因之间的距离分别是:wx–sh为18.4cM,sh–c为3.5cM,wx–c为21.9cM。这三个基因的连锁图表示如右图所示。
【解题指导】
例1 在玉米中,AB/ab与AB/ab杂交后代中双隐性类型的数目为全部子代的16%,这两个基因间的遗传图距是多少?
析 进行杂交的雌雄个体因交换率相等,分别产生的雌、雄配子各有四种,它们是AB、ab、aB、Ab。双隐性类型个体(aabb)是由雌配子ab和雄配子ab受精结合成合子而发育来的个体,aabb个体在全部子代中的比例应是雌配子ab和雄配子ab各占雌、雄配子总数比例的乘积。因此,ab雌雄配子的比例均为 =4/10=40/100,由此推出:雌雄四种配子的比例应为AB=40%,ab=40%,aB=10%,Ab=10%,其中aB和Ab为重组型配子,交换率=(10+10)/100×100%=20%,去掉“%”即为遗传图距。故答案应为20。
例2 具有 TtGg(T=高度,G=颜色)基因型的 2个个体交配,其后代只有一种显性性状的概率是多少?
A 9/16 B 7/16 C 6/16 D 3/16
析 根据题意,首先明确一种显性性状是指T-gg和ttG-两种表型。产生 T-gg的概率是3/4T-×1/4gg=3/16T-gg;产生ttG-的概率也是1/4tt×3/4G-=3/16ttG-。而现在提出的问题是后代只有一种显性性状的概率是多少?显然,上述两种表型是两个互斥事件,故此,只有一种显性性状的概率应是两个互斥事件的概率之和,即3/16+3/16=6/16。故答案选C。
‘柒’ 生物:动物选育纯种时运用测交法,请问其具体原理是什么为什么测交
测交时其中一个是纯隐性的,以aa为例,如果要测的是Aa,子一代就会有性状分离,如果是AA,子二代才会有性状分离,如果是aa,子代永远显隐性性状(实际上,在培育过程中会发生基因突变,这个你就不用考虑了)。原理是分离定律。
‘捌’ 生物中的测交和杂交是怎么样的能否举个例子高中生物
测交是求一个已知基因型和一个未知基因型 相配对 得子代基因型 求 未知基因型的方法;杂交则是 两个不同基因型 以求 两基因 部分基因重组的方法
‘玖’ 高中生物:能为我详细讲一下基因连锁定律吗 附例题,最好是能够将详细点,我没有教材的说
孟德尔遗传的两个基本定律在得到科学界的公认以后,受到了广泛的重视,许多生物学家开始用其他的动物和植物作材料,进行杂交试验。但是,他们在进行两对相对性状的杂交试验时发现,并不是所有的结果都符合基因的自由组合定律,于是,有人一度对孟德尔提出的遗传定律产生了怀疑。这时,美国的遗传学家摩尔根(如图)和他的同事们用果蝇作试验材料,进行了大量的遗传学的研究工作,不仅证实了基因的分离定律和自由组合定律是正确的,而且揭示出了遗传的第三个基本定律——基因的连锁和交换定律,科学地解释了孟德尔的遗传定律所不能解释的遗传现象。
尔根等人用纯种灰身长翅果蝇与纯种黑身残翅果蝇交配,他们看到子一代(F1)都是灰身长翅的,由此可以推出,果蝇的灰身(B)对黑身(b)是显性;长翅(V)对残翅(v)是显性。所以,纯种灰身长翅果蝇的基因型与纯种黑身残翅果蝇的基因型应该分别是(BBVV)和(bbvv)。F1的基因型应该是(BbVv)(如图)。
摩尔根又让F1的雄果蝇(BbVv)与双隐性类型的雌果蝇(bbvv)测交,按照自由组合定律,测交后代中应该出现4种不同的类型,即灰身长翅、灰身残翅、黑身长翅、黑身残翅,并且它们之间的数量比应该为1:1:1:1。但是,测交的结果与原来预测的完全不同,只出现两种和亲本完全相同的类型:灰身长翅(BbVv)和黑身残翅(bbvv),并且两者的数量各占50%。很明显,这个测交的结果是无法用基因的自由组合定律来解释的。
为什么会出现上述试验结果呢?摩尔根认为果蝇的灰身基因和长翅基因位于同条染色体上,可以用来表示(如图);黑身基因和残翅基因也位于同一条染色体上,可以用来表示。所以,当两种纯种的亲代果蝇交配后,F1的基因型BbVv,应该表示为,表现型是灰身长翅。这样,在F1雄果蝇产生配子时,原来位于同一条染色体上的两个基因(B和V、b和v)就不能分离,而是连在一起向后代传递。因此,当F1雄果蝇与黑身残翅的雌果蝇交配后,只能产生灰身长翅()和黑身残翅()两种类型,并且这两者的数量各占 50%。像这样,位于一对同源染色体上的两对(或两对以上)等位基因,在向下一代传递时,同一条染色体上的不同基因连在一起不相分离的现象,叫做连锁。在上述雄果蝇的测交试验中,由于只有基因的连锁,没有基因之间的交换,因此,这种连锁是完全连锁。在完全连锁遗传中,后代只表现出亲本类型。
不完全连锁遗传
摩尔根等人还做了另一组试验,他们让子一代(F1)的雌果蝇(BbVv)与双隐性类型的雄果蝇(bbvv)测交,所得的结果如图所示。从图中所示的结果可以看出,F1与双隐性类型测交,虽然测交后代的表现型与基因自由组合定律中测交的结果一样,也是4种类型;灰身长翅,灰身残翅、黑身长翅和黑身残翅,但是,它们之间的数量比并不符合基因的自由组合定律中的1:1:1:1,而是与亲本表现型相同类型的比例很大(占总数的84%);与亲本表现型不同类型的比例很小(占总数的16%)。
为什么会出现上述的试验结果呢?摩尔根认为,位于同一条染色体上的两个基因的连锁关系有时是可以改变的(如图)。在细胞进行减数分裂形成配子的过程中(即出现四分体时),如果同源染色体中,来自父方的染色单体与来自母方的染色单体相互交换了对应部分,在交换区段上的等位基因就会发生交换,这种交换可以产生新的基因组合。所以测交后,在子代产生了与亲代表现型相同类型的同时,也产生了与亲代表现型不同的新类型。但是,为什么测交后代的数量比不是1:1:1:1呢?这是因为F1在形成配子时,大部分配子中的同一条染色体上的这两个基因是连锁的,因而生成的配子和配子特别多(各占42%),只有一小部分配子中的两个基因因为交换(交叉点正好位于基因B与V、 b与v的中间)而产生了新的组合,因而生成的配子和配子很少(各占8%)。因此,F1与双隐性类型测交,就产生了这样的结果:灰身长翅占42%,黑身残翅占42%,灰身残翅占8%,黑身长翅占8%。在上述雌果蝇的测交试验中,由于基因在向下一代传递的过程中,不仅有连锁,还出现了交换,因此,这种遗传是不完全连锁遗传。
基因连锁和交换定律的实质
综上所述,基因的连锁和交换定律的实质是:在进行减数分裂形成配子时,位于同一条染色体上的不同基因,常常连在一起进入配子;在减数分裂形成四分体时,位于同源染色体上的等位基因有时会随着非姐妹染色单体的交换而发生交换,因而产生了基因的重组。应当说明的是,基因的连锁和交换定律与基因的自由组合定律并不矛盾,它们是在不同情况下发生的遗传规律:位于非同源染色体上的两对(或多对)基因,是按照自由组合定律向后代传递的,而位于同源染色体上的两对(或多对)基因,则是按照连锁和交换定律向后代传递的。
基因的连锁和交换定律在实践中的应用
基因的连锁和交换定律,在动植物育种工作和医学实践中都具有重要的应用价值。
在育种工作中,人们根据育种目标选配杂交亲本时,必须考虑基因之间的连锁关系。如果几个有利性状的基因连锁在一起,这对育种工作就很有利。例如,大麦抗秆锈病与抗散黑穗病的基因就是紧密连锁的,在育种中只要注意选择大麦抗秆锈病的植株,也就等于同时选择了抗散黑穗病的植株,达到一举两得、提高选择效率的目的。但是如果不利性状与有利性状的基因连锁在一起,就要采取措施打破基因连锁,促成基因交换,让人们所需要的基因重组在一起,从而培育出优良品种来。例如,有两个大麦品种:一个是矮秆抗倒伏但不抗锈病的品种,另一个是高秆易倒伏但抗锈病的品种。每一个品种中控制这两个性状的基因都位于同一条染色体上。经过杂交,F2会出现四种类型的后代,其中由于基因交换而出现的矮秆抗倒伏同时又抗锈病的类型就是符合需要的类型,经过进一步培育和大量繁殖就可以成为良种,其他不符合需要的类型应该淘汰。由此可见,通过基因交换产生的新类型能够为育种工作提供原始材料。
在医学实践中,人们可以利用基因的连锁和交换定律,来推测某种遗传病在胎儿中发生的可能性。例如,有一种叫做指甲髌骨综合症的人类遗传病。患者的主要症状是指甲发育不良,髌骨缺少或发育不良。这种病是一种显性遗传病,致病基因(用两个大写字母NP表示)与ABO血型的基因(IA、IB或i)位于同一条染色体上。在患这类疾病的家庭中,NP基因与IA基因往往连锁,而NP的正常等位基因np与IB基因或i基因连锁,又已知NP和IA之间的重组率为10%。由此可以推测出,患者的后代只要是A型或AB型血型(含IA基因),一般将患指甲髌骨综合症,不患这种病的可能性只有10%。因此,这种病的患者在妊娠时,应及时检验胎儿的血型,如果发现胎儿的血型是A型或AB型,最好采用流产措施,以避免生出指甲髌骨综合症患儿。参考资料:http://ke..com/view/1371287.htm