导航:首页 > 化学知识 > 核酸的化学性质都有哪些

核酸的化学性质都有哪些

发布时间:2022-06-20 20:11:16

❶ 核酸具有哪些物理化学特性,光谱学和热力学特性

核酸具有哪些物理化学特性,光谱学和热力学特性
化学性质
①酸效应:在强酸和高温,核酸完全水解为碱基,核糖或脱氧核糖和磷酸.在浓度略稀的的无机酸中,最易水解的化学键被选择性的断裂,一般为连接嘌呤和核糖的糖苷键,从而产生脱嘌呤核酸.
②碱效应1. DNA:当PH值超出生理范围(pH7~8)时,对DNA结构将产生更为微妙的影响.碱效应使碱基的互变异构态发生变化.这种变化影响到特定碱基间的氢键作用,结果导致DNA双链的解离,称为DNA的变性2.RNA:PH较高时,同样的变性发生在RNA的螺旋区域中,但通常被RNA的碱性水解所掩盖.这是因为RNA存在的2`-OH参与到对磷酸脂键中磷酸分子的分子内攻击,从而导致RNA的断裂.
③化学变性:一些化学物质能够使DNA/RNA在中性PH下变性.由堆积的疏水剪辑形成的核酸二级结构在能量上的稳定性被削弱,则核酸变性.

❷ 核酸具有哪些共同的理化性质核酸的变性受哪些因素的影响

第二章 核 酸

一、知识要点

核酸分两大类:DNA和RNA。所有生物细胞都含有这两类核酸。但病毒不同,DNA病毒只含有DNA,RNA病毒只含RNA。

核酸的基本结构单位是核苷酸。核苷酸由一个含氮碱基(嘌呤或嘧啶),一个戊糖(核糖或脱氧核糖)和一个或几个磷酸组成。核酸是一种多聚核苷酸,核苷酸靠磷酸二酯键彼此连接在一起。核酸中还有少量的稀有碱基。RNA中的核苷酸残基含有核糖,其嘧啶碱基一般是尿嘧啶和胞嘧啶,而DNA中其核苷酸含有2′-脱氧核糖,其嘧啶碱基一般是胸腺嘧啶和胞嘧啶。在RNA和DNA中所含的嘌呤基本上都是鸟嘌呤和腺嘌呤。核苷酸在细胞内有许多重要功能:它们用于合成核酸以携带遗传信息;它们还是细胞中主要的化学能载体;是许多种酶的辅因子的结构成分,而且有些(如cAMP、cGMP)还是细胞的第二信使。

DNA的空间结构模型是在1953年由Watson和Crick两个人提出的。建立DNA空间结构模型的依据主要有两方面:一是由Chargaff发现的DNA中碱基的等价性,提示A=T、G≡C间碱基互补的可能性;二是DNA纤维的X-射线衍射分析资料,提示了双螺旋结构的可能性。DNA是由两条反向直线型多核苷酸组成的双螺旋分子。单链多核苷酸中两个核苷酸之间的唯一连键是3′,5′-磷酸二酯键。按Watson-Crick模型,DNA的结构特点有:两条反相平行的多核苷酸链围绕同一中心轴互绕;碱基位于结构的内侧,而亲水的糖磷酸主链位于螺旋的外侧,通过磷酸二酯键相连,形成核酸的骨架;碱基平面与轴垂直,糖环平面则与轴平行。两条链皆为右手螺旋;双螺旋的直径为2nm,碱基堆积距离为0.34nm,两核酸之间的夹角是36°,每对螺旋由10对碱基组成;碱基按A=T,G≡C配对互补,彼此以氢键相连系。维持DNA结构稳定的力量主要是碱基堆积力;双螺旋结构表面有两条螺形凹沟,一大一小。

DNA能够以几种不同的结构形式存在。从B型DNA转变而来的两种结构A型和Z型结构巳在结晶研究中得到证实。在顺序相同的情况下A型螺旋较B型更短,具有稍大的直径。DNA中的一些特殊顺序能引起DNA弯曲。带有同一条链自身互补的颠倒重复能形成发卡或十字架结构,以镜影排列的多嘧啶序列可以通过分子内折叠形成三股螺旋,被称为H -DNA的三链螺旋结构。由于它存在于基因调控区,因而有重要的生物学意义。

不同类型的RNA分子可自身回折形成发卡、局部双螺旋区,形成二级结构,并折叠产生三级结构,RNA与蛋白质复合物则是四级结构。tRNA的二级结构为三叶草形,三级结构为倒L形。mRNA则是把遗传信息从DNA转移到核糖体以进行蛋白质合成的载体。

核酸的糖苷键和磷酸二酯键可被酸、碱和酶水解,产生碱基、核苷、核苷酸和寡核苷酸。酸水解时,糖苷键比磷酸酯键易于水解;嘌呤碱的糖苷键比嘧啶碱的糖苷键易于水解;嘌呤碱与脱氧核糖的糖苷键最不稳定。RNA易被稀碱水解,产生2’-和3’-核苷酸,DNA对碱比较稳定。细胞内有各种核酸酶可以分解核酸。其中限制性内切酶是基因工程的重要工具酶。

核酸的碱基和磷酸基均能解离,因此核酸具有酸碱性。碱基杂环中的氮具有结合和释放质子的能力。核苷和核苷酸的碱基与游离碱基的解离性质相近,它们是兼性离子。

核酸的碱基具有共轭双键,因而有紫外吸收的性质。各种碱基、核苷和核苷酸的吸收光谱略有区别。核酸的紫外吸收峰在260nm附近,可用于测定核酸。根据260nm与280nm的吸收光度(A260)可判断核酸纯度。

变性作用是指核酸双螺旋结构被破坏,双链解开,但共价键并未断裂。引起变性的因素很多,升高温度、过酸、过碱、纯水以及加入变性剂等都能造成核酸变性。核酸变性时,物理化学性质将发生改变,表现出增色效应。热变性一半时的温度称为熔点或变性温度,以Tm来表示。DNA的G+C含量影响Tm值。由于G≡C比A=T碱基对更稳定,因此富含G≡C的DNA比富含A=T的DNA具有更高的熔解温度。根据经验公式xG+C =(Tm - 69.3)× 2.44可以由DNA的Tm值计算G+C含量,或由G+C含量计算Tm值。

变性DNA在适当条件下可以复性,物化性质得到恢复,具有减色效应。用不同来源的DNA进行退火,可得到杂交分子。也可以由DNA链与互补RNA链得到杂交分子。杂交的程度依赖于序列同源性。分子杂交是用于研究和分离特殊基因和RNA的重要分子生物学技术。

染色体中的DNA分子是细胞内最大的大分子。许多较小的DNA分子,如病毒DNA、质粒DNA、线粒体DNA和叶绿体[]NA也存在于细胞中。许多DNA分子,特别是细菌的染色体DNA和线粒体、叶绿体DNA是环形的。病毒和染色体DNA有一个共同的特点,就是它们比包装它们的病毒颗粒和细胞器要长得多,真核细胞所含的DNA要比细菌细胞多得多。

真核细胞染色质组织的基本单位是核小体,它由DNA和8个组蛋白分子构成的蛋白质核心颗粒组成。其中H2A,H2B,H3,H4各占两个分子,有一段DNA(约146bp)围绕着组蛋白核心形成左手性的线圈型超螺旋。细菌染色体也被高度折叠,压缩成拟核结构,但它们比真核细胞染色体更富动态和不规则,这反映了原核生物细胞周期短和极活跃的细胞代谢。

❸ 组成核酸的碱基有哪几种有何主要理化性质

核酸可以分为两个大
第一类,DNA,也叫做脱氧核糖核酸,组成它的碱基,有四种,分别是腺嘌呤、胞嘧啶、鸟嘌呤、胸腺嘧啶
第二类,Rna,也叫做核糖核苷酸,组成它的碱基有四种,分别是腺嘌呤、胞嘧啶、鸟嘌呤、尿嘧啶
理化性质:这两种都有一个共性,就是遵循碱基互补配对原则,腺嘌呤和胸腺嘧啶配对,或者和尿嘧啶配对鸟嘌呤和胸腺嘧啶配对

❹ 核酸的有什么特性

由许多核苷酸聚合而成的生物大分子化合物,为生命的最基本物质之一。
根据化学组成不同,核酸可分为核糖核酸,简称RNA和脱氧核糖核酸,简称DNA。DNA是储存、复制和传递遗传信息的主要物质基础,RNA在蛋白质合成过程中起着重要作用,其中转移核糖核酸,简称tRNA,起着携带和转移活化氨基酸的作用;信使核糖核酸,简称mRNA,是合成蛋白质的模板;核糖体的核糖核酸,简称rRNA,是细胞合成蛋白质的主要场所。核酸不仅是基本的遗传物质,而且在蛋白质的生物合成上也占重要位置,因而在生长、遗传、变异等一系列重大生命现象中起决定性的作用。

❺ 核酸具有哪些物理化学特性、光谱学和热力学特性

(1)化学性质
①酸效应:在强酸和高温,核酸完全水解为碱基,核糖或脱氧核糖和磷酸。在浓度略稀的的无机酸中,最易水解的化学键被选择性的断裂,一般为连接嘌呤和核糖的糖苷键,从而产生脱嘌呤核酸。
②碱效应1. DNA:当PH值超出生理范围(pH7~8)时,对DNA结构将产生更为微妙的影响。碱效应使碱基的互变异构态发生变化。这种变化影响到特定碱基间的氢键作用,结果导致DNA双链的解离,称为DNA的变性2.RNA:PH较高时,同样的变性发生在RNA的螺旋区域中,但通常被RNA的碱性水解所掩盖。这是因为RNA存在的2`-OH参与到对磷酸脂键中磷酸分子的分子内攻击,从而导致RNA的断裂。
③化学变性:一些化学物质能够使DNA/RNA在中性PH下变性。由堆积的疏水剪辑形成的核酸二级结构在能量上的稳定性被削弱,则核酸变性。
(2)物理性质
①黏性:DNA的高轴比等性质使得其水溶液具有高黏性,很长的DNA分子又易于被机械力或超声波损伤,同时黏度下降。
② 浮力密度:可根据DNA的密度对其进行纯化和分析。在高浓度分子质量的盐溶液(CsCl)中,DNA具有与溶液大致相同的密度,将溶液高速离心,则CsCl趋于沉降于底部,从而建立密度梯度,而DNA最终沉降于其浮力密度相应的位置,形成狭带,这种技术成为平衡密度梯度离心或等密度梯度离心。
③稳定性:核酸的结构相当稳定,其主要原因有1、碱基对间的氢键2、碱基的堆积作用3、环境中的阳离子。
(3)光谱学性质
①减色性:dsDNA相对于ssDNA是减色的,而ssDNA相对于dsDNA是增色的。
② DNA纯度:A260/A280。
(4)热力学性质
①热变性:dsDNA与RNA的热力学表现不同,随着温度的升高RNA中双链部分的碱基堆积会逐渐地减少,其吸光性值也逐渐地,不规则地增大。较短的碱基配对区域具有更高的热力学活性,因而与较长的区域相比变性快。而dsDNA热变性是一个协同过程。分子末端以及内部更为活跃的富含A-T的区域的变性将会使其赴京的螺旋变得不稳定,从而导致整个分子结构在解链温度下共同变性。
② 复性:DNA的热变性可通过冷却溶液的方法复原。不同核酸链之间的互补部分的复性称为杂交。

❻ 什么是核酸

核酸是由许多核苷酸聚合成的生物大分子化合物,为生命的最基本物质之一。核酸广泛存在于所有动植物细胞、微生物体内,生物体内的核酸常与蛋白质结合形成核蛋白。

不同的核酸,其化学组成、核苷酸排列顺序等不同。根据化学组成不同,核酸可分为核糖核酸(简称RNA)和脱氧核糖核酸(简称DNA)。DNA是储存、复制和传递遗传信息的主要物质基础。

RNA在蛋白质合成过程中起着重要作用——其中转运核糖核酸,简称tRNA,起着携带和转移活化氨基酸的作用;信使核糖核酸,简称mRNA,是合成蛋白质的模板;核糖体的核糖核酸,简称rRNA,是细胞合成蛋白质的主要场所。

(6)核酸的化学性质都有哪些扩展阅读:

一、核酸的组成

核酸是生物体内的高分子化合物。它包括脱氧核糖核酸(deoxyribonucleicacid,DNA)和核糖核酸(ribonucleicacid,RNA)两大类。

核酸完全水解产生嘌呤和嘧啶等碱性物质、戊糖(核糖或脱氧核糖)和磷酸的混合物。核酸部分水解则产生核酸和核苷酸。每个核苷分子含一分子碱基和一分子戊糖,一分子核苷酸部分水解后除产生核苷外,还有一分子磷酸。

二、核酸的应用

核酸在实践应用方面有极重要的作用,现已发现近2000种遗传性疾病都和DNA结构有关。如人类镰刀形红血细胞贫血症是由于患者的血红蛋白分子中一个氨基酸的遗传密码发生了改变,白化病患者则是DNA分子上缺乏产生促黑色素生成的酪氨酸酶的基因所致。

肿瘤的发生、病毒的感染、射线对机体的作用等都与核酸有关。70年代以来兴起的遗传工程,使人们可用人工方法改组DNA,从而有可能创造出新型的生物品种。如应用遗传工程方法已能使大肠杆菌产生胰岛素、干扰素等珍贵的生化药物。

❼ 核酸是什么

核酸是另一种重要的生命物质,它的发现比蛋白质要晚30年。1869年,瑞士年轻的科学家米歇尔用胃蛋白酶水解从外科绷带上取得的脓细胞,发现这种酶不能分解细胞核,核缩小了一点,可是仍保持完整。经过化验分析,米歇尔发现,细胞核主要是由一种含磷的物质构成的,它的性质完全不像蛋白质。他把这种物质叫做“核质”,不久又有人发现“核质”呈酸性,故名“核酸”。在20世纪50年代中期,生物化学家们发现,核酸的分子量大到600万,可见,核酸的分子确实和蛋白质一样大,甚至更大一些。

德国化学家福尔根用染色法发现核酸在细胞里的位置:DNA位于细胞核里,特别是在染色体里;动物和植物的细胞里有DNA,但不同种的细胞含量不同,核酸是更本质的生命物质,遗传学证实了这一点。我们还知道,只含核酸的病毒能感染寄生细胞,并产生完整的包括核酸和蛋白质的子代病毒。近年来发现的一种微小生命体灰病毒是仅仅由数百个核苷酸组成的核酸分子。可见,核酸的研究对生命现象的研究,具有根本性的重要意义。

核酸是由更简单的核苷酸组成,核酸能分解成含有一个嘌呤(或一个密啶)、一个核糖(或一个脱氧核糖)和一个磷酸的核苷酸。

核苷酸主要由四种不同的碱基组成。碱基是含氮的杂环化合物嘌呤的衍物,因呈碱性,故称碱基。核苷酸中的咸基次为“腺嘌呤”、“鸟嘌呤”、“胞嘧啶”和“胸腺嘧啶”。

核苷酸所含的糖,不是六碳糖,而是五碳糖,称为核糖。在核酸中由于所含五碳糖的性质不同,形成两种不同的核酸。酵母核酸含有“核糖”,称“核糖核酸”(RNA);胸腺核酸里的糖很类似,糖只有一个原子,所以称为“脱氧核糖酸”(DNA)。

到20世纪40年代,生物化学家们发现,染色体里的蛋白质和RNA的数量可以完全不同,可是DNA的数量则总是不变,这表明DNA和基因有密切的关系。现代生物学家证明,DNA起基因的作用,是遗传物质。1967年狄诺发现马铃薯纺锤状茎病毒,是只有核酸而没有蛋白质的类病毒后,又接连发现7种只有核酸而没有蛋白质的类病毒,这就证明生命是以核酸的形式存在着。

随着对RNA和DNA的分子结构与功能的研究,分子生物学的诞生,遗传密码的发现,基因工程的建立,对生命奥秘的探索越来越深入,把人类、动物、微生物、病毒(非细胞生物)在核酸分子的水平上统一起来了。

但是,可能核酸也不是产生病毒效应所必不可少的。1967年,发现羊的蹭痒病是由比毒还小的颗粒引起的。这种小颗类没有核酸,却能通过改变细胞基因的作用而形成。这就吸引一些科学为更深入地探索生命奥秘踏上了新的征途。

❽ 什么是核酸的组成分类、性质和功能

核酸

核酸是生物体内的高分子化合物。它包括脱氧核糖核酸(deoxyribonucleicacid,DNA)和核糖核酸(ribonucleicacid,RNA)两大类。DNA和RNA都是由一个一个核苷酸头尾相连而形成的。RNA平均长度大约为2000个核苷酸,而人的DNA却是很长的,约有3×个核苷酸。而单个核苷酸又是由含氮有机碱(称碱基)、戊糖(即五碳糖)和磷酸三部分构成的。核苷酸是核酸分子的结构单元。核酸分子中的磷酸酯键是在戊糖C-3’和C-5’所连的羟基上形成的,故构成核酸的核苷酸可视为3’—核苷酸或5’—核苷酸。DNA分子是含有A、G、C、T四种碱基的脱氧核苷酸链;RNA分子则是含A、G、C、U四种碱基的核苷酸链。当然核酸分子中的核苷酸都以细胞形式存在,但在细胞内有多种游离的核苷酸,其中包括一磷酸核苷、二磷核苷和三磷酸核苷。DNA主要集中分布于细胞核中,RNA广泛分布于细胞质中。

DNA的碱基主要是由胸腺嘧啶(T)和胞嘧啶(C)加上腺嘧啶(A)和鸟嘧啶(G)构成;RNA的碱基除以尿嘧啶(U)代替T之外,其余均与DNA相同。DNA是双螺旋结构,就像一座螺旋形的楼梯。楼梯的两侧扶手是2条多核苷酸链上的核糖与磷酸根结合形成的骨架,楼梯的踏板就是2条多核苷酸链上相互配对的碱基:如果一侧扶手上的碱基是A,另一侧扶手上的碱基就一定是T;同样,G永远与C配对,碱基对之间靠氢键连接,这就是碱基配对规律。由于A和G为双环状化合物,分子大一些,T和C为单环状化合物,分子小一些,使A=T和G=C的长度相等,因此,双螺旋结构的直径是一致的,也就是说,楼梯的宽度是一样的。

DNA的双螺旋结构很适合它靠自身“复制”将遗传信息传给下一代(子代)。复制时,双螺旋结构先解链,变成2条单链,再分别以这两条单链为模板,靠碱基配对原则分别形成2条互补的配对链,即产生2个子代的双螺旋结构。每个子代的双螺旋结构中都含有亲代的一股链,因此也称作“半保留复制”,是生物物种稳定性和延续性的保证。

DNA核酸具有以下化学性质:①酸效应。在强酸和高温下,核酸完全水解为碱基,核糖或脱氧核糖和磷酸。在浓度略稀的无机酸中,最易水解的化学键被选择性地断裂,一般为连接嘌呤和核糖的糖苷键,从而产生脱嘌呤核酸。②碱效应。DNA:当pH值超出生理范围(pH值7~8)时,对DNA结构将产生更为微妙的影响。碱效应使碱基的互变异构态发生变化。这种变化影响到特定碱基间的氢键作用,结果导致DNA双链的解离,称为DNA的变性。RNA:pH值较高时,同样的变性发生在RNA的螺旋区域中,但通常被RNA的碱性水解所掩盖。这是因为RNA存在的2`-OH参与到对磷酸酯键中磷酸分子的分子内攻击,从而导致RNA的断裂。③化学变性。一些化学物质能够使DNA/RNA在中性pH值下变性。由堆积的疏水剪辑形成的核酸二级结构在能量上的稳定性被削弱,则核酸变性。

核酸最早是由米歇尔于1868年在脓细胞中发现和分离出来。核酸广泛存在于所有动物细胞、植物细胞和微生物内,生物体内核酸常与蛋白质结合形成核蛋白。不同的核酸,其化学组成、核苷酸排列顺序等不同。其中DNA是储存、复制和传递遗传信息的主要物质基础;RNA在蛋白质的合成过程中起着重要作用;其中转移核糖核酸,简称tRNA,起着携带和转移活化氨基酸的作用;信使核糖核酸,简称mRNA,是合成蛋白质的模板;核糖体的核糖核酸,简称rRNA,是细胞合成蛋白质的主要场所。核酸不仅是基本的遗传物质,而且在蛋白质的生物合成上也占重要位置,因而在生长、遗传、变异等一系列重大生命现象中起决定性的作用。 一般人都知道,生命是蛋白质存在的形式,蛋白质是生命的基础。在发现核酸前,这句话是对的,但当核酸被发现后,应该说最本质的生命物质是核酸,或是把上述的这句话更正为蛋白体是生命的基础。按照现代生物学的观点,蛋白体是包括核酸和蛋白质的生物大分子。

然而,多少年来,人们在一味追求蛋白质、维生素、微量元素等营养时,却把最重要的角色 ——核酸忘却了,这不能不说是人类生命史上的一大遗憾。核酸在生命中为什么比蛋白质更重要呢?因为生命的重要性是能自我复制,而核酸就能够自我复制。蛋白质的复制是根据核酸所发出的指令,使氨基酸根据其指定的种类进行合成,然后再按指定的顺序排列成所需要复制的蛋白质。世界上各种有生命的物质都含有蛋白体,蛋白体中有核酸和蛋白质,至今还没有发现有蛋白质而没有核酸的生命。但在有生命的病毒研究中,却发现病毒以核酸为主体,蛋白质和脂肪以及脂蛋白等只不过充作其外壳,作为与外界环境的界限而已,当它钻入寄生细胞繁殖子代时,把外壳留在细胞外,只有核酸进入细胞内,并使细胞在核酸控制下为其合成子代的病毒。这种现象,美国科学家比喻为人和汽车的关 系。即把核酸比为人,蛋白质比作汽车,入驾驶汽车到处跑。外表上看,人车一体是有生命运动的东西,而真正的生命是人,汽车只是由人制造的载人的外壳。近来科学家还发现了一种类病毒,是能繁殖子代的有生命物体,其中只有核酸而没蛋白质,可见核酸是真正的生命物质。

因此,我国1996年出版的《人体生理学》改变了旧教科书中只提蛋白质是生命基础的缺陷,明确提出:“蛋白质和核酸是一切生命活动的物质基础。”

没有核酸,就没有蛋白,也就没有生命。

然而遗憾的是,从目前的分析来看,人类无法从食物中直接摄取核酸。人体细胞内的核酸都是自己合成的。服用核酸对人体而言根本毫无营养价值,相反,有研究发现,过度摄入核酸会造成肾结石等疾病。

核酸在实践应用方面有极重要的作用,现已发现近2000种遗传性疾病都和DNA结构有关。如人类镰刀形红血细胞贫血症是由于患者的血红蛋白分子中1个氨基酸的遗传密码发生了改变,白化病者则是DNA分子上缺乏产生促黑色素生成的酷氨酸酶的基因所致。肿瘤的发生、病毒的感染、射线对机体的作用等都与核酸有关。20世纪70年代以来兴起的遗传工程,使人们可用人工方法改组DNA,从而有可能创造出新型的生物品种。如应用遗传工程方法已能使大肠杆菌产生胰岛素、干扰素等珍贵的生化药物。

❾ 核酸到底是什么

核酸(nucleic acid) 核苷酸单体聚合而成的生物大分子,是生物细胞最基本和最重要的成分。一般认为,生物进化即始于核酸,因为在所有生命物质中只有核酸能够自我复制。今天已知核酸是生物遗传信息的贮藏所和传递者。一种生物的蓝图就编码在其核酸分子中。核酸是1869年米歇尔(F.Miescher)在脓液的白细胞中发现的。他当时称之为核素。阿尔特曼(R.Altmann)于1889年认识其酸性后,定名为核酸。

分类和功能 核酸分为核糖核酸(RNA)和脱氧核糖核酸(DNA)两大类。这两类核酸有某些共同的结构特点,但生物功能不同。DNA贮存遗传信息,在细胞分裂过程中复制,使每个子细胞接受与母细胞结构和信息含量相同的DNA;RNA主要在蛋白质合成中起作用,负责将DNA的遗传信息转变成特定蛋白质的氨基酸序列。

组分和结构 核酸的基本结构单元是核苷酸。核苷酸含有含氮碱基、戊糖和磷酸3种组分。碱基与戊糖构成核苷,核苷的磷酸酯为核苷酸。DNA和RNA中的戊糖不同,RNA中的戊糖是D-核糖;DNA不含核糖而含D-2-脱氧核糖(核糖中2位碳原子上的羟基为氢所取代)。核酸就是根据其中戊糖种类来分类的,DNA和RNA的碱基也有所不同。

核酸链的每个核苷酸单元的5′磷酸基与其一侧毗邻核苷酸的3′羟基相连,其3′羟基又与另一侧毗邻核苷酸的5′磷酸基相连。这样,许许多多的核苷酸彼此就用3′、5′磷酸二酯键连在一起,构成没有分支的多核苷酸长链。链中的戊糖和磷酸相间排列且不断重复,构成核酸的主链,碱基可以看成连接在主链上的侧链。代表核酸特性的是核苷酸的序列,实际上就是碱基序列。所以碱基序列又称核酸的一级结构。核酸的多核苷酸链是有方向性的,其一端为5′端(有或无磷酸基),另一端为3′端(有或无磷酸基)。书写核酸的一级结构时,习惯上从左到右,从5′到3′,碱基间的小横也可省略。

可用快速方法测定核酸的碱基序列。已有不少核酸的一级结构已确定。大的如烟草叶绿体DNA含155844个碱基对,小的如tRNA分子,平均含70多个核苷酸残基。核酸的多核苷酸链盘曲折叠成特定的空间结构。对DNA和tRNA的空间结构了解得较多。双链DNA在溶液中的结构基本符合着名的双螺旋模型。

性质和测定 核酸的分子量为几万到几百万或更多。可因高温、极端pH及某些化学试剂的影响发生变性。核酸中的碱基杂环结构在260纳米波长区域内吸收紫外光,故可用紫外吸收值的变化定性或定量测定核酸。也可利用戊糖的颜色反应或磷酸含量来测定核酸。

❿ 核酸的化学成分是什么

核酸是生物体内的高分子化合物,包括DNA和RNA两大类.
一、元素组成
组成核酸的元素有C、H、O、N、P等,与蛋白质比较,其组成上有两个特点:一是核酸一般不含元素S,二是核酸中P元素的含量较多并且恒定,约占9~10%.因此,核酸定量测定的经典方法,是以测定P含量来代表核酸量.
二、化学组成与基本单位
核酸经水解可得到很多核苷酸,因此核苷酸是核酸的基本单位.核酸就是由很多单核苷酸聚合形成的多聚核苷酸.核苷酸可被水解产生核苷和磷酸,核苷还可再进一步水解,产生戊糖和含氮碱基(图15-1).
核苷酸中的碱基均为含氮杂环化合物,它们分别属于嘌呤衍生物和嘧啶衍生物.核苷酸中的嘌呤碱(purine)主要是鸟嘌呤(guanine,G)和腺嘌呤(adenine,A),嘧啶碱(pyrimidine)主要是胞嘧啶(cytosine,C)、尿嘧啶(uracil,U)和胸腺嘧啶(thymine,T).DNA和RNA都含有鸟嘌呤(G)、腺嘌呤(A)和胞嘧啶(C);胸腺嘧啶(T)一般而言只存在于DNA中,不存在于RNA中;而尿嘧啶(U)只存在于RNA中,不存在于DNA中.它们的化学结构请参见图示.
核酸中五种碱基中的酮基和氨基,均位于碱基环中氮原子的邻位,可以发生酮式一烯醇式或氨基亚氨基之间的结构互变.这种互变异构在基因的突变和生物的进化中具有重要作用.
有些核酸中还含有修饰碱基(modified component),(或稀有碱基,unusual com ponent),这些碱基大多是在上述嘌呤或嘧啶碱的不同部位甲基化(methylation)或进行其它的化学修饰而形成的衍生物.一般这些碱基在核酸中的含量稀少,在各种类型核酸中的分布也不均一.DNA中的修饰碱基主要见于噬菌体DNA,如5-甲基胞嘧啶(m5C),5-羟甲基胞嘧啶hm5C;RNA中以tRNA含修饰碱基最多,如1-甲基腺嘌呤(m1A),2,2一二甲基鸟嘌呤(m22G)和5,6-二氢尿嘧啶(DHU)等.

阅读全文

与核酸的化学性质都有哪些相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:746
乙酸乙酯化学式怎么算 浏览:1411
沈阳初中的数学是什么版本的 浏览:1363
华为手机家人共享如何查看地理位置 浏览:1054
一氧化碳还原氧化铝化学方程式怎么配平 浏览:894
数学c什么意思是什么意思是什么 浏览:1422
中考初中地理如何补 浏览:1312
360浏览器历史在哪里下载迅雷下载 浏览:712
数学奥数卡怎么办 浏览:1402
如何回答地理是什么 浏览:1035
win7如何删除电脑文件浏览历史 浏览:1063
大学物理实验干什么用的到 浏览:1494
二年级上册数学框框怎么填 浏览:1713
西安瑞禧生物科技有限公司怎么样 浏览:1004
武大的分析化学怎么样 浏览:1255
ige电化学发光偏高怎么办 浏览:1345
学而思初中英语和语文怎么样 浏览:1666
下列哪个水飞蓟素化学结构 浏览:1430
化学理学哪些专业好 浏览:1493
数学中的棱的意思是什么 浏览:1071