❶ 如何从一个化合物的核磁共振氢谱读取氢信号的化学位移
读取核磁共振氢谱氢信号的化学位移,一是为了解析分子结构,一是为了发表文章报道使用。
为解析结构,只需要精确到小数点后2位即可,后面的四舍五入。
发表论文时,也基本上读到小数点后2位即可。
只在解析高级谱图时,才需要读到小数点后4位,以便于计算使用。
对NMR谱图的峰信号,不论信号峰的形状是否规则、是否对称,信号峰的化学位移值总是位于整个信号峰把基线进行添加后构成封闭图形后的质量重心位置的横坐标上。
为此,先对信号峰进行谱峰分组,再求解包括化学位移在内的所有谱图信息参数。
对谱的每一组峰群进行分组,求解出每一个峰组的谱图信息参数:峰形(宽窄),分裂峰数(单峰s,二重峰d, 三重峰t, 四重峰q,五重峰,六重峰,多重峰M)。峰形与图谱公共基线所围峰面积积分比,化学位移δ值,自旋-自旋耦合常数J值(在非NMR专业论文中,一般都简述这些图谱参数)相互不迭加的谱峰容易进行分组,相互迭加的一级谱或复杂谱,解析的过程也是不断调整进行分组的过程。峰形一般较窄,解析时都是按较窄的峰形处理的。如果较宽,至少是底部较宽时,它的峰较宽的信息本身就代表一定的分子结构信息。
化学位移δ值,现在多使用相对值,即以某一个内标准物质,如四甲基硅等,以内标准物质的NMR信号化学位移δ值为0 ppm或0 Hz,测试物质的信号峰相对于内标物的化学位移δ值。如果NMR谱图内标物信号不在0 位,需要校正之。
常规分裂峰数,s, d, t, q, 五重,六重,七重峰,此外还有dd(双二重峰), dt(双三重峰), dq(双四重峰), ddd(双双二重峰), ddt(双双三重峰), dddd(双双双二重峰)等峰形,每一种都代表一定的结构信息。有了峰形分组和谱峰组成,才容易求解δ值――峰形质量中心的横坐标。求J值的过程也是不断解析谱图推导分子结构的过程。
单峰s,二重峰d, 三重峰t, 四重峰q,五重峰,六重峰,多重峰M,如果是左右对称的峰形,化学位移δ值就在对称峰形的中心峰上或中心处横坐标上读出。
对称的dd(双二重峰), dt(双三重峰), dq(双四重峰), ddd(双双二重峰), ddt(双双三重峰), dddd(双双双二重峰)等峰形,化学位移δ值也是在对称峰形的中心位置上读出。
如果是高级谱图,其中,一部分是一级谱图的变形,即由于耦合关系、相互耦合的内侧峰线高于外侧峰线的,其化学位移δ值稍向峰高的那一侧偏移,偏移得多少依据质量重心法则。另一部分的高级谱图峰形较复杂,如要近似地读出化学位移δ值也是如此即可。如果要想求解出精确的化学位移δ值,可以按照各种不同类型的高级谱图自旋体系的成套的解析公式进行解析,这些高级谱图的自旋类型的判断、计算、解析的整个内容都是很好的可发表论文的实质内容和精华部分。
教科书中都有这方面的内容和专门知识,可去学习。
❷ 核磁共振氢谱化学位移口诀
氢谱在核磁共振内有一个峰值
,其出现化学位移是因为连接的官能团的影响,极性官能团与非极性官能团对氢谱的影响是一向左移,一向右移。
❸ 求问怎么解析咖啡因的核磁共振氢谱,3种氢各对应哪个位置的化学位移跪谢!
咖啡因属于甲基黄嘌呤的生物碱。
它的化学式是C8H10N4O2。分子量,194.19。
它的化学名是1,3,7-三甲基黄嘌呤或3,7-二氢-1,3,7-三甲基-1H-嘌呤-2,6-二酮【在下面所附分子结构中,规定原子序号如下:两个羰基所夹的那个氮N是1号,向下的羰基碳是2号,最下方的氮N是3号,两个环的桥碳是4(下)、5(上)号,最上的羰基碳是6号;右侧环上面氮N是7号,下面氮N是9号。】。
NMR(CDCl3):δ:3.4,3.6,4.0,7.6;在氘氯仿为溶剂的核磁共振测试谱图中,三个甲基氢的化学位移分别是:3.4,3.6,4.0ppm;一个芳香氢是7.6ppm。
可见:咖啡因的氢是四类,3个甲基的每个甲基CH3中的3个氢是等价的、但三个甲基互相不等价,信号出现在三个地方。另外还有一个烯氢,就是那个在最低场的峰面积积分高度是一个氢的δ7.6的信号。烯氢和7-N-CH3氢之间应该有远程耦合,耦合常数约在1~2Hz,扩展后能够发挥鉴定的作用:7-N-CH3氢信号被烯氢分裂为二重峰,烯氢被7-N-CH3氢分裂为四重峰。烯氢和3-N-CH3氢及1-N-CH3氢之间也会有远程耦合,但耦合常数会更小。这是仅从1H-NMR谱来解析的考量。
目前,最经济实惠的指认三个甲基归属的方法就是:设法利用别人通过碳谱-氢谱相关谱、多脉冲谱、二维谱等谱图技术手段,证据确凿地归属了3个甲基信号的成果。这些归属结果会出现在、并标注在《标准核磁共振谱集》中,在综合性大学、化工学院、有机化学类研究所和重要核磁共振谱仪实验室都会有收藏、可供人们查阅的。你去查找一下,先从查分子式组成索引入手、或从英文名字索引入手查起,很容易的。3个甲基的化学位移相差不大,是我们徒手解析者仅依靠去屏蔽效应分析或经验公式计算法推测所难以达到准确无误地解决的。
如果你查找标准核磁共振氢谱有困难,请再追问。如果你一定现在想知道3个甲基的归属结果,我现在手头没有资料,恐怕会难免出错误、毕竟3个甲基氢的化学位移比较接近,根据去屏蔽分析,我估计1号氮上甲基是δ 4.0;3号氮上甲基是δ3.6;7号氮上甲基的化学位移是δ3.4。
❹ 核磁共振氢谱的化学位移
氢原子在分子中的化学环境不同,而显示出不同的吸收峰,峰与峰之间的差距被称作化学位移;化学位移的大小,可采用一个标准化合物为原点,测出峰与原点的距离,就是该峰的化学位移,现在一般采用(CH3)4Si(四甲基硅烷TMS)为标准化合物,其化学位移值为0 ppm。
❺ 化学核磁共振氢谱位移是什么意思
氢原子在分子中的化学环境不同,而显示出不同的吸收峰,峰与峰之间的差距被称作化学位移;化学位移的大小,可采用一个标准化合物为原点,测出峰与原点的距离,就是该峰的化学位移,现在一般采用(CH3)4Si(四甲基硅烷TMS)为标准化合物,其化学位移值为0 ppm。
处在不同环境中的氢原子因产生共振时吸收电磁波的频率不同,在图谱上出现的位置也不同,利用化学位移,峰面积和积分值以及耦合常数等信息,进而推测其在碳骨架上的位置。
❻ 怎样看核磁共振中氢谱中的化学位移
氢谱在核磁共振内有一个峰值,其出现化学位移是因为连接的官能团的影响,极性官能团与非极性官能团对氢谱的影响是一向左移,一向右移.自己根据这个再找几个核磁共振谱对照一下就非常明白了.