Ⅰ 相间电位的共性和区别
交流电分为相线和中性线,理论上中性线的电位为0,相间电位为380伏,相线与中性线间电位为220伏,设备的外壳应接地线,相线碰壳就是相线对地短路。
Ⅱ 一个电化学体系中包括哪些相间电位它们有哪些共性与区别
实际电极反应进行候发阴极电位比理论值低阳极电位比理论值高情况叫做电位.阴极析氢气叫析氢电位析氧电位.
电位由于电极极化产说实际电极反应已经偏离理想电极反应.析氢电位(定程度)用塔菲尔数衡量塔菲尔数越电位越.见金属塔菲尔数较Pb1.56,Hg1.41,Zn1.24,Sn1.20等
Ⅲ 电化学有哪些应用领域
电化学的应用领域:
1、电解工业,其中的氯碱工业是仅次于合成氨和硫酸的无机物基础工业、耐纶66的中间单体己二腈是通过电解合成的;铝、钠等轻金属的冶炼,铜、锌等的精炼也都用的是电解法;
2、机械工业要用电镀、电抛光、电泳涂漆等来完成部件的表面精整;
3、环境保护可用电渗析的方法除去氰离子、铬离子等污染物;
4、化学电源;
5、金属的防腐蚀问题,大部分金属腐蚀是电化学腐蚀问题;
6、许多生命现象如肌肉运动、神经的信息传递都涉及到电化学机理;
7、应用电化学原理发展起来的各种电化学分析法已成为实验室和工业监控的不可缺少的手段。
电化学(electrochemistry)作为化学的分支之一,是研究两类导体(电子导体,如金属或半导体,以及离子导体,如电解质溶液)形成的接界面上所发生的带电及电子转移变化的科学。传统观念认为电化学主要研究电能和化学能之间的相互转换,如电解和原电池。但电化学并不局限于电能出现的化学反应,也包含其它物理化学过程,如金属的电化学腐蚀,以及电解质溶液中的金属置换反应。
利用电化学手段分离溶液中的金属离子、有机分子的方法,共分四类:
1、控制电位的电解分离法
当溶液中存在两种或两种以上的金属离子时,如果它们的还原电位相近,□例如Cu□(标准电极电位□□=+0.345伏)和Bi□(□□=0.2伏),则在电解时都会还原析出,达不到分离的目的。图1两种金属离子A和B的分解电位表示,如果控制阴极电位为□,则金属离子A可产生强度为□的电流,即可被还原;而金属离子B的电流强度极小,即几乎不能被还原,这样即可达到分离目的,并分别测定A和B。在电解过程中,阴极电位□□□是在不断变化的,□□=□式中□□为标准电极电位;□□为气体常数;□为热力学温度;□为电极过程电子转移数;□为法拉第常数;□为离子活度;□□为阴极超电压。电解时,离子浓度不断降低,□□的负值不断增加,以致B也被电解出来。为了控制阴极电位,要用图2控制电位的线路的线路随时调整外加电压。,e□是铂丝对电极,e□是参比电极(饱和甘汞电极)。选定的e□的电位(相对于e□)可从电位计V读出,电解电流从毫安计A读出,在电解过程中不断调整电阻□以保持阴极电位不变。
至于选择什么电位要看实验条件,例如在分别测定Cu□和Bi□时,由于两者电位太相近,需要在溶液中加入酒石酸,调节pH=5.8~6.0,Bi□与酒石酸生成的络合物比Cu□的稳定得多,使两者的分解电压相差得大一些,然后再加入适量的肼,以加速Cu□的还原。在这种条件下,控制阴极电位为-0.30伏,铜先电解出来,称出阴极的增重后,调节pH为4.5~5.5,控制阴极电位为-0.40伏,可将铋全部电解出来。如果溶液中还有Pb□,可将电位控制在-0.50伏,进行电解。应用此法时,后被电解的离子的浓度不能超过先被电解的离子的浓度。
2、汞阴极电解分离法
H□在汞阴极上被还原时,有很大的超电压,所以在酸性溶液中可以分离掉一些容易被还原的金属离子,使一些重金属(如铜、铅、镉、锌)沉积在汞阴极上,形成汞齐,同时保留少量不容易被还原的离子,如碱金属、碱土金属、铝、铁、镍、铬、钛、钒、钨、硅等。
3、内电解分离法
在酸性溶液中,利用金属氧化-还原电位的不同,可以组成一个内电解池,即不需要外加电压就可以进行电解。例如要从大量铅中分离微量铜,在硫酸溶液中Cu□比Pb□先还原,因此可将铅板作为一个电极,与铂电极相连,组成一个内电解池,它产生一个自发的电动势,来源于Pb的氧化和Cu□的还原。这个电动势使反应能够进行,直到电流趋近于零时,内电解池就不再作用了。内电解可以分离出微量的容易还原的金属离子,缺点是电解进行缓慢,因此应用不广。
4、电渗析法
液体中的离子或荷电质点能在电场的影响下迁移。由于离子的性质不同,迁移的速率也不同,正负电荷移动的方向也不同。当在电池的两极加上一个直流电压时,可以把一些有机物的混合物分离。如临床实验中常用此法研究蛋白质,将试样放在一个载器上,外加电场后,荷电质点沿着载器向电荷相反的电极迁移,因它们移动的速率不同而分离,一般能把血清蛋白分成五部分。改进实验技术可使浓缩斑点的宽度达到25微米左右,然后进行电渗析,可将血清蛋白分成二十个很清晰的部分。
Ⅳ 一个电化学体系中通常包括哪些相间电位
金属接触点位、电极电位、液接点位
Ⅳ 电化学分析法的应用
···莱特.莱德···电导法是用电导仪直接测量电解质溶液的电导率的方法。
电位滴定法是在用标准溶液滴定待测离子过程中,用指示电极的电位变化指示滴定终点的到达,是把电位测定与滴定分析互相结合起来的一种测试方法。
电解分析法是将直流电压施加于电解池的两个电极上,根据电极增加的质量计算被测物的含量。
伏安法根据电解过程中的电流电压曲线(伏安曲线)来进行分析的方法。
溶出伏安法将恒电位电解富集法与伏安法结合的一种极谱分析方法。它首先将欲测物质在适当电位下进行电解并富集在固定表面积的特殊电极上,然后反向改变电位,让富集在电极上的物质重新溶出,同时记录电流电压曲线。根据溶出峰电流的大小进行定量分析。
电位溶出分析法在恒电位下将被测物质电解富集在工作电极上,然后断开恒电位电路,由电解液中的氧化剂将被富集的物质溶解出来,同时记录溶出时的电位时间曲线,根据曲线上溶出阶的长度进行定量,这种方法缩写为P.S.A.。电位溶出分析法与溶出伏安法之间主要区别在于前者在溶出时没有电流流过工作电极,而后者具有背景电流,在某些情况下可能淹没溶出峰。
Ⅵ 电化学方法原理和应用
电化学(Electrochemistry)是研究电和化学反应相互关系的科学,即研究两类导体形成的带电界面现象及其上所发生的变化的科学。电和化学反应相互作用可通过电池来完成,也可利用高压静电放电来实现(如氧通过无声放电管转变为臭氧),二者统称电化学,后者为电化学的一个分支,称放电化学。由于放电化学有了专门的名称,因而,电化学往往专门指“电池的科学”。 电化学如今已形成了合成电化学、量子电化学、半导体电化学、有机导体电化学、光谱电化学、生物电化学等多个分支。电化学在化工、冶金、机械、电子、航空、航天、轻工、仪表、医学、材料、能源、金属腐蚀与防护、环境科学等科技领域获得了广泛的应用。电化学是研究电和化学反应相互关系的科学。
在物理化学众多分支中,电化学是唯一以大工业为基础的学科。其应用分为以下几个方面:①电解工业:其中氯碱工业是仅次于合成氨和硫酸的无机物基础工业、耐纶66的中间单体己二腈是通过电解合成的;铝、钠等轻金属的冶炼,铜、锌等的精炼也都用的是电解法;②机械工业:要用电镀、电抛光、电泳涂漆等来完成部件的表面精整;③环境保护:用电渗析的方法除去氰离子、铬离子等污染物;④化学电源;⑤金属防腐蚀:大部分金属腐蚀是电化学腐蚀问题;⑥许多生命现象如肌肉运动、神经的信息传递都涉及到电化学机理;⑦应用电化学原理发展起来的各种电化学分析法,已成为实验室和工业监控不可缺少的手段。现在电化学热点问题多,如电化学工业、电化学传感器、金属腐蚀、生物电化学、化学电源等。
一、电化学两种原理
原电池是将化学能转变成电能的装置。根据定义,普通的干电池、燃料电池等都可以称为原电池。原电池,与蓄电池相对,又称非蓄电池,是利用两个电极之间金属性的不同,产生电势差,从而使电子流动,产生电流,是电化电池的一种,其电化反应不能逆转,只能将化学能转换为电能,简单来讲就是不能重新储存电力。原电池工作原理:原电池是将一个能自发进行的氧化还原反应的氧化反应和还原反应分别在原电池的负极和正极上发生,从而在外电路中产生电流。
电解池是将电能转化为化学能的装置。电解是使电流通过电解质溶液(或熔融的电解质)而在阴、阳两极引起氧化还原反应的过程。
二、电化学的发展
电学最早起源于静电起电,1791年伽伐尼发表了金属能使蛙腿肌肉抽缩的“动物电”现象,一般认为这是电化学起源。1799年伏打在伽伐尼工作的基础上发明了用不同的金属片夹湿纸组成的“电堆”,即现今所谓“伏打堆”,这是化学电源的雏型。在直流电机发明以前,各种化学电源是唯一能提供恒稳电流的电源。1834年法拉第电解定律的发现为电化学奠定了定量基础。
19世纪下半叶,赫尔姆霍兹和吉布斯的工作,赋于电池的“起电力”(今称“电动势”)以明确的热力学含义;1889年能斯特用热力学导出了参与电极反应的物质浓度与电极电势的关系,即着名的能斯脱公式;1923年德拜和休克尔提出了人们普遍接受的强电解质稀溶液静电理论,大大促进了电化学在理论探讨和实验方法方面的发展。
20世纪40年代以后,电化学暂态技术的应用和发展、电化学方法与光学和表面技术的联用,使人们可以研究快速和复杂的电极反应,可提供电极界面上分子的信息。电化学一直是物理化学中比较活跃的分支学科,它的发展与固体物理、催化、生命科学等学科的发展相互促进、相互渗透。
三、电化学研究内容
电池由两个电极和电极之间的电解质构成,因而电化学的研究内容应包括两个方面:一是电解质的研究,即电解质学,其中包括电解质的导电性质、离子的传输性质、参与反应离子的平衡性质等,其中电解质溶液的物理化学研究常称作电解质溶液理论;另一方面是电极的研究,即电极学,其中包括电极的平衡性质和通电后的极化性质,也就是电极和电解质界面上的电化学行为。电解质学和电极学的研究都会涉及到化学热力学、化学动力学和物质结构。
四、电化学分析方法
电化学分析法(electrochemical analysis)也称电分析化学法,是基于物质在溶液中的电化学性质基础上的一类仪器分析方法,由德国化学家C.温克勒尔在19世纪首先引入分析领域,仪器分析法始于1922年捷克化学家 J.海洛夫斯基建立极谱法。通常将试液作为化学电池的一个组成部分,根据该电池的某种电参数(如电阻、电导、电位、电流、电量或电流-电压曲线等)与被测物质的浓度之间存在一定的关系而进行测定的方法。
电分析化学是利用物质的电学和电化学性质进行表征和测量的科学,它是电化学和分析化学学科的重要组成部分,与其它学科,如物理学、电子学、计算机科学、材料科学以及生物学等有着密切的关系。电分析化学已经建立了比较完整的理论体系。电分析化学既是现代分析化学的一个重要分支,又是一门表面科学,在研究表面现象和相界面过程中发挥着越来越重要的作用。
电化学分析法是应用电化学原理和技术,利用化学电池内被分析溶液的组成及含量与其电化学性质的关系而建立起来的一类分析方法,其操作方便。许多电化学分析法既可定性,又可定量;既能分析有机物,又能分析无机物,并且许多方法便于自动化,在生产等各个领域有着广泛的应用。
Ⅶ 电化学原理的目录
第1章 绪论
1.1 电化学科学的研究对象
1.2 电化学科学在实际生活中的应用
1.2.1 电化学工业
1.2.2 化学电源
1.2.3 金属的腐蚀与防护
1.3 电化学科学的发展简史和发展趋势
1.3.1 电化学科学的发展简史
1.3.2 电化学的发展趋势
1.4 电解质溶液的电导
1.4.1 电解质溶液的电导
1.4.2 离子淌度
1.4.3 离子迁移数
1.5 电解质溶液的活度与活度系数
1.5.1 复习有关活度的基本概念
1.5.2 离子活度和电解质活度
1.5.3 离子强度定律
思考题
例题
习题
第2章 电化学热力学
2.1 相间电位和电极电位
2.1.1 相间电位
2.1.2 金属接触电位
2.1.3 电极电位
2.1.4 绝对电位和相对电位
2.1.5 液体接界电位
2.2 电化学体系
2.2.1 原电池(自发电池)
2.2.2 电解池
2.2.3 腐蚀电池
2.2.4 浓差电池
2.3 平衡电极电位
2.3.1 电极的可逆性
2.3.2 可逆电极的电位
2.3.3 电极电位的测量
2.3.4 可逆电极类型
2.3.5 标准电极电位和标准电化序
2.4 不可逆电极
2.4.1 不可逆电极及其电位
2.4.2 不可逆电极类型
2.4.3 可逆电位与不可逆电极电位的判别
2.4.4 影响电极电位的因素
2.5 电位pH图
2.5.1 化学反应和电极反应的平衡条件
2.5.2 水的电化学平衡图
2.5.3 金属的电化学平衡图
2.5.4 电位pH图的局限性
思考题
例题
习题
第3章 电极/溶液界面的结构与性质
3.1 概 述
3.1.1 研究电极/溶液界面性质的意义
3.1.2 理想极化电极
3.2 电毛细现象
3.2.1 电毛细曲线及其测定
3.2.2 电毛线曲线的微分方程
3.2.3 离子表面剩余量
3.3 双电层的微分电容
3.3.1 双电层的电容
3.3.2 微分电容的测量
3.3.3 微分电容曲线
3.4 双电层的结构
3.4.1 电极/溶液界面的基本结构
3.4.2 斯特恩(Stern)模型
3.4.3 紧密层的结构
3.5 零电荷电位
3.6 电极/溶液界面的吸附现象
3.6.1 无机离子的吸附
3.6.2 有机物的吸附
3.6.3 氢原子和氧的吸附
思考题
例题
习题
第4章 电极过程概述
4.1 电极的极化现象
4.1.1 什么是电极的极化
4.1.2 电极极化的原因
4.1.3 极化曲线
4.1.4 极化曲线的测量
4.2 原电池和电解池的极化图139
4.3 电极过程的基本历程和速度控制步骤
4.3.1 电极过程的基本历程
4.3.2 电极过程的速度控制步骤
4.3.3 准平衡态
4.4 电极过程的特征
思考题
例题
习题
第5章 液相传质步骤动力学
5.1 液相传质的三种方式
5.1.1 液相传质的三种方式
5.1.2 液相传质三种方式的相对比较
5.1.3 液相传质三种方式的相互影响
5.2 稳态扩散过程
5.2.1 理想条件下的稳态扩散
5.2.2 真实条件下的稳态扩散过程
5.2.3 旋转圆盘电极
5.2.4 电迁移对稳态扩散过程的影响
5.3 浓差极化的规律和浓差极化的判别方法
5.3.1 浓差极化的规律
5.3.2 浓差极化的判别方法
5.4 非稳态扩散过程
5.4.1 菲克第二定律
5.4.2 平面电极上的非稳态扩散
5.4.3 球形电极上的非稳态扩散
5.5 滴汞电极的扩散电流
5.5.1 滴汞电极及其基本性质
5.5.2 滴汞电极的扩散极谱电流——依科维奇(Ilkovic)公式
5.5.3 极谱波
思考题
例题
习题
第6章 电子转移步骤动力学
6.1 电极电位对电子转移步骤反应速度的影响
6.1.1 电极电位对电子转移步骤活化能的影响
6.1.2 电极电位对电子转移步骤反应速度的影响
6.2 电子转移步骤的基本动力学参数
6.2.1 交换电流密度j
6.2.2 交换电流密度与电极反应的动力学特性
6.2.3 电极反应速度常数K
6.3 稳态电化学极化规律
6.3.1 电化学极化的基本实验事实
6.3.2 巴特勒伏尔摩(ButlerVolmer)方程
6.3.3 高过电位下的电化学极化规律
6.3.4 低过电位下的电化学极化规律
6.3.5 稳态极化曲线法测量基本动力学参数
6.4 多电子的电极反应
6.4.1 多电子电极反应
6.4.2 多电子转移步骤的动力学规律
6.5 双电层结构对电化学反应速度的影响(ψ1效应)
6.6 电化学极化与浓差极化共存时的动力学规律
6.6.1 混合控制时的动力学规律
6.6.2 电化学极化规律和浓差极化规律的比较
6.7 电子转移步骤量子理论简介
6.7.1 电子跃迁的隧道效应
6.7.2 弗兰克康东(FrankCondon)原理
6.7.3 金属和溶液中电子能级的分布
6.7.4 电极/溶液界面的电子跃迁
6.7.5 平衡电位下和电极极化时的电子跃迁
思考题
例题
习题
第7章 气体电极过程
7.1 研究氢电极过程的重要意义
7.1.1 氢电极
7.1.2 研究氢电极过程的意义
7.2 氢电极的阴极过程
7.2.1 氢离子在阴极上的还原过程
7.2.2 析氢过电位及其影响因素
7.2.3 析氢反应过程的机理
7.3 氢电极的阳极过程
7.4 研 究氧电极过程的意义和存在的困难
7.4.1 研究氧电极过程的意义
7.4.2 研究氧电极过程的困难
7.5 氧的阳极析出反应
7.5.1 氧的析出过程
7.5.2 氧过电位
7.5.3 氧电极阳极过程的可能机理
7.6 氧的阴极还原过程
7.6.1 氧阴极还原反应的基本历程
7.6.2 氧在汞表面上阴极还原的反应历程
思考题
习题
第8章 金属的阳极过程
8.1 金属阳极过程的特点
8.2 金属的钝化
8.2.1 金属钝化的原因
8.2.2 成相膜理论
8.2.3 吸附理论
8.3 影响金属阳极过程的主要因素
8.3.1 金属本性的影响
8.3.2 溶液组成的影响
8.4 钝态金属的活化
思考题
习题
第9章 金属的电沉积过程
9.1 金属电沉积的基本历程和特点
9.1.1 金属电沉积的基本历程
9.1.2 金属电沉积过程的特点
9.2 金属的阴极还原过程
9.2.1 金属离子从水溶液中阴极还原的可能性
9.2.2 简单金属离子的阴极还原
9.2.3 金属络离子的阴极还原
9.3 金属电结晶过程
9.3.1 盐溶液中的结晶过程
9.3.2 电结晶形核过程
9.3.3 在已有晶面上的延续生长
思考题
习题
第10章 半导体电化学与光电化学基础
10.1 半导体的基本性质
10.1.1 半导体的能带结构简介
10.1.2 半导体中的状态密度与载流子的分布
10.2 半导体/溶液界面的结构与性质
10.2.1 半导体/溶液界面的基本图像
10.2.2 空间电荷层的不同表现形式
10.2.3 半导体/溶液界面的电位分布
10.3 半导体/溶液界面上的电荷传递
10.3.1 平衡电位下的电荷传递
10.3.2 非平衡条件下(极化时)的电荷传递
10.4 半导体/溶液界面上的光电化学
10.4.1 半导体/溶液界面的光电效应
10.4.2 光电化学电池
思考题
第11章 化学电源
11.1 化学电池的基本性能
11.1.1 电池电动势
11.1.2 充、放电过程中的电极极化及端电压随时间的变化
11.1.3 容量
11.1.4 自放电
11.1.5 电池的效率
11.2 电池反应动力学
11.2.1 伴有离子和电子传递的固相反应
11.2.2 反应生成物参与的固、液相反应
11.2.3 反应生成物溶解、再析出反应
11.3 一次电池
11.3.1 锰干电池
11.3.2 碱锰电池
11.4 二次电池339
11.4.1 铅酸蓄电池
11.4.2 碱性蓄电池
11.4.3 镍金属氢化物电池
思考题
第12章 燃料电池
12.1 燃料电池的基本概念、基本原理和分类
12.1.1 燃料电池的概念、特点及其发展史
12.1.2 燃料电池的基本原理
12.1.3 燃料电池的分类方法
12.2 燃料电池的效率及其影响因素
12.2.1 燃料电池的效率
12.2.2 影响燃料电池实际效率的因素
12.3 碱性燃料电池
12.3.1 碱性燃料电池的工作原理
12.3.2 碱性燃料电池的关键部件
12.4 磷酸燃料电池
12.4.1 磷酸燃料电池的工作原理
12.4.2 磷酸燃料电池的关键部件
12.5 质子交换膜燃料电池
12.5.1 质子交换膜燃料电池的工作原理
12.5.2 质子交换膜燃料电池的关键部件
12.6 熔融碳酸盐燃料电池
12.6.1 熔融碳酸盐燃料电池的工作原理
12.6.2 熔融碳酸盐燃料电池的关键部件
12.7 固体氧化物燃料电池
12.7.1 固体氧化物燃料电池的工作原理
12.7.2 固体氧化物燃料电池的关键部件
思考题
部分习题答案
附录
参考文献
Ⅷ 电分析化学的电位介绍
电极:在电化学电池中赖以进行电极反应和传导电流从而构成回路的部分。电极的电极电位:在电极与溶液的两相界面上,存在的电位差即为电极的电极电位。一个化学电池包括有各种物质相的接触,如固体一溶液,溶液一溶液,固体一固体,溶液一气体等.在两相接触的界面上,它们的性质与相内是不同的.无论是哪种相间的接触,在它们的界面上都存在着电位差.两不同物相间的电位差,称为电极电位.
电极电位的测量:选用标准氢电极为标准,规定它的电极电位在任何温度下的电极电位等于零。然后将其它电极与它组成原电池
,通过测定此原电池的电动势,就可以得到其它电极相对于标准氢电极的电极电位值。
1
带电质点在两相间的转移
图8.3
相间离子迁移产生电位差示意图
(固-液两相接触的瞬间)
2
某些阳离于或阴离子在相界面附近的某一相内选择性吸附
.
图8.4
相间由离子吸附产生电位差示意图
3
不带电的偶极质点(如有机极性分子和小偶极子)在界面附近的定向吸附.
图8.5
偶极分子定向吸附产生的电位差示意图
(一),液接电位的形成
当两个不同种类或不同浓度的溶液直接接触时,由于浓度梯度或离子扩散使离子在相界面上产生迁移.当这种迁移速率不同时会产生电位差或称产生了液接电位,它不是电极反应所产生,因此会影响电池电动势的测定,实际工作中应消除.
(二),液接电位的消除——盐桥(Salt
bridge)
盐桥的制作:加入3%琼脂于饱和KCl溶液(4.2M),加热混合均匀,注入到U形管中,冷却成凝胶,两端以多孔沙芯(porous
plug)密封防止电解质溶液间的虹吸
而发生反应,但仍形成电池回路.由于K+和Cl-离子的迁移或扩散速率相当,因而液接电位很小.通常为
1
2
mV.
图8.6
液体接界电位
盐桥是联接和隔离不同电解质的重要装置
(1)作用
接通电路,消除或减小液接电位.
(2)使用条件
a.盐桥中电解质不含有被测离子.
b.电解质的正负离子的迁移率应该基本相等.
c.要保持盐桥内离子浓度的离子强度5~10倍于被测溶液.常用作盐桥的电解质有:KCl,NH4Cl,KNO3等.
试液‖KCl(饱和~4mol/L)|Hg2Cl2,Hg
电极电位的计算——能斯特方程式:
对电极反应:aA+bB+­;…+ne=cC+dD
…
其电极电位可由下式计算:E=E⊙+RTIn(AaAb/AcAd)/NF
Ⅸ 电化学体系钟的双电层是什么,和电容又是什么关系
双电层
任何两个不同的物相接触都会在两相间产生电势,这是因电荷分离引起的。两相各有过剩的电荷,电量相等,正负号相反,相与吸引,形成双电层。
在两种不同物质的界面上,正负电荷分别排列成的面层。在溶液中,固体表面常因表面基团的解离或自溶液中选择性地吸附某种离子而带电。由于电中性的要求,带电表面附近的液体中必有与固体表面电荷数量相等但符号相反的多余的反离子。带电表面和反离子构成双电层
和电容没听说过
Ⅹ 简述电位分析法的原理,分类及应用
电化学分析法电位分析法
直接电位法
电位滴定法
库仑分析法
控制电位库仑分析法
恒电流库仑滴定法
伏安分析法
极谱分析法
将化学反应转变为电能的装置。锌电极插入znso4溶液,同电极插入cuso4溶液,两种溶液用多孔隔板或半透膜隔开,便构成了一个原电池。当锌、铜两电极用导线与外电路的负载(用电器)连接时,由电子从锌极经负载流向铜极(电流从铜极经负载流向锌极)。该原电池发生如下电极反应和电池反应。
电极反应:
锌极(阳极)(-)
电位分析法
铜极(阴极)(+)
电位分析法
电池反应:
电位分析法
该原电池的锌电极称作阳极,也称负极;铜电极称作阴极,也称正极。
电位分析法
将电能转变为化学反应能的装置。
电解cuso4溶液
电离:2cuso4=2cu2++2so
4h2o4h++4oh-
电解:阴极:(溶液中离子得到流入c棒上的电子,cu折出)
阳极:4oh--4e2h2o+o2(溶液中oh-离子失电子,电子从c棒上流出,放出o2)
将上述各方程式合并得总反应方程式:
2cuso4+2h2o2cu+2h2so4+o2
向左转|向右转