① 什么是化学它有哪些分支简要说明每一分支的发展历程。
化学(chemistry)是研究物质的组成、结构、性质、以及变化规律的科学。世界是由物质组成的,化学则是人类用以认识和改造物质世界的主要方法和手段之一,它是一门历史悠久而又富有活力的学科,它的成就是社会文明的重要标志。
无机化学
元素化学、无机合成化学、无机高分子化学、无机固体化学、配位化学(即络合物化学)、同位素化学、生物无机化学、金属有机化学、金属酶化学等。
有机化学
普通有机化学、有机合成化学、金属和非金属有机化学、物理有机化学、生物有机化学、有机分析化学。
物理化学
结构化学、热化学、化学热力学、化学动力学、电化学、溶液理论、界面化学、量子化学、催化作用及其理论等。[1]分析化学化学分析、仪器和新技术分析。
高分子化学
天然高分子化学、高分子合成化学、高分子物理化学、高聚物应用、高分子物力。
核化学
放射性元素化学、放射分析化学、辐射化学、同位素化学、核化学。
生物化学
一般生物化学、酶类、微生物化学、植物化学、免疫化学、发酵和生物工程、食品化学等。
其它与化学有关的边缘学科还有:地球化学、海洋化学、大气化学、环境化学、宇宙化学、星际化学等。
② 工业催化是有机化学吗
工业催化涉及的内容有:
无极化学,物理化学,络合物化学,结构化学。
有机化学仅仅是一个方面。涉及的是:
有机化学中的催化反应;
用有机化学设计催化剂。
催化剂所涉及的有机配体。
③ 催化剂的研究属于燃烧化学动力学么
反应活化能是动力学研究范畴,它可以用来计算反应速率与反应物、催化剂浓度之间的关系。而实际耗能是热力学范畴,它可以计算反应在什么情况下可以自发发生和反应吸热或放热的大小。由热力学计算出的自发反应不一定能够发生。因为它的反应速率可能很慢,比如氢气和氧气混合,无催化剂在室温下根本无法反应,所以需要动力学计算反应活化能以及频率因子,使反应加快或减慢(通过改变温度或催化剂)。化学动力学是物理化学的一个重要分支学科,其所要探讨的主要课题是从动态角度由宏观唯象到微观分子水平探索化学反应全过程的速率和机理,即研究化学反应过程的速率,化学反应过程中诸内因(结构、性质等)和外因(浓度、温度、催化剂、辐射等)对反应速率(包括方向变化)的影响以及探讨能够解释这种反应速率规律的可能机理,为最优化提供理论根据,以满足生产和科学技术的要求。化学动力学和化学热力学都是物理化学两大重要分支学科,它们各有不同的研究内容。化学热力学的任务是讨论化学过程中能量转化的衡算以及解决在一定条件下进行某一化学反应的方向和限度问题。它讨论体系的平衡性质,不考虑时间因素和过程细节。而化学动力学研究完成化学反应过程所需时间、影响条件以及实现这一过程的具体步骤(机理)。一句话,化学热力学只回答化学反应的可能性问题;而化学动力学才回答化学反应的现实性问题。阿仑尼乌斯(arrhenius)公式:
k=a*e^(-ea/rt)
活化分子具有的最低(或平均)动能与分子平均动能的差值,就成为活化能ea。一般化学反应的活化能在42~420kj/mol之间。
1.
温度与反应速率呈指数关系,即影响显着;
2.
a(指前因子,和何种反应有关)相似的化学反应,活化能相对小的,反应速率相对大;
3.
温度一定,活化能越大的反应,反应速率越小;温度变化时,活化能越大的反应,反应速率变化越大。应用到工业生产中,不仅需要考虑要为反应提供多少能量(热力学),还要考虑反应速率的大小(动力学),否则产品生产速率太低。例如合成氨的反应是一个放热的、气体总体积缩小的可逆反应,在实际生产中,仅仅考虑如何最大限度地提高平衡混合物中nh3的含量问题(化学平衡的移动问题,热力学)还不行,还需要考虑单位时间里的产量问题(化学反应速率问题,动力学)。热力学要求低温高压使反应能够发生,动力学可以考虑加催化剂以加快反应进行。但在低温下反应速率太低,所以动力学要求适当提高温度,但不能太高,否则产率低(热力学原理),故一般控制在500度.
建议你最好看看《物理化学》
④ 催化化学属于什么范畴
一般属于物理化学
⑤ 化学总的有哪些分支学科
化学在发展过程中,依照所研究的分子类别和研究手段、目的、任务的不同,派生出不同层次的许多分支。在20世纪20年代以前,化学传统地分为无机化学、有机化学、物理化学和分析化学四个分支。20年代以后,由于世界经济的高速发展,化学键的电子理论和量子力学的诞生、电子技术和计算机技术的兴起,化学研究在理论上和实验技术上都获得了新的手段,导致这门学科从30年代以来飞跃发展,出现了崭新的面貌。化学内容一般分为生物化学、有机化学、高分子化学、应用化学和化学工程学、物理化学、无机化学等七大类共80项,实际包括了七大分支学科。
根据当今化学学科的发展以及它与天文学、物理学、数学、生物学、医学、地学等学科相互渗透的情况,化学可作如下分类:
1、无机化学
元素化学、无机合成化学、无机高分子化学、无机固体化学、配位化学(即络合物化学)、同位素化学、生物无机化学、金属有机化学、金属酶化学等。
有机化学
2、普通有机化学、有机合成化学、金属和非金属有机化学、物理有机化学、生物有机化学、有机分析化学。
3、物理化学
结构化学、热化学、化学热力学、化学动力学、电化学、溶液理论、界面化学、胶体化学、量子化学、催化作用及其理论等。
4、分析化学
化学分析、仪器和新技术分析。包括性能测定、监控、各种光谱和光化学分析、各种电化学分析方法、质谱分析法、各种电镜、成像和形貌分析方法,在线分析、活性分析、实时分析等,各种物理化学性能和生理活性的检测方法,萃取、离子交换、色谱、质谱等分离方法,分离分析联用、合成分离分析三联用等。
5、高分子化学
天然高分子化学、高分子合成化学、高分子物理化学、高聚物应用、高分子物理。
6、核化学
放射性元素化学、放射分析化学、辐射化学、同位素化学、核化学。
生物化学
7、一般生物化学、酶类、微生物化学、植物化学、免疫化学、发酵和生物工程、食品化学、煤化学等。
其它与化学有关的边缘学科还有:地球化学、海洋化学、大气化学、环境化学、宇宙化学、星际化学等。
⑥ 催化反应是如何服务四大化学的
有机化学 又称为碳化合物的化学,是研究有机化合物的结构、性质、制备的学科,是化学中极重要的一个分支。含碳化合物被称为有机化合物是因为以往的化学家们认为含碳物质一定要由生物(有机体)才能制造;然而在1828年的时候,德国化学家弗里德里希·维勒,在实验室中成功合成尿素(一种生物分子),自此以后有机化学便脱离传统所定义的范围,扩大为含碳物质的化学。
“有机化学”(Organic Chemistry)这一名词于1806年首次由贝采里乌斯提出。当时是作为“无机化学”的对立物而命名的。由于科学条件限制,有机化学研究的对象只能是从天然动植物有机体中提取的有机物。因而许多化学家都认为,在生物体内由于存在所谓“生命力”,才能产生有机化合物,而在实验室里是不能由无机化合物合成的。
1824年,德国化学家维勒从氰经水解制得草酸;1828年他无意中用加热的方法又使氰酸铵转化为尿素。氰和氰酸铵都是无机化合物,而草酸和尿素都是有机化合物。维勒的实验结果给予“生命力”学说第一次冲击。此后,乙酸等有机化合物相继由碳、氢等元素合成,“生命力”学说才逐渐被人们抛弃。
由于合成方法的改进和发展,越来越多的有机化合物不断地在实验室中合成出来,其中,绝大部分是在与生物体内迥然不同的条件下合成出来的。“生命力”学说渐渐被抛弃了,“有机化学”这一名词却沿用至今。
有机化合物和无机化合物之间没有绝对的分界。有机化学之所以成为化学中的一个独立学科,是因为有机化合物确有其内在的联系和特性。
位于周期表当中的碳元素,一般是通过与别的元素的原子共用外层电子而达到稳定的电子构型的(即形成共价键)。这种共价键的结合方式决定了有机化合物的特性。大多数有机化合物由碳、氢、氮、氧几种元素构成,少数还含有卤素和硫、磷、氮等元素。因而大多数有机化合物具有熔点较低、可以燃烧、易溶于有机溶剂等性质,这与无机化合物的性质有很大不同。
在含多个碳原子的有机化合物分子中,碳原子互相结合形成分子的骨架,别的元素的原子就连接在该骨架上。在元素周期表中,没有一种别的元素能像碳那样以多种方式彼此牢固地结合。由碳原子形成的分子骨架有多种形式,有直链、支链、环状等。
在有机化学发展的初期,有机化学工业的主要原料是动、植物体,有机化学主要研究从动、植物体中分离有机化合物。
19世纪中到20世纪初,有机化学工业逐渐变为以煤焦油为主要原料。合成染料的发现,使染料、制药工业蓬勃发展,推动了对芳香族化合物和杂环化合物的研究。30年代以后,以乙烯为原料的有机合成兴起。40年代前后,有机化学工业的原料又逐渐转变为以石油和天然气为主,发展了合成橡胶、合成塑料和合成纤维工业。由于石油资源将日趋枯竭,以煤为原料的有机化学工业必将重新发展。当然,天然的动、植物和微生物体仍是重要的研究对象。
有机化学研究手段的发展经历了从手工操作到自动化、计算机化,从常量到超微量的过程。
20世纪40年代前,用传统的蒸馏、结晶、升华等方法来纯化产品,用化学降解和衍生物制备的方法测定结构。后来,各种色谱法、电泳技术的应用,特别是高压液相色谱的应用改变了分离技术的面貌。各种光谱、能谱技术的使用,使有机化学家能够研究分子内部的运动,使结构测定手段发生了革命性的变化。
电子计算机的引入,使有机化合物的分离、分析方法向自动化、超微量化方向又前进了一大步。带傅里叶变换技术的核磁共振谱和红外光谱又为反应动力学、反应机理的研究提供了新的手段。这些仪器和x射线结构分析、电子衍射光谱分析,已能测定微克级样品的化学结构。用电子计算机设计合成路线的研究也已取得某些进展。
未来有机化学的发展首先是研究能源和资源的开发利用问题。迄今我们使用的大部分能源和资源,如煤、天然气、石油、动植物和微生物,都是太阳能的化学贮存形式。今后一些学科的重要课题是更直接、更有效地利用太阳能。
对光合作用做更深入的研究和有效的利用,是植物生理学、生物化学和有机化学的共同课题。有机化学可以用光化学反应生成高能有机化合物,加以贮存;必要时则利用其逆反应,释放出能量。另一个开发资源的目标是在有机金属化合物的作用下固定二氧化碳,以产生无穷尽的有机化合物。这几方面的研究均已取得一些初步结果。
其次是研究和开发新型有机催化剂,使它们能够模拟酶的高速高效和温和的反应方式。这方面的研究已经开始,今后会有更大的发展。
20世纪60年代末,开始了有机合成的计算机辅助设计研究。今后有机合成路线的设计、有机化合物结构的测定等必将更趋系统化、逻辑化。
⑦ 什么是催化
催化即通过催化剂改变参加反应的物质的化学反应速率,反应前后催化剂的量和质均不发生改变的反应。在催化剂参与下进行的化学反应称催化反应。催化本质上是一种化学作用,同时也是自然界中普遍存在的重要现象,催化作用几乎遍及化学反应的整个领域。催化有多种形式分类,有均相催化、多相催化、生物催化、金属催化、金属氧化物催化、酸碱催化、配位催化等。各类催化有各自不同的应用领域。
⑧ 有一门叫催化剂研究的研究方向,请问他具体属于什么系的什么专业,化学系还是材料系 又是什么专业
应该是化学系的,只是用到材料合成方法,但不属于材料系。无机非金属材料工程的当然可以搞催化了,实际催化的门槛不高的,都是先凭经验找到高活性的催化剂,在去找原因解释的,可以说得很玄。
⑨ 化学的哪个分支或什么专业可以研究催化剂
无机化学:无机催化剂和催化剂载体的制备,合成,结构和催化无机物反应方面
有机化学: 无机催化剂在有机反应中的应用,有机催化剂(如大分子树脂,相转移催化剂)的
制备,应用,催化剂有机物载体的制备和应用
物理化学:催化剂表面结构,催化机理和催化反应历程
分析化学:分析化学中催化剂的应用,某些天然催化剂和人工合成催化剂的成份分析