导航:首页 > 化学知识 > 甲烷到乙酸有哪些化学键断裂

甲烷到乙酸有哪些化学键断裂

发布时间:2022-07-25 20:57:13

A. 高一有机化学(从甲烷一直到乙酸)

烷烃的结构通式:CnHn+2 烯烃的结构通式:CnHn 醇的特点是带有一个羟基(-OH) 乙酸的特点则是带一个羧基(-COOH) 学这一章的要点则是:1要知到区分烷烃,烯烃。2了解取代反应,加成反应,酯化反应。3知道什么是同系物,什么是同分异构体。 补充:碳碳单键则能发生取代反应,如果是碳碳双键则能发生加成反应。而处于两者之间的(如苯的键则处于单键和双键之间)则两种反应都可发生

B. 甲烷和氯气反应中什么化学键最先断裂

氯气的化学键先断裂,因为在光照下Cl-Cl发生断裂,生成Cl·,再与甲烷发生反应:Cl·+CH4=CH3·+HCl

C. 高一必修二 乙烯、甲烷、乙醇、乙酸、苯的所有反应和各种物理性质和化学性质————麻烦写全 拜托了

乙烯乙烯是由两个碳原子和四个氢原子组成的化合物。两个碳原子之间以双键连接。乙烯是合成纤维、合成橡胶、合成塑料(聚乙烯及聚氯乙烯)、合成乙醇(酒精)的基本化工原料,也用于制造氯乙烯、苯乙烯、环氧乙烷、醋酸、乙醛、乙醇和炸药等,尚可用作水果和蔬菜的催熟剂,是一种已证实的植物激素。
分子结构
这烃有4个氢原子的约束,碳原子之间以双键连接。所有6个原子组成的乙烯是共面。H-C-C角是121.3°;H-C-H角是117.4 °,接近120 °,为理想sp 2混成轨域。这种分子也比较僵硬:旋转C-C键是一个高吸热过程,需要打破π键,而保留σ键之间的碳原子。 双键是一个高电子密度的地区,因而大部分反应发生在这个位置。
编辑本段三、危险性概述
危险性类别: 侵入途径: 吸入 健康危害: 具有较强的麻醉作用。急性中毒:吸入高浓度乙烯可立即引起意识丧失,无明显的兴奋期,但吸入新鲜空气后,可很快苏醒。对眼及呼吸道粘膜有轻微刺激性。液态乙烯可致皮肤冻伤。慢性影响:长期接触,可引起头昏、全身不适、乏力、思维不集中。个别人有胃肠道功能紊乱。 环境危害: 对环境有危害,对水体、土壤和大气可造成污染。 燃爆危险: 本品易燃。
编辑本段四、急救措施
皮肤接触: 若有冻伤,就医治疗。 眼睛接触: 立即提起眼睑,用大量流动清水或生理盐水彻底冲洗至少15分钟。就医。 吸入: 迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。 食入: 饮足量温水,催吐。就医。
编辑本段五、消防措施
危险特性: 易燃,与空气混合能形成爆炸性混合物。遇明火、高热或与氧化剂接触,有引起燃烧爆炸的危险。与氟、氯等接触会发生剧烈的化学反应。 有害燃烧产物: 一氧化碳。 灭火方法: 切断气源。若不能切断气源,则不允许熄灭泄漏处的火焰。喷水冷却容器,可能的话将容器从火场移至空旷处。灭火剂:泡沫、二氧化碳、干粉。
编辑本段六、泄漏应急处理
应急处理: 迅速撤离泄漏污染区人员至上风处,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿防静电工作服。尽可能切断泄漏源。合理通风,加速扩散。喷雾状水稀释。如有可能,将漏出气用排风机送至空旷地方或装设适当喷头烧掉。漏气容器要妥善处理,修复、检验后再用。
编辑本段七、操作处置与储存
操作注意事项: 密闭操作,全面通风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员穿防静电工作服。远离火种、热源,工作场所严禁吸烟。使用防爆型的通风系统和设备。防止气体泄漏到工作场所空气中。避免与氧化剂、卤素接触。在传送过程中,钢瓶和容器必须接地和跨接,防止产生静电。搬运时轻装轻卸,防止钢瓶及附件破损。配备相应品种和数量的消防器材及泄漏应急处理设备。 储存注意事项: 储存于阴凉、通风的库房。远离火种、热源。库温不宜超过30℃。应与氧化剂、卤素分开存放,切忌混储。采用防爆型照明、通风设施。禁止使用易产生火花的机械设备和工具。储区应备有泄漏应急处理设备。
编辑本段八、接触控制/个体防护
职业接触限值 中国MAC(mg/m3): 未制定标准 前苏联MAC(mg/m3): 100 TLVTN: ACGIH 窒息性气体 TLVWN: 未制定标准 监测方法: 工程控制: 生产过程密闭,全面通风。 呼吸系统防护: 一般不需要特殊防护,高浓度接触时可佩戴自吸过滤式防毒面具(半面罩)。 眼睛防护: 一般不需特殊防护。必要时,戴化学安全防护眼镜。 身体防护: 穿防静电工作服。 手防护: 戴一般作业防护手套。 其他防护: 工作现场严禁吸烟。避免长期反复接触。进入罐、限制性空间或其它高浓度区作业,须有人监护。
编辑本段九、理化特性
主要成分: 含量≥99.95% (以体积计)。 外观与性状: 无色气体,略具烃类特有的臭味。 少量乙烯具有淡淡的甜味。 吸收峰:吸收带在远紫外区 pH:水溶液是中性 熔点(℃): -169.4 沸点(℃): -103.9 相对密度(水=1): 0.61 相对蒸气密度(空气=1): 0.98 饱和蒸气压(kPa): 4083.40(0℃) 燃烧热(kJ/mol):1411.0 临界温度(℃): 9.2 临界压力(MPa): 5.04 辛醇/水分配系数的对数值: 无资料 闪点(fp): 无意义 引燃温度(℃): 425 爆炸上限%(V/V): 36.0 爆炸下限%(V/V): 2.7 溶解性: 不溶于水,微溶于乙醇、酮、苯,溶于醚。溶于四氯化碳等有机溶剂。 主要用途: 用于制聚乙烯(自身加成)、聚氯乙烯、醋酸等,还可用来催熟水果。 其它理化性质: 可以和酸性高锰酸钾发生氧化还原反应,乙烯作为还原剂,被氧化成二氧化碳。酸性高锰酸钾被还原而褪色。 方程式:CH2=CH2→CO2 KMno4→MnSO4,K2SO4,H2O 还可以和溴的四氯化碳发生加成反应,溴的四氯化碳溶液会褪色 方程式:CH2=CH2+Br2→CH2—CH2 ∣ ∣ Br Br
编辑本段十、稳定性和反应活性
稳定性: 禁配物: 强氧化剂、卤素。 避免接触的条件: 聚合危害: 分解产物:
编辑本段十一、毒理学资料
急性毒性: LD50:无资料 LC50:无资料 亚急性和慢性毒性: 刺激性: 致敏性: 致突变性: 致畸性: 致癌性:
编辑本段十二、生态学资料
生态毒理毒性; 生物降解性; 非生物降解性; 生物富集或生物积累性; 生态学作用:乙烯 早在20世纪初就发现用煤气灯照明时有一种气体能促进绿色柠檬变黄而成熟,这种气体就是乙烯。但直至60年代初期用气相层析仪从未成熟的果实中检测出极微量的乙烯后,乙烯才被列为植物激素。而不能相反。乙烯广泛存在于植物的各种组织、器官中,是由蛋氨酸在供氧充足的条件下转化而成的。它的产生具有“自促作用”,即乙烯的积累可以刺激更多的乙烯产生。乙烯可以促进RNA和蛋白质的合成,在高等植物体内,并使细胞膜的透性增加, 生长素在低等和高等植物中普遍存在。加速呼吸作用。因而果实中乙烯含量增加时,已合成的生长素又可被植物体内的酶或外界的光所分解,可促进其中有机物质的转化,加速成熟。乙烯也有促进器官脱落和衰老的作用。用乙烯处理黄化幼苗茎可使茎加粗和叶柄偏上生长。则吲哚乙酸通过酶促反应从色氨酸合成。乙烯还可使瓜类植物雌花增多,在植物中,促进橡胶树、漆树等排出乳汁。乙烯是气体,1934年荷兰F.克格尔等从人尿得到生长素的结晶,在田间应用不方便。它正是引起胚芽鞘伸长的物质。一种能释放乙烯的液体化合物2-氯乙基膦酸(商品名乙烯利)已广泛应用于果实催熟、棉花采收前脱叶和促进棉铃开裂吐絮、刺激橡胶乳汁分泌、水稻矮化、增加瓜类雌花及促进菠萝开花等。 其它有害作用: 该物质对环境有危害,对鱼类应给予特别注意。还应特别注意对地表水、土壤、大气和饮用水的污染。 乙烯是一种气体激素:在成熟的组织释放乙烯较少,而在分生组织,萌发的种子、凋谢的花朵和成熟过程中的果实乙烯的产量较大。 生理效应:1)乙烯“三重反应”(triple response of ethylene):①抑制茎的伸长生长;②促进茎和根的增粗;②促进茎的横向增长;2)促进果实成熟,常用乙烯利溶液浸泡未完全成熟的番茄、苹果、梨、香蕉、柿子等果实能显着促进成熟;3)促进脱落和衰老(乙烯在花、叶和果实的脱落方面起着重要的作用);4)促进某些植物的开花与雌花分化。5)其他效应,还可诱导插枝不定根的形成,促进根的生长和分化,打破种子和芽的休眠,诱导次生物质的分泌等。。它存在于成熟的果实;茎的节;衰老的叶子中。
编辑本段十三、废弃处置
废弃物性质: 废弃处置方法: 处置前应参阅国家和地方有关法规。建议用焚烧法处置。 废弃注意事项:
编辑本段十四、运输信息
危险货物编号: 21016 UN编号: 1962 包装标志: 包装类别: O52 包装方法: 钢质气瓶。 运输注意事项: 采用刚瓶运输时必须戴好钢瓶上的安全帽。钢瓶一般平放,并应将瓶口朝同一方向,不可交叉;高度不得超过车辆的防护栏板,并用三角木垫卡牢,防止滚动。运输时运输车辆应配备相应品种和数量的消防器材。装运该物品的车辆排气管必须配备阻火装置,禁止使用易产生火花的机械设备和工具装卸。严禁与氧化剂、卤素等混装混运。夏季应早晚运输,防止日光曝晒。中途停留时应远离火种、热源。公路运输时要按规定路线行驶,勿在居民区和人口稠密区停留。铁路运输时要禁止溜放。
编辑本段十五、法规信息
法规信息 化学危险物品安全管理条例 (1987年2月17日国务院发布),化学危险物品安全管理条例实施细则 (化劳发[1992] 677号),工作场所安全使用化学品规定 ([1996]劳部发423号)等法规,针对化学危险品的安全使用、生产、储存、运输、装卸等方面均作了相应规定;常用危险化学品的分类及标志 (GB 13690-92)将该物质划为第2.1 类易燃气体。
编辑本段十六、主要用途
用途:制造塑料、合成乙醇、乙醛、合成纤维等重要原料 乙烯ethylene CH2=CH2,为一种植物激素。由于具有促进果实成熟的作用,并在成熟前大量合成,所以认为它是成熟激素[2](ripening hormone)。可抑制茎和根的增粗生长、幼叶的伸展、芽的生长、花芽的形成;另一方面可促进茎和根的扩展生长、不定根和根毛的形成、某些种子的发芽、偏上生长、芽弯曲部的形成器官的老化或脱离等。能促进凤梨的开花,促进水稻和水繁缕茎的生长。几乎所有作用的有效气中浓度的阈值为0.0—0.1微升/升,最大值为1—10微升/升。一部分菌类和大部分高等植物均可生成乙烯,而在成熟的果实里可大量的生成。若给营养组织以植物生长素或各种应力(接触、病伤害、药物处理等)则生成量可激增。在生物体内由甲硫氨酸生物合成,其第三、第四位碳转变为乙烯,但合成酶的性质不明。甲硫氨酸脱氨生成的α-酮-4-甲硫丁酸,或后者进一步脱羧生成的甲硫丙醛,在过氧化氢、亚硫酸盐、单酚的存在下由于过氧化物酶的作用而有效地生成乙烯,因此曾被认为是乙烯生物合成的中间体,但甲硫丙醛在生物体内存在尚未被证实。梅普森和沃德尔(L.Mapson.D.Wardale)在体外用转氨酶、过氧化物酶和供给过氧化氢的葡萄糖氧化酶等三种酶的协同作用,显示出由甲硫氨酸合成乙烯的事实,但通过同位素标记化合物的实验,认为此反应系统在体内不起作用。乙烯也有从除甲硫氨酸以外的物质进行生物合成的情况。 聚乙烯
------------------ 乙烯用量最大的是生产聚乙烯,约占乙烯耗量的45%;其次是由乙烯生产的二氯乙烷和氯乙烯;乙烯氧化制环氧乙烷和乙二醇。另外乙烯烃化可制苯乙烯,乙烯氧化制乙醛、乙烯合成酒精、乙烯制取高级醇。
编辑本段十七、主要来源
我国乙烯的主要产地:新疆 克拉玛依 原料来源:由于我国轻烃资源很少,原油偏重,从构成和所占比例来看,我国乙烯原料以石脑油和轻柴油为主,加氢尾油和轻烃所占比例较小,其他只是个别使用。近年来,乙烯原料中石脑油比例逐年上升,轻柴油比例逐年下降,乙烯平均收率逐年提高,乙烯原料向优质化发展,单耗逐年降低。 市场价格:目前西南醋酸乙烯的市场报价9300~9400元/吨。 CFR东北亚 1090-1100 美元/每吨 CFR东南亚 1060-1070 美元/每吨
编辑本段十八、结构与化学性质
从乙烯的结构式可以看出,乙烯分子里含有C=C双键,链烃分子里含有碳碳双键的不饱和烃叫做烯烃。乙烯是分子组成最简单的烯烃。 乙烯分子的空间构型 为了更简单形象地描述乙烯分子的结构,我们常用分子模型来表示(如下图)。在下图中,I 的球棍模型里,两个碳原子间用两根可以弯曲的弹性短棍来连接,用它们来表示双键。在下图中,II 是乙烯分子的比例模型。 乙烯分子的模型 实验表明,乙烯分子里的C=C双键的键长是 1.33×10-10m,乙烯分子里的两个碳原子和四个氢原子都处在同一平面上。它们彼此之间的键角约为120°。乙烯双键的键能是 615kJ/mol,实验测得乙烷C-C单键的键长是1.54×10-10m,键能是348kJ/mol。这表明C=C双键的键能并不是C-C单键键能的两倍,而是比两倍略少。因此,只需要较少的能量,就能使双键里的一个键断裂。这从下面介绍的乙烯的化学性质是可以得到证实。 制取乙烯的原理 乙烯制取方程式
工业上所用的乙烯,主要是从石油炼制工厂和石油化工厂所生产的气体里分离出来的。 实验室里是把酒精和浓硫酸按1:3混合迅速加热到170℃,使酒精分解制得。浓硫酸在反应过程里起催化剂和脱水剂的作用。 制取乙烯的反应属于液——液加热型 乙烯能使酸性KMnO4溶液很快褪色,这是乙烯被高锰酸钾氧化的结果,而甲烷等烷烃却没有这种性质。 实验室制取乙烯装置图
乙烯的化学性质——加成反应 把乙烯通入盛溴水的试管里,可以观察到溴水的红棕色很快消失。 乙烯能跟溴水里的溴起反应,生成无色的1,2-二溴乙烷(CH2Br-CH2Br)液体。 这个反应的实质是乙烯分子里的双键里的一个键易于断裂,两个溴原子分别加在两个价键不饱和的碳原子上,生成了二溴乙烷。这种 有机物分子里不饱和碳原子跟其它原子或原子团直接结合生成别的物质的反应叫做加成反应。 乙烯还能跟氢气、氯气、卤化氢以及水等在适宜的反应条件下起加成反应。 乙烯的化学性质——氧化反应 点燃纯净的乙烯,它能在空气里燃烧,有明亮的火焰,同时发出黑烟。 跟其它的烃一样,乙烯在空气里完全燃烧的时候,也生成二氧化碳和水。但是乙烯分子里含碳量比较大,由于这些碳没有得到充分燃烧,所以有黑烟生成。 乙烯不但能被氧气直接氧化,也能被其它氧化剂氧化。 把乙烯通入盛有高锰酸钾溶液(加几滴稀硫酸)的试管里。可以观察到溶液的紫色很快褪去。 乙烯可被氧化剂高锰酸钾(KMnO4)氧化,使高锰酸钾溶液褪色。用这种方法可以区别甲烷和乙烯。但不能用酸性高锰酸钾除去乙烯. 乙烯的化学性质——聚合反应 在适当温度、压强和有催化剂存在的情况下,乙烯双键里的一个键会断裂,分子里的碳原子能互相结合成为很长的链。 这个反应的化学方程式用右式来表示:nCH2=CH2------------(催化剂) -[-CH2--CH2-]-n 反应的产物是聚乙烯,它是一种分子量很大(几万到几十万)的化合物,分子式可简单写为(C2H4)n。生成聚乙烯这样的反应属于聚合反应。在聚合反应里,分子量小的化合物(单体)分子互相结合成为分子量很大的化合物(高分子化合物)的分子。这种聚合反应也是加成反应,所以又属于加成聚合反应,简称加聚反应。 聚乙烯是一种重要的塑料,由于它性质坚韧,低温时仍能保持柔软性,化学性质稳定,电绝缘性高,在工农业生产和日常生活中有广泛应用。 乙烯分子中碳碳原子间以双键相连, C═C双键的键长比C—C单键的键长略短,C═C双键的键能比两倍C—C单键能略小,所以其中的一个键较易断裂,这就决定了乙烯的化学性质比较活泼。 不饱和烃:分子里含有碳碳双键或碳碳三键,碳原子所结合的氢原子数少于饱和链烃的氢原子数,这种烃叫做不饱和烃。乙烯就是一种最简单的不饱和烃。 2.乙烯的实验室制法 (1)反应原理:CH3CH2OH→浓硫酸、170℃→CH2═CH2↑+H2O (2)发生装置:选用“液+液 气”的反应装置。 (3)收集方法:排水集气法(因乙烯的密度跟空气的密度接近且难溶于水)。 (4)反应类型:消去反应 (5)注意事项: ①反应液中乙醇与浓硫酸的体积比为1∶3。使用过量的浓硫酸可提高乙醇的利用率,增加乙烯的产量。 ②在圆底烧瓶中加少量碎瓷片、沸石或其他惰性固体,目的是防止反应混合物在受热时暴沸。 ③温度计水银球应插在液面下,以准确测定反应液温度。加热时要使温度迅速提高到170℃,以减少乙醚生成的机会(在140℃时会生成乙醚,麻醉性气体)。 ④在制取乙烯的反应中,浓硫酸不但是催化剂、吸水剂,也是氧化剂,在反应过程中易将乙醇氧化,最后生成CO2、CO、C等(因此试管中液体变黑),而硫酸本身被还原成SO2。SO2能使溴水或KMnO4溶液褪色。因此,在做乙烯的性质实验前,应将气体先通过碱石灰将SO2除去,也可以将气体通过10%NaOH溶液以洗涤除去SO2,得到较纯净的乙烯。 ⑤空气中若含3.4%~34%的乙烯,遇明火极易爆炸,爆炸程度比甲烷猛烈,所以点燃乙烯时要小心。 (6)收集方法 乙烯的密度与空气相当,所以不能用排空气取气法,只能用排水法收集。 检验:点燃时火焰明亮,冒黑烟,产物为水和CO2;通入酸性高锰酸钾溶液中,紫色高锰酸钾褪色。 (7)实验现象 生成无色气体,烧瓶内液体颜色逐渐加深 3.乙烯的物理性质 通常情况下,乙烯是一种无色稍有气味的气体,密度为1.25g/L,比空气的密度略小,难溶于水,易溶于四氯化碳等有机溶剂。 4.乙烯的化学性质 (1)氧化反应: ①常温下极易被氧化剂氧化。如将乙烯通入酸性KMnO4溶液,溶液的紫色褪去,乙烯被氧化为二氧化碳,由此可用鉴别乙烯。 ②易燃烧,并放出热量,燃烧时火焰明亮,并产生黑烟。 CH2═CH2+3O2→2CO2+2H2O ③烯烃臭氧化: CH2=CH2+O2—催化剂、加热→2HCHO CH2=CH2+(1/2)O2—Ag、加热→CH2—CH2 \ / O (2)还原反应:CH2=CH2+H2→CH3-CH3 (3)加成反应: CH2═CH2+Br2→ CH2Br—CH2Br(常温下使溴水褪色) CH2═CH2+HCl—催化剂、加热→CH3—CH2Cl(制氯乙烷) CH2═CH2+HOH—催化剂、加热、加压→CH3CH2OH(制酒精) CH2═CH2+H2—Ni或Pd→CH3CH3 (4)加成反应:有机物分子中双键(或三键)两端的碳原子与其他原子或原子团直接结合生成新的化合物的反应。 加聚反应: nCH2═CH2→ -(CH2—CH2)- n (制聚乙烯) 在一定条件下,乙烯分子中不饱和的C═C双键中的一个键会断裂,分子里的碳原子能互相形成很长的键且相对分子质量很大(几万到几十万)的化合物,叫做聚乙烯,它是高分子化合物。 这种由相对分子质量较小的化合物(单体)相互结合成相对分子质量很大的化合物的反应,叫做聚合反应。这种聚合反应是由一种或多种不饱和化合物(单体)通过不饱和键相互加成而聚合成高分子化合物的反应,所以又属于加成反应,简称加聚反应。 最简单的烯烃。分子式CH2=CH2 。少量存在于植物体内,是植物的一种代谢产物,能使植物生长减慢,促进叶落和果实成熟。无色易燃气体。熔点-169℃,沸点-103.7℃。几乎不溶于水,难溶于乙醇,易溶于乙醚和丙酮。 乙烯分子里的 C=C双键的键长是1.33×10 -10 米,乙烯分子里的 2个碳原子和4个氢原子都处在同一个平面上。它们彼此之间的键角约为120°。乙烯双键的键能是615千焦/摩,实验测得乙烷C—C单键的键长是1.54×10 -10 米,键能 348千焦/摩。这表明C=C双键的键能并不是C—C单键键能的两倍,而是比两倍略少。因此,只需要较少的能量,就能使双键里的一个键断裂。这是乙烯的性质活泼,容易发生加成反应等的原因。 在形成乙烯分子的过程中,每个碳原子以 1个2s轨道和2个2p轨道杂化形成3个等同的sp 2 杂化轨道而成键。这 3个sp 2 杂化轨道在同一平面里,互成 120°夹角。因此,在乙烯分子里形成5个σ键,其中4个是C—H键(sp 2 — s)1个是C—C键(sp 2 — sp 2 );两个碳原子剩下未参加杂化的2个平行的p轨道在侧面发生重叠,形成另一种化学键:π键,并和σ键所在的平面垂直。如:乙烯分子里的C=C双键是由一个σ键和一个π键形成的。这两种键的轨道重叠程度是不同的。π键是由p轨道从侧面重叠形成的,重叠程度比σ键从正面重叠要小,所以π键不如σ键牢固,比较容易断裂,断裂时需要的能量也较少。
编辑本段十九、中国乙烯工业的发展
随着中国乙烯工业的发展,供需平衡关系将逐步得到改善,市场竞争则更加激烈。面对以市场国际化、资源国际化、技术与人才国际化、资本国际化为主要特征的经济全球化大趋势,市场占有率主要取决于产品品种、质量和成本。因此,每个乙烯厂应有各自的特色,形成自身的强势,如果只是简单地重复建设,产品结构雷同,则难以形成竞争优势。 中国乙烯存在巨大的市场缺口和消费增长空间,国产乙烯的市场占有率一直较低。为缓解国内乙烯供应紧张,满足国内经济发展需求,虽然中国石油、中国石化和中海油加快实施乙烯扩能计划,但预计到2010年中国乙烯当量消费供需缺口将达1119万吨。从整体情况看,中国乙烯工业还有较大的发展空间。
编辑本段二十、生产方法
由石油分离生产 乙烯是由石油化工裂解而成。在这个过程中,气态或轻液态烃是加热到750-950 ℃ ,诱使许多自由基反应,然后立即淬火冻结的反应。这个过程中,把大型碳氢化合物转换到较小型的碳氢化合物,并反应出不饱和烃。 由煤合成方法 煤合成烯烃(MTO):煤基制烯烃技术,它是C1化工新工艺, 是指以煤气化的合成气合成的甲醇为原料,借助类似催化裂化装置的流化床反应形式,生产低碳烯烃的化工技术。
编辑本段二十一、植物激素
乙烯在植物生理上扮演植物激素的角色。植物体的催熟剂,以气体方式微量作用在植物,刺激或调节果实成熟、开花和植物叶片掉落。因以气体形式扩散,甚至会影响别株植物、其他个体。 在植物体内乙烯合成主要是由甲硫胺酸做起始物,1-胺基环丙烷-1-羧酸(ACC)为关键中间产物。可以天然或人工合成。
编辑本段你知道乙烯有哪些用途吗?
乙烯[3]的主要用途有以下三个方面 1)、乙烯是一种重要的化工原料,可用于制取聚乙烯等一系列化工产品。 2)、乙烯是一种植物生长调节剂,植物在生命周期的许多阶段,如发芽、成长、开花、果熟、衰老、凋谢等都会生成乙烯。 3)、乙烯还可以作为水果的催熟剂,南方产的水果,多数在未成熟时采摘下来,运到北方。向存放未成熟水果的库房中充入少量乙烯,催熟之后再销售。反之,为了延长果实或花朵的寿命,方便远距离运输,人们在装有果实或花朵的密闭容器中放入浸泡过高锰酸钾溶液的硅土,用来吸收水果或花朵中产生的乙烯。

D. 求高二下期化学书甲烷到乙酸这些课里的所有化学方程式!

高中化学
所有有机物的反应
方程式
甲烷燃烧
CH4+2O2→CO2+2H2O(条件为点燃)
甲烷隔绝
空气
高温分解
甲烷分解很复杂,以下是最终分解。CH4→C+2H2(条件为高温高压,催化剂)
甲烷和氯气发生
取代反应
CH4+Cl2→CH3Cl+HCl
CH3Cl+Cl2→CH2Cl2+HCl
CH2Cl2+Cl2→CHCl3+HCl
CHCl3+Cl2→CCl4+HCl
(条件都为光照。

实验室制甲烷
CH3COONa+NaOH→Na2CO3+CH4(条件是CaO
加热)
乙烯
燃烧
CH2=CH2+3O2→2CO2+2H2O(条件为点燃)
乙烯和
溴水
CH2=CH2+Br2→CH2Br-CH2Br
乙烯和水
CH2=CH2+H20→CH3CH2OH
(条件为催化剂)
乙烯和
氯化氢
CH2=CH2+HCl→CH3-CH2Cl
乙烯和
氢气
CH2=CH2+H2→CH3-CH3
(条件为催化剂)
乙烯聚合
nCH2=CH2→-[-CH2-CH2-]n-
(条件为催化剂)
氯乙烯
聚合
nCH2=CHCl→-[-CH2-CHCl-]n-
(条件为催化剂)
实验室制乙烯
CH3CH2OH→CH2=CH2↑+H2O
(条件为加热,浓H2SO4)
乙炔
燃烧
C2H2+3O2→2CO2+H2O
(条件为点燃)
乙炔和溴水
C2H2+2Br2→C2H2Br4
乙炔和氯化氢
两步反应:C2H2+HCl→C2H3Cl--------C2H3Cl+HCl→C2H4Cl2
乙炔和氢气
两步反应:C2H2+H2→C2H4→C2H2+2H2→C2H6
(条件为催化剂)
实验室制乙炔
CaC2+2H2O→Ca(OH)2+C2H2↑
以食盐、水、
石灰石

焦炭

原料
合成聚乙烯的方程式。
CaCO3
===
CaO
+
CO2
2CaO+5C===2CaC2+CO2
CaC2+2H2O→C2H2+Ca(OH)2
C+H2O===CO+H2-----高温
C2H2+H2→C2H4
----乙炔加成生成乙烯
C2H4可聚合
苯燃烧
2C6H6+15O2→12CO2+6H2O
(条件为点燃)
苯和
液溴
的取代
C6H6+Br2→C6H5Br+HBr
苯和
浓硫酸
浓硝酸
C6H6+HNO3→C6H5NO2+H2O
(条件为浓硫酸)
苯和氢气
C6H6+3H2→C6H12
(条件为催化剂)
乙醇
完全燃烧的方程式
C2H5OH+3O2→2CO2+3H2O
(条件为点燃)
乙醇的催化氧化的方程式
2CH3CH2OH+O2→2CH3CHO+2H2O(条件为催化剂)(这是总方程式)
乙醇发生消去反应的方程式
CH3CH2OH→CH2=CH2+H2O
(条件为浓硫酸
170摄氏度)

分子
乙醇发生分子间脱水
2CH3CH2OH→
CH3CH2OCH2CH3
+H2O
(条件为催化剂浓硫酸
140摄氏度)
乙醇和
乙酸
发生
酯化反应
的方程式
CH3COOH+C2H5OH→CH3COOC2H5+H2O
乙酸和镁
Mg+2CH3COOH→(CH3COO)2Mg+H2
乙酸和
氧化钙
2CH3COOH+CaO→(CH3CH2)2Ca+H2O
乙酸和
氢氧化钠
CH3COOCH2CH3+NaOH→CH3COONa+CH3CH2OH
乙酸和碳酸钠
Na2CO3+2CH3COOH→2CH3COONa+H2O+CO2↑
甲醛
和新制的
氢氧化铜
HCHO+4Cu(OH)2→2Cu2O+CO2↑+5H2O
乙醛
和新制的氢氧化铜
CH3CHO+2Cu→Cu2O(沉淀)+CH3COOH+2H2O
乙醛氧化为乙酸
2CH3CHO+O2→2CH3COOH(条件为催化剂或加温)

E. 高二有机化学断键规律是什么高二有机化学里面有很多

一 有机推断的解题模式、方法和思路 \x09有机推断题属于综合应用各类官能团性质、相互转化关系的知识,结合计算并在新情景下 \x09加以迁移的能力题.只有在熟练掌握各类有机物及相互衍变关系的基础上,结合具体的实 \x09验现象和数据,再综合分析,才能作出正确、合理的推断. \x091 有机推断题的解答思维模式: \x09 2 解答有机推断题的常用的解题方法: ①顺推法:以有机物的结构、性质和实验现象为主线,采用正向思维,得出正确结论. ②逆推法:以有机物结构、性质和实验现象为主线,采用逆向思维,得出正确结论 ③夹击法:从反应物和生成物同时出发,以有机物的结构、性质为主线,推出中间过渡产物,从而解决问题并得出正确结论. ④分层推理法:依据题意,分层推理,综合结果,得出正确推论. 3 有机推断题的解题思路: \x09解题的关键是确定突破口.常见的突破口的确定如下: (1) 由性质推断 ①能使溴水褪色的有机物通常含有“—C=C—”、“—C≡C—”等. ②能使酸性高锰酸钾溶液褪色的有机物通常含有“—C=C—”或“—C≡C—”、 “—CHO”或为“苯的同系物”. ③能发生加成反应的有机物通常含有“—C=C—”、“—C≡C—”、“—CHO”或“苯环”, 其中“—CHO”和“苯环”只能与H2发生加成反应. ④能发生银镜反应或能与新制的Cu(OH)2悬浊液反应的有机物必含有“—CHO”. ⑤能与钠反应放出H2的有机物必含有“—OH”. ⑥能与Na2CO3或NaHCO3溶液反应放出CO2或使石蕊试液变红的有机物中必含有-COOH. ⑦能发生消去反应的有机物为醇或卤代烃. ⑧能发生水解反应的有机物为卤代烃、酯、糖或蛋白质. ⑨遇FeCl3溶液显紫色的有机物必含有酚羟基. ⑩能发生连续氧化的有机物是有“—CH2OH”的醇.比如有机物A能发生如下氧化反应:A→B→C,则A应是具有“—CH2OH”的醇,B就是醛,C应是酸.(2)由反应条件推断 ①当反应条件为NaOH醇溶液并加热时,必定为卤代烃的消去反应. ②当反应条件为NaOH水溶液并加热时,通常为卤代烃或酯的水解. ③当反应条件为浓H2SO4并加热时,通常为醇脱水生成醚或不饱化合物,或者是醇与酸的酯化反应. ④当反应条件为稀酸并加热时,通常为酯或淀粉(糖)的水解反应. ⑤当反应条件为催化剂(铜或银)并有氧气时,通常是醇氧化为醛或醛氧化为酸. ⑥当反应条件为催化剂存在下的加氢反应时,通常为碳碳双键 、碳碳叁键、苯环或醛基的加成反应. ⑦当反应条件为光照且与X2反应时,通常是X2与烷或苯环侧链烃基上的H原子发生的取代反应,而当反应条件为催化剂存在且与X2的反应时,通常为苯环上的H原子直接被取代.(3)由反应数据推断 ①根据与H2加成时所消耗H2的物质的量进行突破:1mol—C=C—加成时需1molH2, 1mol—C≡C—完全加成时需2molH2,1mol—CHO加成时需1molH2,而1mol苯环加成时需 3molH2. ②1mol—CHO完全反应时生成2molAg↓或1molCu2O↓. ③2mol—OH或2mol—COOH与活泼金属反应放出1molH2. ④1mol—COOH(足量)与碳酸钠或碳酸氢钠溶液反应放出1molCO2↑. ⑤1mol一元醇与足量乙酸反应生成1mol酯时,其相对分子质量将增加42,1mol二元醇与足量乙酸反应生成酯时,其相对分子质量将增加84. ⑥1mol某酯A发生水解反应生成B和乙酸时,若A与B的相对分子质量相差42,则生成1mol乙酸,若A与B的相对分子质量相差84时,则生成2mol乙酸.(4)由物质结构推断 ①具有4原子共线的可能含碳碳叁键. ②具有3原子共面的可能含醛基. ③具有6原子共面的可能含碳碳双键. ④具有12原子共面的应含有苯环.(5)由物理性质推断在通常状况下为气态的烃,其碳原子数均小于或等于4,而烃的衍生物中只有 CH3Cl、HCHO在通常情况下是气态. 此外还有:结合断键机理和逆向推理思维分析残基结构、分子式结合不饱和度为突破口. \x09二 确定有机物同分异构体的数目和结构的方法主要有: ①对称法(根据有机物的结构找出有机物的对称关系,然后确定有机物的同分异构体的数目,主要包括轴对称、点对称和面对称) ②等效法(利用等效面和等效点的一种方法) ③定一议二法(当取代基的数目较多时固定某些取代基的位置而改变其他取代基位置的一种方法) ④插空法(主要是根据题目的条件从中提出含两个共价键的原子或原子团,然后确定剩余部分的结构,最后再将提出的原子或原子团插入到碳碳单键或碳氧单键之间的一种方法). 注意:有机物同分异构体数目和结构确定的过程中应注意思维的有序性. 有机化学知识点归纳(一) 一、同系物 \x09结构相似,在分子组成上相差一个或若干个CH2原子团的物质物质. \x09同系物的判断要点: \x091、通式相同,但通式相同不一定是同系物. \x092、组成元素种类必须相同 \x093、结构相似指具有相似的原子连接方式,相同的官能团类别和数目.结构相似 \x09不一定完全相同,如CH3CH2CH3和(CH3)4C,前者无支链,后者有支链仍为同系物. \x094、在分子组成上必须相差一个或几个CH2原子团,但通式相同组成上相差一个或 \x09几个CH2原子团不一定是同系物,如CH3CH2Br和CH3CH2CH2Cl都是卤代烃, \x09且组成相差一个CH2原子团,但不是同系物. \x095、同分异构体之间不是同系物. \x09二、同分异构体 \x09化合物具有相同的分子式,但具有不同结构的现象叫做同分异构现象.具有同分异构 \x09现象的化合物互称同分异构体. \x091、同分异构体的种类: \x09⑴ 碳链异构:指碳原子之间连接成不同的链状或环状结构而造成的异构.如 C5H12有三种同分异构体,即正戊烷、异戊烷和新戊烷. \x09⑵ 位置异构:指官能团或取代基在在碳链上的位置不同而造成的异构.如1—丁烯 \x09与2—丁烯、1—丙醇与2—丙醇、邻二甲苯与间二甲苯及对二甲苯. \x09⑶ 异类异构:指官能团不同而造成的异构,也叫官能团异构.如1—丁炔与1, \x093—丁二烯、丙烯与环丙烷、乙醇与甲醚、丙醛与丙酮、乙酸与甲酸甲酯、葡萄糖 \x09与果糖、蔗糖与麦芽糖等. \x09⑷ 其他异构方式:如顺反异构、对映异构(也叫做镜像异构或手性异构)等, \x09在中学阶段的信息题中屡有涉及. \x09各类有机物异构体情况: \x09⑴ CnH2n+2:只能是烷烃,而且只有碳链异构.如CH3(CH2)3CH3、 \x09CH3CH(CH3)CH2CH3、C(CH3)4 \x09⑵ CnH2n:单烯烃、环烷烃.如CH2=CHCH2CH3、CH3CH=CHCH3、 \x09CH2=C(CH3)2、 、 \x09⑶ CnH2n-2:炔烃、二烯烃.如:CH≡CCH2CH3、CH3C≡CCH3、 \x09CH2=CHCH=CH2 \x09 \x09⑷ CnH2n-6:芳香烃(苯及其同系物).如: 、 、 \x09⑸ CnH2n+2O:饱和脂肪醇、醚.如:CH3CH2CH2OH、CH3CH(OH)CH3、 \x09CH3OCH2CH3 \x09⑹ CnH2nO:醛、酮、环醚、环醇、烯基醇.如:CH3CH2CHO、CH3COCH3、 \x09CH2=CHCH2OH、 、 、 \x09 \x09⑺ CnH2nO2:羧酸、酯、羟醛、羟基酮.如:CH3CH2COOH、CH3COOCH3、 \x09HCOOCH2CH3、HOCH2CH2CHO、CH3CH(OH)CHO、CH3COCH2OH ⑻ CnH2n+1NO2:硝基烷、氨基酸.如:CH3CH2NO2、H2NCH2COOH \x09⑼ Cn(H2O)m:糖类.如: \x09C6H12O6:CH2OH(CHOH)4CHO,CH2OH(CHOH)3COCH2OH \x09C12H22O11:蔗糖、麦芽糖. \x092、同分异构体的书写规律: \x09⑴ 烷烃(只可能存在碳链异构)的书写规律: \x09主链由长到短,支链由整到散,位置由心到边,排布由对到邻到间. \x09⑵ 具有官能团的化合物如烯烃、炔烃、醇、酮等,它们具有碳链异构、官能团位置 \x09异构、异类异构,书写按顺序考虑.一般情况是碳链异构→官能团位置异构→异类异构. \x09⑶ 芳香族化合物:二元取代物的取代基在苯环上的相对位置具有邻、间、对三种. \x093、判断同分异构体的常见方法: \x09⑴ 记忆法:碳原子数目1~5的烷烃异构体数目:甲烷、乙烷和丙烷均无异构体,丁烷有两种异构体,戊烷有三种异构体. 碳原子数目1~4的一价烷基:甲基一种(—CH3),乙基一种(—CH2CH3)、丙基两种(—CH2CH2CH3、—CH(CH3)2)、丁基四种(—CH2CH2CH2CH3、 、—CH2CH(CH3)2、 —C(CH3)3) \x09③ 一价苯基一种、二价苯基三种(邻、间、对三种). \x09⑵ 基团连接法:将有机物看成由基团连接而成,由基团的异构数目可推断有机物 \x09的异构体数目. \x09如:丁基有四种,丁醇(看作丁基与羟基连接而成)也有四种,戊醛、 \x09戊酸(分别看作丁基跟\x09醛基、羧基连接而成)也分别有四种. \x09⑶ 等同转换法:将有机物分子中的不同原子或基团进行等同转换. \x09如:乙烷分子中共有6个H原子,若有一个H原子被Cl原子取代所得一氯乙烷 \x09只有一种结构,那么五氯乙烷有多少种?假设把五氯乙烷分子中的Cl原子转换 \x09为H原子,而H原子转换为Cl原子,其情况跟一氯乙烷完全相同,故五氯乙烷 \x09也有一种结构.同样,二氯乙烷有两种结构,四氯乙烷也有两种结构. \x09⑷ 等效氢法:等效氢指在有机物分子中处于相同位置的氢原子.等效氢任一原子 \x09若被相同取代基取代所得产物都属于同一物质.其判断方法有: \x09① 同一碳原子上连接的氢原子等效. \x09② 同一碳原子上连接的—CH3中氢原子等效.如:新戊烷中的四个甲基连接于 \x09同一个碳原子上,故新戊烷分子中的12个氢原子等效. \x09③ 同一分子中处于镜面对称(或轴对称)位置的氢原子等效.如: 分子中的18个氢原子等效. 三、有机物的系统命名法 \x091、烷烃的系统命名法 ⑴ 定主链:就长不就短.选择分子中最长碳链作主链(烷烃的名称由主链的碳原子数决定) ⑵ 找支链:就近不就远.从离取代基最近的一端编号. ⑶ 命名: ① 就多不就少.若有两条碳链等长,以含取代基多的为主链. \x09② 就简不就繁.若在离两端等距离的位置同时出现不同的取代基时,简单的取代基 \x09优先编号(若为相同的取代基,则从哪端编号能使取代基位置编号之和最小,就从 \x09哪一端编起). \x09③ 先写取代基名称,后写烷烃的名称;取代基的排列顺序从简单到复杂;相同的 \x09取代基合并以汉字数字标明数目;取代基的位置以主链碳原子的阿拉伯数字编号标明 \x09写在表示取代基数目的汉字之前,位置编号之间以“,”相隔,阿拉伯数字与汉字之间 \x09以“—”相连. \x09⑷ 烷烃命名书写的格式: \x092、含有官能团的化合物的命名 \x09⑴ 定母体:根据化合物分子中的官能团确定母体.如:含碳碳双键的化合物,以烯 \x09为母体,化合物的最后名称为“某烯”;含醇羟基、醛基、羧基的化合物分别以醇、 \x09醛、酸为母体;苯的同系物以苯为母体命名. \x09⑵ 定主链:以含有尽可能多官能团的最长碳链为主链. \x09⑶ 命名:官能团编号最小化.其他规则与烷烃相似. \x09如: \x09 \x09 \x09 \x09 \x09 叫作:2,3—二甲基—2—丁醇 叫作:2,3—二甲基—2—乙基丁醛四、有机物的物理性质 \x091、状态: \x09固态:饱和高级脂肪酸、脂肪、葡萄糖、果糖、蔗糖、麦芽糖、淀粉、维生素、 \x09醋酸(16.6℃以下); \x09气态:C4以下的烷、烯、炔烃、甲醛、一氯甲烷、新戊烷; \x09液态: 油状:乙酸乙酯、油酸; \x09粘稠状:石油、乙二醇、丙三醇. \x092、气味: \x09无味:甲烷、乙炔(常因混有PH3、H2S和AsH3而带有臭味); \x09稍有气味:乙烯;特殊气味:甲醛、乙醛、甲酸和乙酸;香味:乙醇、低级酯; \x093、颜色:白色:葡萄糖、多糖 黑色或深棕色:石油 \x094、密度: \x09比水轻:苯、液态烃、一氯代烃、乙醇、乙醛、低级酯、汽油; \x09比水重:溴苯、CCl4,氯仿(CHCl3). \x095、挥发性:乙醇、乙醛、乙酸. \x096、水溶性: \x09不溶:高级脂肪酸、酯、溴苯、甲烷、乙烯、苯及同系物、石油、CCl4; \x09易溶:甲醛、乙酸、乙二醇;与水混溶:乙醇、乙醛、甲酸、丙三醇(甘油). 五、最简式相同的有机物 \x091、CH:C2H2、C6H6(苯、棱晶烷、盆烯)、C8H8(立方烷、苯乙烯); \x092、CH2:烯烃和环烷烃;3、CH2O:甲醛、乙酸、甲酸甲酯、葡萄糖; \x094、CnH2nO:饱和一元醛(或饱和一元酮)与二倍于其碳原子数的饱和一元羧酸或酯; \x09如乙醛(C2H4O)与丁酸及异构体(C4H8O2)5、炔烃(或二烯烃)与三倍于其碳 \x09原子数的苯及苯的同系物.如:丙炔(C3H4)与丙苯(C9H12)六、能与溴水发生化学反应而使溴水褪色或变色的物质 \x09有机物: \x09⑴ 不饱和烃(烯烃、炔烃、二烯烃等) \x09⑵ 不饱和烃的衍生物(烯醇、烯醛、烯酸、烯酯、油酸、油酸酯等) \x09⑶ 石油产品(裂化气、裂解气、裂化汽油等) \x09⑷ 含醛基的化合物(醛、甲酸、甲酸盐、甲酸酯、葡萄糖、麦芽糖等)、酚类. \x09⑸ 天然橡胶(聚异戊二烯)七、能萃取溴而使溴水褪色的物质 \x09上层变无色的(ρ>1):卤代烃(CCl4、氯仿、溴苯等); \x09下层变无色的(ρ 0,m/4 > 1,m > 4.分子式中H原子数大于4的气态烃都符合. \x09②△V = 0,m/4 = 1,m = 4.、CH4,C2H4,C3H4,C4H4. \x09③△V < 0,m/4 < 1,m < 4.只有C2H2符合. \x09(4)根据含氧烃的衍生物完全燃烧消耗O2的物质的量与生成CO2的物质的量之比,可推导 \x09有机物的可能结构 \x09①若耗氧量与生成的CO2的物质的量相等时,有机物可表示为 \x09②若耗氧量大于生成的CO2的物质的量时,有机物可表示为 \x09③若耗氧量小于生成的CO2的物质的量时,有机物可表示为 \x09(以上x、y、m、n均为正整数) 五、其他 \x09最简式相同的有机物 \x09(1)CH:C2H2、C4H4(乙烯基乙炔)、C6H6(苯、棱晶烷、盆烯)、C8H8(立方烷、 \x09苯乙烯) \x09(2)CH2:烯烃和环烯烃 \x09(3)CH2O:甲醛、乙酸、甲酸甲酯、葡萄糖 \x09(4)CnH2nO:饱和一元醛(或饱和一元酮)与二倍于其碳原子数的饱和一元羧酸 \x09或酯.如:乙醛(C2H4O)与丁酸及异构体(C4H8O2) \x09(5)炔烃(或二烯烃)与三倍于其碳原子数的苯及苯的同系物.如丙炔(C3H4)与丙苯(C9H12)

F. 如何把甲烷变成乙酸

这个反应是不会发生的。因为生成甲烷的反应可以发生是因为反应的吉布斯自由能变小于零,因此其逆反应吉布斯自由能变大于零,因此不可能发生如此反应。

G. 乙酸的哪个化学键断裂

(1)表现酸性 羧基上O-H断裂

(2)酯化反应羧基上C-O断裂

(3)脱羧反应C—C键断裂

(4)α-卤代反应甲基上C—H键断裂

(5)还原反应羧基上C=O键断裂

H. 怎样判断化学键在哪里断键,例如乙酸,氯乙烷等

有机物的性质,突出的一点是官能团决定化学性质。表现在有机物断键时,一般在官能团内部、或官能团与烃基相连的位置。如乙酸与乙醇发生酯化反应时,乙酸断开羧基内的碳氧单键,乙醇断开醇羟基内的氧氢键。氯乙烷发生取代时,断开碳氯键,发生消去时,断开碳氯键和连氯碳相邻碳上的碳氢键。
具体反应时,断开哪个键,要具体分析,并上升到这一类物质反应时,都是如此断键,即官能团决定化学性质。

I. 实验室制取甲烷当中 化学键是怎样断裂

脱羧反应
一般情况下,羧酸中的羧基较为稳定,不易发生脱羧反应,但在特殊条件下,羧酸能脱去羧基(失去二氧化碳)而生成烃。最常用的脱羧方法是将羧酸的钠盐与碱石灰(CaO+NaOH)或固体氢氧化钠强热。
该反应条件下,羧基因为反应物种有强碱被脱下来换上一个H
CH3COONa+NaOH=Na2CO3+CH4
条件为氧化钙高温
校园化学为你解答!!

阅读全文

与甲烷到乙酸有哪些化学键断裂相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:745
乙酸乙酯化学式怎么算 浏览:1410
沈阳初中的数学是什么版本的 浏览:1362
华为手机家人共享如何查看地理位置 浏览:1053
一氧化碳还原氧化铝化学方程式怎么配平 浏览:892
数学c什么意思是什么意思是什么 浏览:1420
中考初中地理如何补 浏览:1311
360浏览器历史在哪里下载迅雷下载 浏览:711
数学奥数卡怎么办 浏览:1400
如何回答地理是什么 浏览:1034
win7如何删除电脑文件浏览历史 浏览:1062
大学物理实验干什么用的到 浏览:1493
二年级上册数学框框怎么填 浏览:1712
西安瑞禧生物科技有限公司怎么样 浏览:999
武大的分析化学怎么样 浏览:1254
ige电化学发光偏高怎么办 浏览:1344
学而思初中英语和语文怎么样 浏览:1665
下列哪个水飞蓟素化学结构 浏览:1429
化学理学哪些专业好 浏览:1492
数学中的棱的意思是什么 浏览:1070