1. 如何判断化学键的强弱
看键能,键长.键能大,键长短的化学键比较强.
共价键强弱判断:成键原子半径越小,共价键越强,断开键需要的能量越高.
离子键的强弱比较:和离子半径成反比,离子半径越大,离子键越弱;和离子电荷数成正比,离子所带电荷数越大,离子键越强.
2. 帮我总结一下化学键的强度的概念
化学键的强度是描述共价键的牢固程度的,两原子对共用电子对的作用,作用越强越牢固,常用键能(形成或破坏1mol共价键所放出或吸收的能量)的大小来衡量化学键的强度,键能越大,键越牢固,共价键的强度越大.
3. 四种化学键的强弱排序
原子晶体的共价键>离子键>金属键。
化学键(chemical bond)是纯净物分子内或晶体内相邻两个或多个原子(或离子)间强烈的相互作用力的统称。使离子相结合或原子相结合的作用力通称为化学键。
离子键、共价键、金属键各自有不同的成因,离子键是通过原子间电子转移,形成正负离子,由静电作用形成的。
共价键的成因较为复杂,路易斯理论认为,共价键是通过原子间共用一对或多对电子形成的,其他的解释还有价键理论,价层电子互斥理论。
分子轨道理论和杂化轨道理论等。金属键是一种改性的共价键,它是由多个原子共用一些自由流动的电子形成的。
化学(chemistry)是自然科学的一种,主要在分子、原子层面,研究物质的组成、性质、结构与变化规律,创造新物质(实质是自然界中原来不存在的分子)。
不同于研究尺度更小的粒子物理学与核物理学,化学研究的原子 ~ 分子 ~ 离子(团)的物质结构和化学键、分子间作用力等相互作用。
其所在的尺度是微观世界中最接近宏观的,因而它们的自然规律也与人类生存的宏观世界中物质和材料的物理、化学性质最为息息相关。
作为沟通微观与宏观物质世界的重要桥梁,化学则是人类认识和改造物质世界的主要方法和手段之一。
以上资料供参考网络-化学化学键
4. 化学键强弱
可以从键能 键长角度分析
1、若晶形不同,则原子晶体大于离子晶体大于分子晶体(金属晶体熔沸点差别大,有特别高的如钨,也有特别低的如汞,故和三者的比较不能有固定的规律,一般要具体分析)。
2、若晶形相同,则比较晶体内部离子间相互作用的强弱,相互作用越强,熔沸点就越高。
(1)离子晶体看离子键的强弱,一般离子半径越大、所带电荷数越多,离子键越强,熔沸点越高。
(2)原子晶体看共价键的强弱,一般非金属性越强、半径越小,共价键越强,熔沸点越高。如金刚石比晶体硅的熔沸点高,是因为C比Si元素非金属性强,原子半径小,所以碳碳共价键比硅硅共价键强。
(3)分子晶体看分子间作用力的强弱,对组成和结构相似的物质(一般为同族元素的单质、化合物或同系物),相对分子质量越大,分子间作用力越强,熔沸点越高。
(4)金属晶体看金属键的强弱,金属离子半径小,所带电荷数多,金属键就强,熔沸点就高。
对于周期表中同族元素单质的熔沸点比较,同样根据以上规律,如卤素、氧族元素、氮族元素的单质是分子晶体,从上到下相对分子质量增大,分子间作用力增强,熔沸点升高;碱金属都是金属晶体,从上到下离子半径增大,金属键减弱,熔沸点降低。
至于随氧化性或还原性强弱的变化就是随金属性和非金属性的变化,即卤素、氧族元素、氮族元素的单质从上到下氧化性减弱,熔沸点升高;碱金属从上到下还原性增强,熔沸点降低。
5. 怎么计算化学式的键能
键能是表征化学键强度的物理量,可以用键断裂时所需的能量大小来衡量。
在101.3kPa和298.15K下,将1mol气态分子AB断裂成理想气态原子所吸收的能量叫做AB的离解能(KJ·mol-1),常用符号D(A-B)表示。
即:AB(g)→A(g)+ B(g)
对于双原子分子,键能E(A—B)等于键的解离能D(A—B),可直接热化学测量中得到。例如:
Cl2(g)→2Cl(g) ΔHm,298.15(Cl2)=E(Cl2)=D(Cl2)=247kJ.mol-1
在多原子分子中断裂气态分子中的某一个键所需的能量叫做分子中这个键的离解能。例如:
NH3(g)= NH2(g)+ H(g) D1= 435kJ·mol-1
NH2(g)= NH(g)+ H(g) D2= 397kJ·mol-1
NH(g)= N(g)+ H(g) D3= 339kJ·mol-1
NH3分子中虽然有三个等价的N-H键,但先后拆开它们所需的能量是不同的。
所谓键能(Bond Energy)通常是指在101.3KPa和298K下将1mol气态分子拆开成气态原子时,每个键所需能量的平均值,键能用E表示。
显然对双原子分子来说,键能等于离解能。
例如,298.15K时,H的键能E(H-H)=D(H-H)=436kJ·mol-1;而对于多原子分子来说,键能和离解能是不同的。例如NH分子中N-H键的键能应是三个N-H键离解能的平均值:
E(N-H)=(D1+D2+D3)/3=1171/3=391kJ·mol-1
一般来说键能越大,化学键越牢固。双键的键能比单键的键能大得多,但不等于单键键能的两倍;同样三键键能也不是单键键能的三倍。
(5)化学键强度多少扩展阅读:
标志化学键强度:
键能是化学键形成时放出的能量或化学键断裂时吸收的能量,可用来标志化学键的强度。
它的数值是这样确定的:对于能够用定域键结构满意地描述的分子,所有各键的键能之和等于这一分子的原子化能。
键能是从定域键的相对独立性中抽象出来的一个概念,它的定义中隐含着不同分子中同一类型化学键的键能相同的假定。
实验证明,这个假定在一定范围内近似成立。例如,假定C─C和C─H键的键能分别是346和411千焦/摩,则算出来的饱和烃的原子化能只有2%的偏差。
常用的另一个量度化学键强度的物理量是键离解能,它是使指定的一个化学键断裂时需要的能量。由于产物的几何构型和电子状态在逐步改变时伴随有能量变化,除双原子分子外,键离解能不同于键能。
例如,依次断开CH4的四个C─H键的键离解能分别是425、470、415、335kJ.mol-1,它们的平均值才等于C─H键的键能(411kJ.mol-1)。
参考资料来源:网络-键能
6. 如何判断化学键的强弱化学键有多种类,不同的化学键的
共价键的强弱用键焓来描述,键焓数值越大,共价键越牢固。
离子键的强弱用晶格能来描述,晶格能越大离子键强度越大。
金属键的强弱用原子化焓(升华焓)来描述,升华焓越大金属键越强。
7. 金属键 离子键 共价键 强弱排序(从强到弱)
原子晶体的共价键>离子键>金属键。
如共价键如果属于金刚石,其一般是最强的;离子键属于离子化合物,比较强;金属一般熔沸点不是特别高。
但是,如离子化合物取氯化钠、金属键取金属钨。明显金属钨的金属键强于氯化钠的离子键(通过熔沸点比较即可)。
分子间作用力存在于分子间,一般较弱。故分子晶体一般熔沸点较低,气体和液体较多。
(7)化学键强度多少扩展阅读:
金属键由于电子的自由运动,金属键没有固定的方向,因而是非极性键。金属键有金属的很多特性。
例如:一般金属的熔点、沸点随金属键的强度而升高。其强弱通常与金属离子半径成逆相关,与金属内部自由电子密度成正相关(便可粗略看成与原子外围电子数成正相关)。
在共价键的形成过程中,因为每个原子所能提供的未成对电子数是一定的,一个原子的一个未成对电子与其他原子的未成对电子配对后,就不能再与其它电子配对,即,每个原子能形成的共价键总数是一定的,这就是共价键的饱和性。
带相反电荷的离子之间存在静电作用,当两个带相反电荷的离子靠近时, 表现为相互吸引,而电子和电子、原子核与原子核之间又存在着静电排斥作用,当静电吸引与静电排斥作用达到平衡时,便形成离子键。因此,离子键是指阴离子,阳离子间通过静电作用形成的化学键。
8. 化学键强弱对比
可以从键能
键长角度分析
1、若晶形不同,则原子晶体大于离子晶体大于分子晶体(金属晶体熔沸点差别大,有特别高的如钨,也有特别低的如汞,故和三者的比较不能有固定的规律,一般要具体分析)。
2、若晶形相同,则比较晶体内部离子间相互作用的强弱,相互作用越强,熔沸点就越高。
(1)离子晶体看离子键的强弱,一般离子半径越大、所带电荷数越多,离子键越强,熔沸点越高。
(2)原子晶体看共价键的强弱,一般非金属性越强、半径越小,共价键越强,熔沸点越高。如金刚石比晶体硅的熔沸点高,是因为C比Si元素非金属性强,原子半径小,所以碳碳共价键比硅硅共价键强。
(3)分子晶体看分子间作用力的强弱,对组成和结构相似的物质(一般为同族元素的单质、化合物或同系物),相对分子质量越大,分子间作用力越强,熔沸点越高。
(4)金属晶体看金属键的强弱,金属离子半径小,所带电荷数多,金属键就强,熔沸点就高。
对于周期表中同族元素单质的熔沸点比较,同样根据以上规律,如卤素、氧族元素、氮族元素的单质是分子晶体,从上到下相对分子质量增大,分子间作用力增强,熔沸点升高;碱金属都是金属晶体,从上到下离子半径增大,金属键减弱,熔沸点降低。
至于随氧化性或还原性强弱的变化就是随金属性和非金属性的变化,即卤素、氧族元素、氮族元素的单质从上到下氧化性减弱,熔沸点升高;碱金属从上到下还原性增强,熔沸点降低。
9. 共价键强弱如何判定
对于由相同的A和B两个原子组成的化学键:键长值小,键强;键的数目多,键长值小。
在原子晶体中,原子半径越小,键长越短,键能越大。由大量的键长值可以推引出成键原子的原子半径;反之,利用原子半径的加和值可得这种化学键的典型键长。若再考虑两个原子电负性差异的大小予以适当校正,和实际测定值会符合得很好。
对于共价键键长的比较,大致可以参考以下方法:共价键强度越大,则键长越小;与同一原子相结合形成共价键的原子电负性与该原子相差越大,键长越小;(例如卤素与碳原子间形成的价键)同时,键长也与该原子形成的其他化学键类型及强度有关。
(9)化学键强度多少扩展阅读
主要特点:
1、饱和性
在共价键的形成过程中,因为每个原子所能提供的未成对电子数是一定的,一个原子的一个未成对电子与其他原子的未成对电子配对后,就不能再与其它电子配对,即,每个原子能形成的共价键总数是一定的,这就是共价键的饱和性。
共价键的饱和性决定了各种原子形成分子时相互结合的数量关系,是定比定律(law of definite proportion)的内在原因之一。
2、方向性
除s轨道是球形的以外,其它原子轨道都有其固定的延展方向,所以共价键在形成时,轨道重叠也有固定的方向,共价键也有它的方向性,共价键的方向决定着分子的构形。
10. 如何比较化学键键长的大小
共价键强度越大,则键长越小;与同一原子相结合形成共价键的原子电负性与该原子相差越大,键长越小;同时,键长也与该原子形成的其他化学键类型及强度有关。
对于由相同的A和B两个原子组成的化学键:键长值小,键强;键的数目多,键长值小。
在原子晶体中,原子半径越小,键长越短,键能越大。
可以用光谱、衍射等物理方法测定键长;量子化学中还可以由从头计算法或自洽场半经验法计算键长。
(10)化学键强度多少扩展阅读:
影响键长的因素:
原子半径、原子核间距离、孤对电子之间的排斥力、反馈键等,在实际的分子中,由于受共轭效应、空间阻碍效应和相邻基团电负性的影响,同一种化学键键长还有一定差异。
共价键的分类:
1、按共用电子对的数目分,有单键(Cl—Cl)、双键(C=C)、三键(N≡N,C≡C)等。
2、按共用电子对是否偏移分类,有极性键(H—Cl)和非极性键(Cl—Cl)。
3、 按提供电子对的方式分类,有正常的共价键和配位键(共用电子对由一方提供,另一方提供空轨道。如铵根离子中的N—H键中有一个属于配位键)。
4、按电子云重叠方式分,有σ键(电子云沿键轴方向,以“头碰头”方式成键。如C—C。)和π键(电子云沿键轴两侧方向,以“肩并肩”方向成键。