❶ 光合作用的化学方程式是什么
应该是:CO2+H2O===(光照,叶绿素)C6H12O6+O2光合作用是地球上规模最大的无机物转变为有机物(每年约可合成4250亿吨)的过程,也是太阳能转变为化学能并蓄积在合成的有机物中(每年约6.3×1015兆焦)的过程。地球上只有绿色植物(还有光合细菌)能通过光合作用,直接从太阳光截获能量,并利用它将无机物(二氧化碳)还原成有机物,作为自身的养料。其他生物(包括人类在内)不能直接利用太阳能,而是直接或间接依靠绿色植物光合作用所提供的有机物和能量进行生命活动。因此,光合作用保证了整个生物界生命活动的进行和生命的延续。由于光合作用同化二氧化碳,释放氧气,因此使大气中二氧化碳和氧的含量长期以来保持基本稳定。另外,光合作用对生物进化也有重要意义。地球上原始大气中几乎没有游离的氧,约在30亿年前,出现了最早具有光合能力的蓝藻,地球上开始有了氧气的积累,为需氧生物的发生、发展创造了条件。由此可见,光合作用是地球上生物生存、繁荣和发展的根本源泉。
❷ 光合作用的化学方程式
光合作用的化学方程式:12H2O+6CO2→(与叶绿素产生化学作用)C6H12O6(葡萄糖)+6O2+6H2O。
注意:上式中等号两边的水不能抵消,虽然在化学上式子显得很特别。原因是左边的水,是植物吸收所得,而且用于制造氧气和提供电子和氢离子。而右边的水分子的氧原子则是来自二氧化碳。
为了更清楚地表达这一原料产物起始过程,人们更习惯在等号左右两边都写上水分子,或者在右边的水分子右上角打上星号。
(2)光合作用的化学方程式怎么写扩展阅读:
植物的光合作用可分为光反应和碳反应两个步骤如下:
1、光反应阶段的特征是在光驱动下水分子氧化释放的电子通过类似于线粒体呼吸电子传递链那样的电子传递系统传递给NADP+,使它还原为NADPH。电子传递的另一结果是基质中质子被泵送到类囊体腔中,形成的跨膜质子梯度驱动ADP磷酸化生成ATP。
反应式:12H2O+阳光→12H2+6O2[光反应]
2、暗反应阶段是利用光反应生成NADPH和ATP进行碳的同化作用,使气体二氧化碳还原为糖。由于这阶段基本上不直接依赖于光,而只是依赖于NADPH和ATP的提供,故称为暗反应阶段。
反应式:12H2(来自光反应)+6CO2→C6H12O6(葡萄糖)+6H2O[碳反应]
❸ 光合作用相关化学方程式
合作用的化学方程式是什么
光合作用的化学方程式
总反应方程式:CO2 + H2018 ——→ (CH2O) + O218
注意:光合作用释放的氧气全部来自水,光合作用的产物不仅是糖类,还有氨基酸(无蛋白质)、脂肪,因此光合作用产物应当是有机物。
各步分反应方程式:
H20→H+ O2(水的光解)
NADP+ + 2e- + H+ → NADPH(递氢)
ADP→ATP (递能)
CO2+C5化合物→C3化合物(二氧化碳的固定)
C3化合物→(CH2O)+ C5化合物(有机物的生成)
光合作用的过程
整个光合作用大致可分为下列3大步骤:
①原初反应,包括光能的吸收、传递和转换;
②电子传递和光合磷酸化,形成活跃化学能(ATP和NADPH);
③碳同化,把活跃的化学能转变为稳定的化学能(固定CO2,形成糖类)。
❹ 初三光合作用化学方程式是什么
总方程式6CO₂+6H₂O( 光照、叶绿体)→C₆H₁₂O₆[(CH₂O)ₙ]+6O₂
光合作用的实质是把CO2和H2O转变为有机物和把光能转变成ATP中活跃的化学能再转变成有机物中的稳定的化学能;植物通过光合作用,吸收二氧化碳,生成葡萄糖和氧气。
光合作用的能量转化过程
光能→电能→ATP中活跃的化学能→有机物中稳定的化学能→ATP中活跃的化学能。
植物与动物不同,它们没有消化系统,因此它们必须依靠其他的方式来进行对营养的摄取,植物就是所谓的自养生物的一种。
对于绿色植物来说,在阳光充足的白天(在光照强度太强的时候植物的气孔会关闭,导致光合作用强度减弱),它们利用太阳光能来进行光合作用,以获得生长发育必需的养分。
❺ 光合作用的化学方程式怎么写
光合作用
h2o→2h+
1/2o2(水的光解)
nadp+
+
2e-
+
h+
→
nadph(递氢)
adp+pi→atp
(递能)
co2+c5化合物→2c3化合物(二氧化碳的固定)
2c3化合物+4nadph+atp→(ch2o)+
c5化合物+h2o(有机物的生成或称为c3的还原)
atp→adp+pi(耗能)
有氧呼吸公式
第一阶段
c6h12o6酶→细胞质基质=2丙酮酸+4[h]+能量(2atp)
第二阶段
2丙酮酸+6h2o酶→线粒体基质=6co2+20[h]+能量(2atp)
第三阶段
24[h]+6o2酶→线粒体内膜=12h2o+能量(34atp)
总反应式
c6h12o6+6h2o+6o2酶→6co2+12h2o+大量能量(38atp)
无氧呼吸公式:
酒精发酵:c6h12o6----2c2h5oh+2co2+能量
(横线应改为箭头,上标:酶)
乳酸发酵:c6h12o6----2c3h6o3+能量
(横线应改为箭头,上标:酶)
❻ 光合作用的化学方程式是什么
1、光反应
光合作用的过程是一个比较复杂的问题,从表面上看,光合作用的总反应式似乎是一个简单的氧化还原过程,但实质上包括一系列的光化学步骤和物质转变问题。根据现代的资料,整个光合作用大致可分为下列3大步骤:
①原初反应,包括光能的吸收、传递和转换;
②电子传递和光合磷酸化,形成活跃化学能(ATP和NADPH);
③碳同化,把活跃的化学能转变为稳定的化学能(固定CO₂,形成糖类)。
在介绍光合作用反应过程前,对光合作用过程中涉及的光合色素及光系统进行一定的了解是必要的。
❼ 光合作用的化学式表达式
❽ 光合作用的化学方程式。
“光合作用的反应式为6CO2+12H2O→C6H12O6+6O2+6H2O。包括光反应和暗反应两个过程。需要具备光照条件和叶绿体。光合作用的实质就是把CO2和H2O转变为有机物并把光能转变成ATP中活跃的化学能再转变成有机物中的稳定的化学能。”
❾ 植物光合作用的化学方程式
反应的化学方程式为:6CO₂ + 12H₂O → C₆H₁₂O₆ + 6O₂ + 6H₂O + 能量
能量转化过程:光能→电能→ATP中活跃的化学能→有机物中稳定的化学能→ATP中活跃的化学能。
绿色植物利用太阳的光能,同化二氧化碳和水制造有机物质并释放氧气的过程,称为光合作用。光合作用所产生的有机物主要是碳水化合物,并释放出能量。
当特殊叶绿素a对(P)被光激发后成为激发态P*,放出电子给原初电子受体(A)。叶绿素a被氧化成带正电荷(P+)的氧化态,而受体被还原成带负电荷的还原态(A-)。氧化态的叶绿素(P+)在失去电子后又可从次级电子供体(D)得到电子而恢复电子的还原态。
这样不断地氧化还原,原初电子受体将高能电子释放进入电子传递链,直至最终电子受体NADP+。同样,氧化态的电子供体(D+)也要想前面的供体夺取电子,一次直到最终的电子供体水。
(9)光合作用的化学方程式怎么写扩展阅读:
光系统Ⅱ→初级接受者→质体醌(Pq)→细胞色素复合体→质体蓝素(含铜蛋白质,Pc)→光系统Ⅰ→初级接受者→铁氧化还原蛋白(Fd)→NADP还原酶
非循环电子传递链从光系统Ⅱ出发,会裂解水,释出氧气,生产ATP与NADPH。
NADPH的合成没有如此戏剧化,就是把送来的电子与原本存在于基质内的氢离子与NADP合成而已。值得注意的是,光合作用中消耗的ATP比NADPH要多得多,因此当ATP不足时,相对来说会造成NADPH的累积,会刺激循环式电子流之进行。
叶绿素a、b的吸收峰过程:叶绿体膜上的两套光合作用系统:光合作用系统Ⅰ和光合作用系统Ⅱ,(光合作用系统一比光合作用系统二要原始,但电子传递先在光合系统二开始)在光照的情况下,分别吸收680nm和700nm波长的光子(以蓝紫光为主,伴有少量红色光),作为能量。
从水分子光解过程中得到电子不断传递,(能传递电子得仅有少数特殊状态下的叶绿素a)最后传递给辅酶二NADP。
❿ 光合作用化学方程式
光合作用包括光反应和暗反应:
1.光反应:水的光解:2H2O---- 4[H]+O2
ATP的合成:ADP+Pi+能量------ATP
2.暗反应:CO2的固定:CO2 +C5-----2C3
C3的还原:2C3+[H]+ ATP----(CH2O)+C5+H20
每一步一般都需要酶的催化。