Ⅰ 电化学电极原理
工作电极
用来发生所需要的电化学反应或响应激发信号,在测量过程中溶液本体浓度发生变化的体系的电极。如电解分析中的阴极等。
参比电极
用来提供标准电位,电位不随测量体系的组分及浓度变化而变化的电极。这种电极必须有较好的可逆性、重现性和稳定性。常用的参比电极有SHE、Ag/AgCl、Hg/Hg2Cl2电极,尤以SCE使用得最多。
辅助电极--或对电极
在电化学分析或研究工作中,常常使用三电极系统,除了工作电极,参比电极外,还需第三支电极,此电极所发生的电化学反应并非测示或研究所需要的,电极仅作为电子传递的场所以便和工作电极组成电流回路,这种电极称为辅助电极或对电极。
研究的是工作电极,只有精确地测定工作电极的电位,才能够考察电位同电化学反应,吸附等界面反应的规律。
至于辅助电极和工作电极之间的联系,主要是在于构建电化学反应平衡,另外要 保证辅助电极不要影响到工作电极。
而确定辅助电极和工作电极之间的电位,用电压表就ok了,不需要双参比电极分别确定两电极电位。
三电极体系含两个回路,一个回路由工作电极和参比电极组成,用来测试工作电极的电化学反应过程,另一个回路由工作电极和辅助电极组成,起传输电子形成回路的作用。
Ⅱ 【讨论】如何检测参比电极是否稳定
把你的
参比电极
作为
工作电极
,找一个性能好的或商业化的参比做参比电极和
对电极
,然后测量开路电势。1h内电势
变化幅度
不超过1mV,表明你的参比电势是稳定的。
Ⅲ 如何判断金属氧化物在电极上稳定性
稳定性就是指是否容易参加化学反应,跟金属性非金属性没什么关系。判断金属性的一般规律:
1、由金属活动性顺序表进行判断,前大于后。
2、由元素周期表进行判断,同周期金属性依次减弱,同主族金属性依次增强。
3、由金属最高价阳离子的氧化性强弱判断,一般情况下,氧化性越弱,对应金属的金属性越强。
4、由置换反应可判断强弱,遵循强制弱的规律。
5、由对应最高价氧化物对应水化物的碱性强弱来判断,碱性越强,金属性越强。
6、由原电池的正负极判断,一般情况下,活泼性强的做负极。
7、由电解池的放电顺序判断 。
非金属性的比较规律:
1、由单质的氧化性判断,一般情况下,氧化性越强,对应非金属性越强。
2、由单质和酸或者和水的反应程度来看,反应越剧烈,非金属性越强。(比如F2 Cl2 Br2 和H2O的反应剧烈程度依次减弱 非金属依次减弱)
3、由对应氢化物的稳定性判断,氢化物越稳定,非金属性越强。
4、由和氢气化合的难易程度判断,化合反应越容易,非金属性越强。
5、由最高价氧化物对应水化物的酸性来判断,酸性越强,非金属越强。
6、由对应最低价阴离子的还原性判断,还原性越强,对应非金属性越弱。
7、由置换反应判断,非金属强的强制弱。
Ⅳ 电化学分析法的主要方法
电导法
是用电导仪直接测量电解质溶液的电导率的方法。
电化学分析法电位滴定法
是在用标准溶液滴定待测离子过程中,用指示电极的电位变化指示滴定终点的到达,是把电位测定与滴定分析互相结合起来的一种测试方法。
电化学分析法电解分析法
是将直流电压施加于电解池的两个电极上,根据电极增加的质量计算被测物的含量。
电化学分析法伏安法
根据电解过程中的电流电压曲线(伏安曲线)来进行分析的方法。
电化学分析法溶出伏安法
将恒电位电解富集法与伏安法结合的一种极谱分析方法。它首先将欲测物质在适当电位下进行电解并富集在固定表面积的特殊电极上,然后反向改变电位,让富集在电极上的物质重新溶出,同时记录电流电压曲线。根据溶出峰电流的大小进行定量分析。
电化学分析法电位溶出分析法
在恒电位下将被测物质电解富集在工作电极上,然后断开恒电位电路,由电解液中的氧化剂将被富集的物质溶解出来,同时记录溶出时的电位时间曲线,根据曲线上溶出阶的长度进行定量,这种方法缩写为P.S.A.。
电位溶出分析法与溶出伏安法之间主要区别在于前者在溶出时没有电流流过工作电极,而后者具有背景电流,在某些情况下可能淹没溶出峰。
Ⅳ 电化学怎么测电化学方法测重金属最低检出线
1. 基本原理 化学检测仪器三部分组成。其中电解质溶液即电分析化学的分析对象。电化学传感器也称为电极,根据应用形式不同,又分为双电极,三电极,四电极体系。电极之间通过电路与检测仪器连接。
Ⅵ 如何正确评估Pt电极电化学活化面积
参比电极是pH计,离子计等分析仪器上起参比作用的测量元件,它与各种指示电极组成测量电池,可测量水溶液中各种离子的浓度,并可进行电位滴定分析。
Ⅶ 电化学测试 怎样判断石墨电极是否完好
扫CV,与空白石墨电极对比,看图形是否一样。石墨电极很稳定的,除非你让石墨大电流工作,石墨板表面会有片状脱落。
Ⅷ 如何检测制备的修饰电极的稳定性
如何检测制备的修饰电极的稳定性
化学修饰电极:chemically modified electrode
化学修饰电极是20世纪70年代中期发展起来的一门新兴的、也是目前最活跃的电化学和电分析化学的前沿领域。
化学修饰电极是通过化学修饰的方法在电极表面进行分子设计,将具有优良化学性质的分子、离子、聚合物固定在电极表面,造成某种微结构,赋予电极某种特定的化学和电化学性质,以便高选择性的进行所期望的反应,在提高选择性和灵敏度方面具有独特的优越性。
利用化学修饰电极表面上的微结构所提供的多种能利用的势场,使待测物进行有效的分离富集,并借控制电极电位,进一步提高选择性,同时把测定方法的灵敏性和修饰剂化学反应的选择性相结合,成为分离、富集和选择性三者合而为一的理想体系。
基于微结构的性质,电极上的修饰层可分为三种类型:修饰单层,修饰均相复层,修饰有粒界的厚层。
化学修饰电极在过去20年中在以下一些领域中取得了明显的进展:
电极表面微结构与动力学的理论研究
化学修饰电极的电催化研究
化学修饰电极在能量转换、存储和显示方面的研究
化学修饰电极在分析化学中的应用
化学修饰电极在生物电化学和传感器中的应用
表面修饰在光伏电极的光电催化和防腐中的作用
化学修饰电极在立体有机合成中的研究
分子电子器件的研究