① 关于有机物的化学位移值。为什么甲醛>苯>乙烯>乙炔
质子的化学位移
碳上质子的化学位移值取决于质子的化学环境。因此,我们也可以反过来由质子的化学位移推测质子的化学环境及分子的结构。各类质子的化学位移大体有一个范围,下面给出各类质子的粗略化学位移:
碳上的氢(H)
脂肪族CH(C上无杂原子) 0——2.0
β-取代脂肪族CH 1.0——2.0
炔氢 1.6——3.4
α-取代脂肪族CH(C上有O、N、X或与烯键、炔键相连) 1.5——5.0
烯氢 4.5——7.5
苯环、芳杂环上氢 6.0——9.5 醛基氢 9——10.5
氧上的氢(OH)
醇类 0.5——5.5 酚类 4.0——8.0 酸 9——13.0
氮上的氢(NH)
脂肪族0.6——3.5 芳香胺 3.0——5.0 酰胺 5——8.5
对于大部分有机化合物来说氢谱的化学位移值在0-13 ppm. 大致可分以下几个区
0-0.8 ppm :很少见,典型化合物; 环丙烷,硅烷,以及金属有机化合物。
0.8-1.5 ppm :烷烃区域. 氢直接与脂肪碳相连,没有强电负性取代基。化学位移地次序CH>CH2>CH3.。如果有更多的取代基化学位移移向低场。
2-3 ppm:羰基αH(醛、酮、羧酸、酯)、苄位碳H。
1.5-2ppm:烯丙位碳H
卤代烃(氯、溴、碘)同碳氢:2-4ppm,氟代烃:4-4.5
3.0-
4.5 ppm:醚区域。即醚,羟基或者酯基碳氧单键的αH如果有更多的电负性取代基化学位移移向低场。
5.0-7.0 ppm :双键区域,氢直接与C=C 双键相连。炔氢化学位移2-3。
7.0-8.0 ppm :芳环质子区域. 磁各向异性作用,导致芳环质子处于去屏蔽区。同样现象发生在醛由于羰基地磁各向异性,醛质子化学位移在9-10 ppm
-OH 可以出现在任何位置,谱线的性质由多重因此影响H的交换:pH.浓度,温度,溶剂等。一般芳环酚羟基更趋于低场。醇羟基0.5-5.5ppm,酚羟基4-8ppm 醇在DMSO中4.0-6.5
大多数的-NHR, -NH2和醇一样,可被交换,在2-3 ppm 区域显示宽峰。
脂肪胺 0.6-3.5ppm ,芳香胺3.0-5.0ppm。酰胺5-9ppm
-CO2H 可交换,像醇(>10 ppm)
② 为什么在苯甲醛中醛基的邻位和对位的氢的化学位移不同
化学位移就是和电子云密度有关,不管屏蔽效应还是去屏蔽效应,或者诱导,共厄,给电子吸电子,反应到化学位移上就是,电子云密度强,高场,电子云密度低,低场。
强吸电子基,不饱和的杂原子,与不饱和杂原子共轭的碳原子等,如硝基、羧基、磺酰基等,它们的吸电子的共轭效应使得邻对位氢的位移变大,邻位尤其显着!
为什么苯甲醛间位上的氢化学位移(7.45)跟对位上的氢(7.54)相比在高场?
第一类:强给电子基,有孤对电子的饱和杂原子与苯环直接相连的情况,如羟基,烷氧基,胺基,酰胺基等,它们的给电子的共轭效应使得其邻对位氢的位移变小(移向高场),邻位尤其显着!
第二类:强吸电子基,不饱和的杂原子,与不饱和杂原子共轭的碳原子等,如硝基、羧基、磺酰基等,它们的吸电子的共轭效应使得邻对位氢的位移变大,邻位尤其显着!
第三类:一般基团,如卤素,烷基,烯基等,它们与苯环直接相连的情况,它们的存在使得苯环上氢的位移变化很小。
注:苯的化学位移一般认为是7.28,另外:苯环上氢氢之间的耦合常数也很重要,邻位耦合为7-9Hz,常见的为8Hz,间位为1-3Hz,常见的为2Hz(有时候不表现裂分,而是出现较宽的单峰),对位耦合很小,一般表现不出来。
对于单取代五个氢,且峰形对称性较好,五取代,一个单峰,在无烯丙耦合存在时候表现尖锐的单峰,二取代出现邻间对三种可能:
第一:对位二取代,此时经常出现AB体系的四条谱线,耦合常数为8Hz左右,易于识别;
第二:间位二取代,由于有一个氢旁边没有氢,所以它表现为稍胖的单峰,即使位移与其它峰重在一起一般也能识别(有时候表现出耦合,直接读耦合常数即可)
第三:邻位情况,邻位耦合最为复杂,现在400Hz以上的仪器普及了,谱图变得相对较为简单,如果苯环上各氢的位移差距较大,则通过耦合常数的读取就可以了,如果位移差距较小,谱图复杂,首先看有4个氢,判断为二取代,排除对位二取代的情况,再看有没有近似的单峰,如果也没有,则为邻位二取代!
③ 酰胺结构式是什么
酰胺基结构式如下:
有机酰胺中的C-N键比起胺中的C-N键要短很多。这一方面是因为酰胺中C-N键的碳是用sp2杂化轨道与氮成键,而胺中C-N键的碳是用sp3杂化轨道与氮成键,s成分较少;另一方面是因为羰基与氨基的氮共轭,从而使C-N键具有某些双键性质造成的。
相关信息
除甲酰胺外,大部分具有RCONH2结构的酰胺为白色固体。在羧酸衍生物中,酰胺具有最强的稳定性,其水解最难发生,一般需要在强酸性或碱性条件下回流。相较于一般胺类,酰胺呈现极弱碱性,一般低分子量(C<6)者易溶于水,且在水溶液中几乎不体现碱性。
能与酸反应成盐,其质子化发生在氧原子上,酰胺的共轭酸的pKa在-0.5左右。酰亚胺(RCONHCOR')的氮原子上的氢具有弱酸性。蛋白质和肽是含有酰胺键的重要生物分子。一些生物碱中也含有酰胺键。
④ 核磁共振的质子化学位移
由于不同类型的质子化学位移不同,因此化学位移值对于分辨各类质子是重要的,而确定质子类型对于阐明分子结构是十分有意义的。下表列出了一些特征质子的化学位移,表中黑体字的H是要研究的质子。 特征质子的化学位移质子的类型 化学位移 质子的类型 化学位移 RCH3 0.9 ArOH 4.5-4.7(分子内缔合10.5~16) R2CH2 1.3 R3CH 1.5 R2C=CR—OH 15~19(分子内缔合) 0.22 RCH2OH 3.4~4 R2C=CH2 4.5~5.9 ROCH3 3.5~4 R2C=CRH 5.3 RCHO 9~10 R2C=CR—CH3 1.7 RCOCR2—H 2~2.7 RC≡CH 7~3.5 HCR2COOH 2~2.6 ArCR2—H 2.2~3 R2CHCOOR 2~2.2 RCH2F 4~4.5 RCOOCH3 3.7~4 RCH2Cl 3~4 RC≡CCOCH3 2~3 RCH2Br 3.5~4 RNH2或R2NH 0.5~5(峰不尖锐,常呈馒头形) RCH2I 3.2~4 ROH 0.5~5.5(温度、溶剂
、浓度改变时影响很大) RCONRH或ArCONRH 5~9.4 甲烷氢的化学位移值为0.23,其它开链烷烃中,一级质子在高场δ≈0.91处出现,二级质子移向低场在δ≈1.33处出现,三级质子移向更低场在δ≈1.5处出现。例如: 烷烃 CH4 CH3—CH3 CH3—CH2—CH3 (CH3)3CH δ 0.23 0.86 0.86 0.91 1.33 0.91 0.86 1.50 甲基峰一般具有比较明显的特征,亚甲基峰和次甲基峰没有明显的特征,而且常呈很复杂的峰形,不易辨认。当分子中引人其它官能团后,甲基、次甲基及亚甲基的化学位移会发生变化,但其δ值极少超出0.7~4-5这一范围。
环烷烃能以不同构象形式存在,未被取代的环烷烃处在一确定的构象中时,由于碳碳单键的 各向异性屏蔽作用,不同氢的δ值略有差异。例如,在环己烷的椅型构象中,由于C-I上的平伏键氢处于C⑵ — C⑶键及C⑸ — C⑹键的去屏蔽区,而C-I上的直立键氢不处在去屏蔽区,(图环己烷的各向异性屏蔽效应)。所以平伏键氢比直立键氢的化学位移略高0.2~0.5。在低温(-100℃)构象固定时,NMR谱图上可以清晰地看出两个吸收峰,一个代表直立键氢,一个代表平伏键氢。但在常温下,由于构象的迅速转换(图环己烷构象的转换),一般只看到一个吸收峰(见右图)。
其它未取代的环烷烃在常温下也只有一个吸收峰。环丙烷的δ值为0.22,环丁烷的δ值为1.96,别的环烷烃的δ值在1.5左右。取代环烷烃中,环上不同的氢有不同的化学位移,它们的图谱有时呈比较复杂的峰形,不易辨认。 酯中烷基上的质子RCOOCH2R的化学位移δH=3.7~4。酰胺中氮上的质子RCONHR 的化学位移,一般在δ= 5~9.4之间,往往不能给出一个尖锐的峰。
羰基或氮基附近α碳上的质子具有类似的化学位移= 2~3,例如,CH3COCl δH=2.67,CH3COOCH3 δH=2.03, RCH2COOCH3 δH=2.13,CH3CONH2 δH= 2.08,RCH2CONH2 δH=2.23,CH3CN δH=1.98,RCH2CN δH=2.30。 醇的核磁共振谱的特点参见后文。醚α-H的化学位移约在3.54附近。
酚羟基氢的核磁共振的δ值很不固定,受温度、浓度、溶剂的影响很大,只能列出它的大致范 围。一般酚羟基氢的δ值在4~8范围内,发生分子内缔合的酚羟基氢的δ值在10.5~16范 围内。
羧酸H的化学位移在2~2.6之间。羧酸中羧基的质子由于受两个氧的吸电子作用,屏 蔽大大降低,化学位移在低场。R2CHCOOH δH=10~12。
胺中,氮上质子一般不容易鉴定,由于氢键程度不同,改变很大,有时N— H和C一H质子 的化学位移非常接近,所以不容易辨认。一般情况在α-H δH=2.7~3.1,β-H δ=1.1~1.71。N-H δ=0.5~5,RNH2,R2NH的δ值的大致范围在0.4~3.5,ArNH2,ArzNH,ArNHR的δ值的大 致范围在2.9~4.8之间。
⑤ 化学检验酰胺和内酰胺的方法
我的猜测是可以利用Hinsberg反应,就是让酰胺和内酰胺和对甲基苯磺酰氯反应。此时酰胺和对甲基苯磺酰氯发生反应后N原子上还有一个H,这个C-H键受到两个酰基的影响具有强酸性,可以溶解在氢氧化钠溶液中。
而内酰胺反应之后,N上没有氢,所以不能溶解在氢氧化钠溶液中
-------------------------------
你要用化学方法,是很繁琐的,所以建议你还是去打一个核磁图谱吧。酰胺和内酰胺上的H化学位移不同的,一看就看出来了。打个核磁也没多少钱啊
⑥ 化学位移的单位怎么是ppm
化学位移的单位怎么是ppm的原因是:
核磁共振中,化学位移本身的单位并不是ppm,而其单位是Hz,之所以单位为ppm,是因为我们常说的化学位移指的是化学相对位移。
打个比方,当使用200MHz的NMR时,某个位移值为200Hz,这时就采用相对位移,用200Hz去除以200MHz,得到的是百万分之一,也就是1ppm;之所以这么表示是因为,位移值会随着机器的不同而改变,例如刚才的例子,在400MHz的NMR下,位移值是400Hz,只是相对位移不变,仍然是1ppm。
化学位移的公式表示:
现采用相对数值表示法,即选用一个标准物质,以该标准物的共振吸收峰所处位置为零点,其它吸收峰的化学位移值根据这些吸收峰的位置与零点的距离来确定。
化学位移值普遍采用无量纲的δ值表示,其定义为:
(6)酰胺上的氢化学位移是多少扩展阅读:
影响因素:
化学位移取决于核外电子云密度,因此影响电子云密度的各种因素都对化学位移有影响,影响最大的是电负性和各向异性效应。
1. 电负性
电负性大的原子(或基团)吸电子能力强,降低了氢核外围的电子云密度,屏蔽效应也就随之降低,其共振吸收峰移向低场,化学位移会变大;反之,给电子基团可增加氢核外围的电子云密度,共振吸收峰移向高场,化学位移会变小。
2. 各向异性效应
当分子中的某些基团的电子云排布不呈球形对称时,它对邻近的1H核产生一个各向异性的磁场,从而使某些空间位置上的核受屏蔽,而另一些空间位置上的核去屏蔽,这一现象称为各向异性效应(anisotropic effect)。各向异性效应是由于成键电子的电子云分布不均匀导致在外磁场中所产生的感应磁场的不均匀所引起的,如苯环上质子的化学位移移向低场,δ在7左右。
3. 氢键
氢键对羟基质子化学位移的影响与氢键的强弱及氢键的电子给予体的性质有关,在大多数情况下,氢键产生去屏蔽效应,使1H的δ值移向低场。
4. 溶剂效应
有时同一种样品使用不同的溶剂也会使化学位移值发生变化,这称为溶剂效应。活泼氢的溶剂效应比较明显。能引起溶剂效应的因素很多,如N,N-二甲基甲酰胺在CDCl3中测定时,δαH>δβH,而在被测物中加入适量苯溶剂后可使δαH<δβH, 这是因为苯能与之形成复合物,而使两种氢处于不同的屏蔽区所致。
5. 范德华效应
当取代基与共振核之间的距离小于范德华半径时,取代基周围的电子云与共振核周围的电子云就互相排斥,共振核周围的电子云密度降低,使质子受到的屏蔽效应明显下降,质子峰向低场移动,这称为范德华效应。
⑦ 双键对胺的氢化学位移的影响
摘要 化学位移及偶合常数的影响因素 一、 化学位移的影响因素 1、 随着相连基团电负性的增加氢核外围电子云密度降低化学电负性对化学位移的影响 位移增大 2、 双键双键平面的上下方为正屏蔽区+ 双健所在的平面为负屏蔽区- 处于正屏蔽区的氢核向高场位移。 芳环芳环平面的上下方为正屏蔽区芳环所在的平面为负屏磁的各相异性对化学位移的影响 蔽区。 碳碳三键碳碳三键的屏蔽区恰好与双健相反 碳碳单键其强度比π 电子流引起的磁各向异性小其方向与双键屏蔽区相同。 3、 通常由酸性氢核跨快速交换产生的平均峰其化学位移是氢核交换对化学位移的影响 两个相互交换的氢核化学位移的重量平均值 δ obs=Na*δ a+Nb*δ b Na、Nb獭a、Hb 的摩尔比 有上式可知酸性氢核的化学位移是不稳定的它取决于氢核交换反应是否进行以及交换速度的快慢。在系统中加入酸、碱或加热均可起催化作用使速度大大加快。 在体系中加入重水利用氢核交换反应可以除去氢核信号。 4、 氢键缔合的氢和由于电子屏蔽减小化学位移增大 氢键缔合对化学位移的影响 3 样品浓度越高分子间氢键缔合程度越大化学位移越大。 若分子间氢键缔合过程伴随放热反应则体系的温度变化会影响氢核的化学位移。 分子内氢键与分子间氢键的区别前者不会因惰性溶剂的稀释改变其缔合程度。 5、 溶剂效应、试剂位移、分子内范德华力、不对称因素等均对化其它影响因素 学位移有影响。 二、 偶合常数的影响因素 1、 1 单键 两面角两面角为 0℃和 180℃时 J 值最大↗=710Hz 由 0180 到 90邻偶 °°J 值递减在 90碳上连的基团
⑧ 核磁共振氢谱中各个基团的化学位移怎么判断
氢谱在核磁共振内有一个峰值,其出现化学位移是因为连接的官能团的影响,极性官能团与非极性官能团对氢谱的影响是一向左移,一向右移。
在有机化学书上,常见的吸电子基团(吸电子诱导效应用-I表示)NO2 > CN > F > Cl > Br > I > C三C > OCH3 > OH > C6H5 > C=C > H羟基的吸电子效应比苯环稍大。
化学位移值是对某个原子的周围的化学环境的专一性的表示,化学环境不同,化学位移值就不同,通过数值,可以知道其周围的原子或者基团有哪些,推测其结构。
核磁共振氢谱中,甲基的和乙基的基本化学位移值分别为多少,咖啡因属于甲基黄嘌呤的生物碱.它的化学式是C8H10N4O2.分子量,194.19.它的化学名是1,3,7-三甲基黄嘌呤或3,7-二氢-1,3,7-三甲基-1H-嘌呤。
(8)酰胺上的氢化学位移是多少扩展阅读:
化学位移符号δ虽称不上精准但广泛存在,因此常常作为谱学分析中的重要参考数据。范围一般在 ±0.2ppm,有时更大。确切的化学位移值取决于分子的结构、溶剂、温度及该NMR分析所用的磁场强度及其他相邻的官能团。氢原子核对键结氢原子的混成轨域和电子效应敏感。核子经常因吸引电子的官能基解除屏蔽。未屏蔽的核子会反应较高的δ值,而有屏蔽的核子δ值较低。
官能基如羟基(-OH)、酰氧基(-OCOR)、烷氧基( -OR )、硝基(-NO2)和卤素等均为吸引电子的取代基。 这些取代基会使Cα上相连的氢峰向低场移动大约2-4 ppm, Cβ上相连的氢峰向低场移动大约1-2 ppm。 Cα是与取代基直接相连的碳原子, Cβ是与Cα相连的碳原子.羰基,碳碳双键和芳香环等含“sp2” 杂化碳原子的基团会使其Cα上相连的氢原子峰向低场移动约1-2 ppm 。
⑨ 氢谱化学位移在5.69 6.16处可能是什么氢
没有完整谱图,和裂分数不大好判断,给你几个可能的结果吧,
不饱和烃类4-8
苯环上的氢可以是6点多
羟基上质子0.5到8都可能
酰胺连接的氢5点多
差不多就这几种
⑩ 如何判断有机物中氢原子所处的化学环境
有机化学:有机物中氢原子所处的化学环境又称为质子的化学位移。碳上质子的化学位移值取决于质子的化学环境。因此,我们也可以反过来由质子的化学位移推测质子的化学环境及分子的结构。核磁共振谱(这用氢谱)里某一物质吸收峰的位置与标准质子吸收峰位置之间的差异称为该物质的化学位移,以δ表示。各类质子的化学位移大体有一个范围,下面给出各类质子的粗略化学位移δ(单位:ppm ):
脂肪族CH(C上无杂原子) 0——2.0
β-取代脂肪族CH 1.0——2.0
炔氢 1.6——3.4
α-取代脂肪族CH(C上有O、N、X或与烯键、炔键相连)1.5——5.0
烯氢 4.5——7.5
苯环、芳杂环上氢 6.0——9.5
醛基氢 9——10.5
氧上的氢(OH)
醇类 0.5——5.5
酚类 4.0——8.0
酸 9——13.0
氮上的氢(NH)
脂肪族 0.6——3.5
芳香胺 3.0——5.0
酰胺5——8.5 在各种有机物分子中,与同一类基团相连的质子,它们都有大致相同的化学位移。通过化学位移可判断有机物中氢原子所处的化学环境。