‘壹’ 什么是化学键的方向性和饱和性
这个问题主要体现在离子键与共价键的区别
1、离子键是右正负离子之间通过静电引力吸引而形成的,正负离子为球形或者近似球形,电荷球形对称分布,那么离子键就可以在各个方向上发生静电作用,因此是没有方向性的。
2、一个离子可以同时与多个带相反电荷的离子互相吸引成键,虽然在离子晶体中,一个离子只能与几个带相反电荷的离子直接作用(如NaCl中Na+可以与6个Cl-直接作用),但是这是由于空间因素造成的。在距离较远的地方,同样有比较弱的作用存在,因此是没有饱和性的。
1、共价键的形成是成键电子的原子轨道发生重叠,并且要使共价键稳定,必须重叠部分最大。由于除了s轨道之外,其他轨道都有一定伸展方向,因此成键时除了s-s的σ键(如H2)在任何方向都能最大重叠外,其他轨道所成的键都只有沿着一定方向才能达到最大重叠。
2、旧理论:共价键形成的条件是原子中必须有成单电子,自旋方向必须相反,由于一个原子的一个成单电子只能与另一个成单电子配对,因此共价键有饱和性。如原子与Cl原子形成HCl分子后,不能再与另外一个Cl形成HCl2了。
新理论:
共价键形成时,成键电子所在的原子轨道发生重叠并分裂,成键电子填入能量较低的轨道即成键轨道。如果还有其他的原子参与成键的话,其所提供的电子将会填入能量较高的反键轨道,形成的分子也将不稳定。
‘贰’ 关于化学键与氢键,什么叫方向性与饱和性
共价键和氢键具有方向性和饱和性,离子键没有方向性和饱和性。例如,水分子中,一个氧原子最外层有6个电子,只能与两个氢原子形成普通的共价键,这称为饱和性。两个氧氢键键角为104.5度,称为共价键具有方向性。
‘叁’ 化学键的方向性
化学键中的共价键有方向性和饱和性,离子键和金属件是没有方向性和饱和性的.
共价键是电子云相互重叠而形成的,电子云在重叠时必须采取合适的取向(方向)才能最大程度的重叠达到稳定状态.
‘肆’ 怎么看化学键具有方向性和饱和性。。。速度必给采纳
离子键和金属键都没有方向性和饱和性,共价键和配位键都有方向性和饱和性。
共价键的饱和性和方向性:
饱和性
在共价键的形成过程中,因为每个原子所能提供的未成对电子数是一定的,一个原子的一个未成对电子与其他原子的未成对电子配对后,就不能再与其它电子配对,即,每个原子能形成的共价键总数是一定的,这就是共价键的饱和性。
共价键的饱和性决定了各种原子形成分子时相互结合的数量关系 ,是定比定律(law of definite proportion)的内在原因之一。
方向性
除s轨道是球形的以外,其它原子轨道都有其固定的延展方向,所以共价键在形成时,轨道重叠也有固定的方向,共价键也有它的方向性,共价键的方向决定着分子的构形。
影响共价键的方向性的因素为轨道伸展方向。
配位键,又称配位共价键,或简称配键,是一种特殊的共价键。当共价键中共用的电子对是由其中一原子独自供应,另一原子提供空轨道时,就形成配位键。配位键形成后,就与一般共价键无异。成键的两原子间共享的两个电子不是由两原子各提供一个,而是来自一个原子。例如氨和三氟化硼可以形成配位化合物:图片式中→表示配位键。在N和B之间的一对电子来自N原子上的孤对电子。
‘伍’ 共价键的方向性
共价键的形成是成键原子的电子云发生重叠,如果电子云重叠程度越多,两核间电子云密度越大,形成的共价键就越牢固,因此共价键的形成将尽可能地沿着电子云密度最大的方向进行.除s轨道的电子云是球形对称,相互重叠时无方向性外,其余的p、d、f轨道的电子云在空间都具有一定的伸展方向,故成键时都有方向性.
共价键的方向性,决定分子中各原子的空间排布.原子排布对称与否,对于确定分子的极性有重要作用.我给你找找电子云图昂
‘陆’ 化学键的方向性与饱和性是什么意思
不是所有化学键都具有方向性和饱和性的。
1,共价键具有饱和性和方向性
要形成稳定的共价键,必须尽可能使电子云重叠程度大一些,我们知道,除了s电子以外,其它电子云都是有空间
取向的,在成键时,要尽可能沿着电子云密度最大的方向发生重叠.例如H2O中,氢原子的1s电子云沿着氧原子的2Px、2Py电子云的空间伸展方向的重
叠,才能达到电子云重叠程度最大,形成稳定的共价键,因此共价键具有方向性。
元素的原子形成共价键时,当一个原子的所有未成对电子和另一些原子中自旋方向相反的未成对电子配对成键后,就不再跟其它原子的未成对电子配对成键.例如H2O分子中,O原子有两个未成对电子,它只能跟两个H原子的未成对电子配对,因此,共价键具有饱和性。
2,氢键不同于范德华引力,它具有饱和性和方向性.
由于氢原子特别小而原子A和B比较大,所以A—H中的氢原子只能和一个B原子结合形成氢键.同时由于负离子之间的相互排斥,另一个电负性大的原子B′就难于再接近氢原子.这就是氢键的饱和性。
氢键具有方向性则是由于电偶极矩A—H与原子B的相互作用,只有当A—H---B在同一条直线上时最强,同时原子B一般含有未共用电子对,在可能范围内氢键的方向和未共用电子对的对称轴一致,这样可使原子B中负电荷分布最多的部分最接近氢原子,这样形成的氢键最稳定。
‘柒’ 怎么判断化学键的极性强弱
根据元素的氧化/还原性强弱,即易得/失电子的程度。判断化学键两端的两个原子的电负性(下表)相差越大,极性越强(相差足够大的时候就变成离子键了)。
键的极性是由于成键原子的电负性不同而引起的。当成键原子的电负性相同或相近时,核间的电子云密集区域在两核的中间位置附近,两个原子核正电荷所形成的正电荷重心和成键电子对的负电荷重心几乎重合。
离子键、共价键、金属键各自有不同的成因,离子键是通过原子间电子转移,形成正负离子,由静电作用形成的。共价键的成因较为复杂,路易斯理论认为,共价键是通过原子间共用一对或多对电子形成的,其他的解释还有价键理论,价层电子互斥理论,分子轨道理论和杂化轨道理论等。
(7)物质的化学键的方向性怎么看扩展阅读:
在一个水分子中2个氢原子和1个氧原子就是通过化学键结合成水分子。由于原子核带正电,电子带负电,所以我们可以说,所有的化学键都是由两个或多个原子核对电子同时吸引的结果所形成。
化学键在本质上是电性的,原子在形成分子时,外层电子发生了重新分布(转移、共用、偏移等),从而产生了正、负电性间的强烈作用力。但这种电性作用的方式和程度有所不同,所以又可将化学键分为离子键、共价键和金属键等。
离子键是原子得失电子后生成的阴阳离子之间靠静电作用而形成的化学键。离子键的本质是静电作用。由于静电引力没有方向性,阴阳离子之间的作用可在任何方向上,离子键没有方向性。
只要条件允许,阳离子周围可以尽可能多的吸引阴离子,反之亦然,离子键没有饱和性。不同的阴离子和阳离子的半径、电性不同,所形成的晶体空间点阵并不相同。