㈠ 不锈钢如何进行表面处理和防腐涂漆
涂层与金属基底间的附着力,与涂层对金属的保护有着密切的关系,它主要是由附着力与有机涂层下金属的腐蚀过程所决定的。有机涂层下金属的腐蚀主要是由相界面的电化学腐蚀引起的,附着力的好坏对电化学腐蚀有明显的影响。良好的附着力能有效地阻挡外界电解质溶液对基体的渗透,推迟界面腐蚀电池的形成。牢固的界面附着力可以极大地阻止腐蚀产物,金属阳离子经相间侧面向阴极区域的扩散,这些阳离子扩散是为了平衡阴极反应所生成的带负电荷的氢氧根离子,这虽然是一个相当缓慢的过程,但是一旦附着力降低,阳离子从相间侧面向阴极扩散则容易得多。
有机涂层的附着力,应该包含了两个方面,首先是有机涂层与基底金属表面的粘附力,其次是有机涂层本身的凝聚力。这两者对于涂层的保护作用来说缺一不可。有机涂层在金属基底表面的附着力强度越大越好,涂层本身坚韧致密的漆膜,才能起到良好的阻挡外界腐蚀因子的作用。涂层的不能牢固地粘附于基底表面,再完好的涂层也起不到作用。涂层本省凝聚力差,漆膜容易开裂而失去保护作用。这两个方面缺一不可,附着力不好,再完好的涂层也起不到作用,而涂层本身凝聚力差,则漆膜容易龟裂。这两者共同决定涂层的附着力,构成决定涂层保护作用的关键因素。
影响涂层附着力有基本的两个因素,涂料对底材的湿润性和底材的粗糙度。涂层对金属底材的湿润性越强,附着力越好。一定的表面粗糙度对涂层起到了咬合锚固的作用。而炅盛处理剂研发的金属附着力处理剂正是通过提升底材和涂层之间的附着力解决掉漆问题,轻松过百格、盐雾等测试。
㈡ 请问什么是电化学窗口,怎样测试电化学窗口
一般而言,电化学窗口这个概念是针对电解质来说的。
对于一种电解质来说,加在其上的最正电位和最负电位是有一定限制的,超出这个限度,电解质会发生电化学反应而分解。那么,这个最正电位和最负电位之间有一个区间,电解质稳定存在,我们把这个区间称电化学窗口。电化学窗口是衡量电解质稳定性的一个重要指标。
电化学窗口一般可以通过CV法测试得到,在电化学循环伏安曲线上没有电化学反应的那一段区间,就是电化学势窗。在这个电位范围内,电解质没有电化学反应发生。因此在电化学研究时,研究对象的氧化还原电位应该处在所选择的电解质的电化学窗口之中,才不会造成负面影响。
电化学窗口宽的支持电解质,就能用于研究氧化电位更高,或者是还原电位更低的电化学反应,当然,也能有更好的应用价值。
㈢ 电化学传感器的原理及应用
基本原理
化学传感器主要由两部分组成:识别系统;传导或转换系统。
识别系统反待测物的某一化学参数(常常是浓度)与传导系统连结起来。它主要具有两种功能:选择性地与待测物发生作用,反所测得的化学参数转化成传导系统可以产生响应的信号。分子识别系统是决定整个化学传感器的关键因素。因此,化学传感器研究的主要问题**是分子识别系统的选择以及如何反分子识别系统与合适的传导系统相连续。化学传感器的传导系统接受识别系统响应信号,并通过电极、光纤或质量敏感元件将响应信号以电压、电流或光强度等的变化形式,传送到电子系统进行放大或进行转换输出,终使识别系统的响应信号转变为人们所能用作分析的信号,检测出样品中待测物的量。
化学传感器在环境与卫生监测中的应用
(一)空气检验
1、湿度传感器 湿度是空气环境的一个重要指标,空气的湿度与人体蒸发热之间有着密切关系,高温高湿时,由于人体水分蒸发困难而感到闷热,低温高湿时,人体散热过程剧烈,容易引起感冒和冻伤。人体**适宜的气温是18~22℃,相对湿度为35%~65%RH。 在环境与卫生监测中,常用于湿球温湿度计、手摇湿温度计和通风湿温度计等仪器测定空气湿度。近年来,大量文献报道用传感器测定空气湿度。
2、氧化氮传感器 氧化氮是氮的各种氧化物所组成的气体混合物的总称,常以NOX表示。在氧化氮中,不同形式的氧化氮化学稳定性不同,空气中常风的是化学性质相对稳定的一氧化氮,它们在卫生学上的意义显得较其它形式氧化氮更为重要。在环境分析中,氧化氮一般指一氧化氮
3、硫化氢气体传感器 硫化氢是一种无色、具有特殊腐蛋臭味的可燃气体,具有刺激性和窒息性,对人体有较大危害。目前大多用比色法和气相色谱法测定空气中硫化
4、二氧化硫传感器 二氧化硫是污染空气的主要物质之一,检测空气中二氧化硫尝试是空气检验的一项经常性工作。应用传感器监测二氧化硫。从缩短检测时间到降低检出限,都显示出极大的优越性。
㈣ 电化学分析法的主要方法
电导法
是用电导仪直接测量电解质溶液的电导率的方法。
电化学分析法电位滴定法
是在用标准溶液滴定待测离子过程中,用指示电极的电位变化指示滴定终点的到达,是把电位测定与滴定分析互相结合起来的一种测试方法。
电化学分析法电解分析法
是将直流电压施加于电解池的两个电极上,根据电极增加的质量计算被测物的含量。
电化学分析法伏安法
根据电解过程中的电流电压曲线(伏安曲线)来进行分析的方法。
电化学分析法溶出伏安法
将恒电位电解富集法与伏安法结合的一种极谱分析方法。它首先将欲测物质在适当电位下进行电解并富集在固定表面积的特殊电极上,然后反向改变电位,让富集在电极上的物质重新溶出,同时记录电流电压曲线。根据溶出峰电流的大小进行定量分析。
电化学分析法电位溶出分析法
在恒电位下将被测物质电解富集在工作电极上,然后断开恒电位电路,由电解液中的氧化剂将被富集的物质溶解出来,同时记录溶出时的电位时间曲线,根据曲线上溶出阶的长度进行定量,这种方法缩写为P.S.A.。
电位溶出分析法与溶出伏安法之间主要区别在于前者在溶出时没有电流流过工作电极,而后者具有背景电流,在某些情况下可能淹没溶出峰。
㈤ 介质浓度对纳米氧化锌改性聚氨酯复合涂层抗介质渗透能力影响研究
杨立红1,2刘福春2韩恩厚2任玉林1李宗田1
(1.中国石化石油勘探开发研究院,北京100083;2.中国科学院金属研究所,沈阳110016)
摘要 依据前期工作,遴选盐基比(P/B)为0.3的纳米氧化锌改性聚氨酯涂层,探讨了介质浓度对涂层抗介质渗透能力的影响规律。结果表明,纳米氧化锌改性聚氨酯涂层的寿命随着腐蚀性介质浓度的升高而降低,溶液浓度越高,电阻下降越快。而在浸泡一定时间后,高浓度溶液中的涂层电容反而较低,原因是扩散进入涂层中的离子与水形成宏观水簇,降低了水的活度,同时也降低了涂层的防护性能。
关键词 电化学阻抗谱 纳米氧化锌复合涂层 介质浓度
Determination of the Effect of Solution Concentration on the Water Uptake and Coatings Lifetime by EIS
YANG Li-hong1,2,LIU Fu-chun2,HAN En-hou2,REN Yu-lin1,LI Zong-tian1
(1.Exploration & Proction Research lnstitute,SlNOPEC,Beijing100083;2.lnstitute of Metal Research,Chinese Academy of Science,Shenyang110016)
Abstract The protective properties of polyurethane coatings were studied using the impedance spectros technique.The effects of solution concentration were investigated.The results obtained can be summarized as follows:(1)the lifetime increases with decreasing the NaCl concentration;(2)The presence of Cl-ion can slightly increase the diffusion coefficient of water ring the initial stage of immersion,however,inhibits the absorption of water at the following stage,which is mainly e to water clustering with the absorbed ions more easily than that with resin,leading to microscopic clusters and decreasing the activity of water.
Key words EIS nano-ZnO/polyurethane coating Solution concentration
有机涂层对金属基体的保护是一个复杂的过程,通常是通过阻挡机制、电化学机制以及黏结机制起作用[1,2]。腐蚀性介质(离子、水、氧等)通过吸附和传输进入有机涂层中,从而影响了涂层/金属体系的腐蚀特性。对涂层/金属体系的界面行为已经有了广泛的探讨,但对环境因素的影响还缺少深入的研究。
随着电化学技术在涂层领域内的深入应用,许多电化学测试方法已成功地应用于涂层分析中,电化学阻抗谱(EIS)是一种无损检测技术,通过阻抗谱测定可获得涂层防护性能的许多信息,因此已经被广泛地应用于涂层的检测以及腐蚀机理研究[3~7]。本文主要应用EIS方法研究聚氨酯涂层的防护特性,重点探讨水及离子在纳米复合聚氨酯涂层中的传输行为。
1 实验方法
1.1 涂层的制备
以聚氨酯为基料,纳米ZnO为颜料,配成颜基比为0.3的4种样品(图1),基底金属为45#钢板,经机械抛光,丙酮除油无水乙醇除水处理后涂装,涂层干膜厚度为(30±5)μm。涂装完成后,在80℃下固化10h。
图1 颜基比为0.3的纳米氧化锌改性聚氨酯复合涂层的透射电镜形貌
1.2 电化学阻抗测量
电化学阻抗测试采用美国EG&G公司M263恒电位仪和5210锁向放大器组成的M398交流阻抗测量系统,测试频率范围为:10-2~105Hz,正弦波信号的振幅为20mV,测试采用三电极体系,辅助电极为不锈钢,参比电极为饱和甘汞电极,以基体金属为研究电极,阻抗数据经计算机采集后,用EQUIVCRT软件解析。腐蚀介质为一次蒸馏水配制的浓度分别为0和3.5%的NaCl溶液,NaCl为分析纯试剂。将待测涂层试样安装在电解池中,于不同的浸泡时间测量体系的电化学阻抗谱。
2 结果与讨论
2.1 纳米氧化锌改性聚氨酯复合涂层在不同浓度溶液中的电化学阻抗谱特征
纳米氧化锌改性聚氨酯涂层在3.5%NaCl溶液浸泡过程中,涂层的电阻逐渐降低,相位角逐渐向高频方向移动,说明涂层中的缺陷随着浸泡时间的延长而逐渐增加(图2)。当浸泡到180h时,电阻已经低于108Ω·cm2。而涂层电阻是体现涂层抗介质渗透能力的一个重要参数,通常来说涂层电阻越低,抗介质渗透能力越差,当电阻达到107Ω·cm2时,涂层已经失去了应有的保护作用。
图2 纳米氧化锌改性聚氨酯复合涂层在蒸馏水中浸泡的波特图
图3为颜基比为0.3的纳米氧化锌复合聚氨酯涂层在蒸馏水中浸泡的阻抗谱,从图中可以看出,在整个浸泡过程中,阻抗谱一直维持一个时间常数,涂层的电阻较稳定,且一直处于较高水平。这说明涂层的防护性能良好,在浸泡过程中,电解质溶液没有通过渗透到达涂层/基体界面,基底金属没有发生腐蚀。
图3 纳米氧化锌改性聚氨酯复合涂层在蒸馏水中浸泡的波特图
与图3的结果相比较,当颜基比为0.3的纳米氧化锌改性聚氨酯涂层在3.5%NaCl溶液中浸泡时,涂层的电阻下降较快,在浸泡到100h时,电化学阻抗谱即出现了第二个时间常数,此时基体金属已经发生了腐蚀,如果将第二个时间常数出现的时间定为涂层的寿命,那么纳米氧化锌改性聚氨酯涂料在蒸馏水中浸泡时涂层的寿命远远高于在3.5%NaCl溶液中浸泡时涂层的寿命。
2.2 介质浓度对纳米氧化锌改性聚氨酯复合涂层阻抗参数的影响规律
对上述阻抗谱进行解析,得到两种溶液浸泡过程中涂层的电阻和电容随时间变化的曲线,结果如图4所示。
涂层在介质溶液中浸泡时发生吸水与离子传输,导致涂层电容值增大而涂层的孔隙电阻减小;当侵蚀性介质传输到达基体时,形成基体/溶液的电化学界面,引起基体金属的电化学腐蚀。涂层电阻是涂层抗介质渗透能力的反映,可用来对涂层防腐蚀性能进行评价。图4(a)给出了不同溶液中涂层的孔隙电阻随浸泡时间的变化,从图中可看到,在浸泡前期,涂层电阻有所下降,而且在高浓度溶液中浸泡时下降的速度较大,涂层电阻最小。图4(b)示出了涂层电容随浸泡时间的变化关系,涂层电容的变化与涂层的吸水量直接相关,电容变化越大,涂层的吸水率越高,电容和吸水率之间满足如下关系[8]:
Xv=100lg(CP/C0)/(lg80)
图4 纳米氧化锌改性聚氨酯复合涂层在不同溶液中浸泡时涂层参数随时间的变化
从图4中可见,电容的变化可以分为两个阶段,在浸泡初期,涂层电容逐渐升高,但浸泡到一段时间后,涂层电容趋于稳定,说明此时涂层的吸水量开始趋于饱和。对浸泡初期的电容-时间曲线进行线性拟合,结果如图5所示。
图5 浸泡初期阶段水在涂层中传输过程的线性拟合
从图5可以看出,在浸泡初期各曲线近似表现为线性关系。结合上述公式,由直线截距和斜率可计算出水在涂层中的扩散系数,计算结果表明,在3.5%NaCl介质中,水在涂层中的扩散系数为1.61×10-11cm2/s,在蒸馏水中,水在涂层中的扩散系数为1.76×10-11cm2/s。两种溶液中水分子的扩散系数相差不大,氯化钠溶液中水的扩散系数值比蒸馏水中稍有提高。然而从图中看到涂层的电容值却随NaCl含量增加而减小,即涂层的吸水速度下降,这种现象在浸泡中后期尤为明显,这与NaCl对水扩散系数值的影响规律完全相反,可见在浸泡的中后期,水的传输并不是以Fick扩散进行的。这是由于水和离子以不同的速率向涂层中扩散,离子在涂层中扩散速度较慢,最初阶段只是水在涂层中的传输,随着浸泡时间的延长,离子传输到达涂层中,由于水分子-聚合物之间的介电常数较低,且水分子与离子间存在一定的键合力,在涂层中均匀分布的水分子与离子相吸附,形成宏观水簇,降低了水的活度,进而抑制了水与涂层间的相互作用,因此在浸泡中后期,涂层电容随着NaCl浓度的增加而降低。此外,如果几个水-离子吸附形成的水簇相接触,就会形成一个可降低涂层电阻的通路,这样氯离子就可以通过此通路到达金属表面,形成点蚀。溶液浓度越大,这种离子水簇的量越多,越容易形成点蚀,因而涂层的寿命越短。
3 结论
(1)水在聚氨酯涂层中的传输初始阶段满足Fick第二扩散定律。初始阶段,氯离子的存在对水扩散系数的影响不大,而在浸泡一定时间后,高浓度溶液中的涂层电容反而较低,原因是离子的介电系数较高,扩散进入涂层中的离子优先与水形成宏观水簇,降低了水的活度。
(2)纳米氧化锌改性聚氨酯复合涂层的寿命随着腐蚀性介质浓度的升高而降低,溶液浓度越高,电阻下降越快。
参考文献
[1]Miskovic V B,Drazic D M,Kacarevic Z.The sorption characteristics of epoxy coating electrodeposited on steel ring exposure to different corrosive agents.Corrosion Science,1996,38(9):1513.
[2]Rammelt U,Reinhard G.Application of electrochemical impedance spectros(EIS)for characterizing the corrosion-protective performance of organic coatings on metals[J].Progress in Organic Coatings,1992,21:205.
[3]Van Westing E P M,Ferrari G M,de Wrr J H W.The derermination of coating performance with impedance measurements-Ⅱwater uptake of coatings[J].Corrosion Science,1994,36(6):957.
[4]Mansfeld F,Jeaniaquet S L,Kendig M W.An electrochemical impedance spectros study of reactions at the metal/coating interface.Corrosion science,1986,26(9):735.
[5]Bierwagen G P,Tallman D E.Choice and measurement of crucial aircraft coatings system properties.Progress in Organic Coatings,2001,41:201.
[6]Kendig M,Sculy J.Basic aspects of electrochemical impedance application for the life prediction of organic coatings on metals.Corrosion,1990,46(1):22.
[7]张鉴清,曹楚南.电化学阻抗方法研究评价有机涂层.腐蚀与防护,1998,19(3):99.
[8]Bellucci F,Nicodemo L.Water transport in organic coatings[J].Corrosion,1993,49(3):235.
㈥ 电化学测定有机物原理
这个比较笼统,根据原理有几种不同情况,比如利用氧化还原的(电量),利用电位的、利用电流的等等,可以写一本书了,不要这么问好吗?
㈦ 化学分析方法中较常用的检测方法
鉴定金属由哪些元素所组成的试验方法称定性分析,测定各组分间量的关系(通常以百分比表示)的试验方法称定量分析。若基本上采用化学方法达到分析目的,称为化学分析。若主要采用化学和物理方法(特别是最后的测定阶段常应用物理方法),一般采用仪器来获得分析结果,称为仪器分析。化学分析根据各种元素及其化合物的独特化学性质,利用化学反应,对金属材料进行定性或定t分析。定量化学分析按最后的测定方法可分为重量分析法、滴定分析法和气体容积法等三种。重量分析法是使被测元素转化为一定的化合物或单质与试样中的其他组分分离,最后用天平称重方法测定该元素的含量。滴定分析法是将已知准确浓度的标准溶液与被测元素进行完全化学反应,根据所耗用标准溶液的体积(用滴定管测量)和浓度计算被测元素的含量。气体容积法是用量气管测量待测气体(或将待测元素转化成气体形式)被吸收(或发生)的容积,来计算待测元素的含量。由于化学分析具有适用范围广和易于推广的特点,所以至今仍为很多标准分析方法所采用。仪器分析根据被测金属成分中的元素或其化合物的某些物理性质或物理与化学性质之间的相互关系,应用仪器对金属材料进行定性或定量分析。有些仪器分析仍不可避免地需要通过一定的化学预处理和必要的化学反应来完成。金属化学分析常用的仪器分析法有光学分析法和电化学分析法两种。光学分析法是根据物质与电磁波(包括从丫射线至无线电波的整个波谱范围)的相互关系,或者利用物质的光学性质来进行分析的方法。最常用的有吸光光度法(红外、可见和紫外吸收光谱)、原子吸收光谱法、原子荧光光谱法、发射光谱法(看谱分析)、浊度法、火焰光度法、x射线衍射法、x射线荧光分析法以及放射化学分析法等。电化学分析法是根据被测金属中元素或其化合物的浓度与电位、电流、电导、电容或电量的关系来进行分析的方法。主要包括电位法、电解法、电流法、极谱法、库仑(电量)法、电导法以及离子选择电极法等。仪器分析的特点是分析速度快、灵敏度高,易于实现计算机控制和自动化操作,可节省人力,减轻劳动强度和减少环境污染。但试验装工通常较庞大复杂,价格昂贵,有些大型、复杂、精密的仪器只适用于大批量和成分较复杂的试样分析工作。
㈧ 电化学怎么测电化学方法测重金属最低检出线
1. 基本原理 化学检测仪器三部分组成。其中电解质溶液即电分析化学的分析对象。电化学传感器也称为电极,根据应用形式不同,又分为双电极,三电极,四电极体系。电极之间通过电路与检测仪器连接。