A. 核磁共振氢谱中氢信号的裂分间距反映了什么信息
由于相邻碳上质子之间的自旋偶合,因此能够引起吸收峰裂分。例如,一个质子共振峰不受相邻的另一个质子的自旋偶合影响,则表现为一个单峰,如果受其影响,就表现为一个二重峰,该二重峰强度相等,其总面积正好和未分裂的单峰面积相等。
自旋偶合使核磁共振谱中信号分裂成多重峰,峰的数目等于n+1,n是指邻近H的数目,例如CH3-CHCl2中CH3的共振峰是1+1=2,因为他邻近基团CHCl2上只有一个H;-CHCl2的共振峰是3+1=4,因为他邻近基团-甲基上有三个H。注意,只有当自旋偶合的邻近H原子都相同时才适用n+1规则。
当自旋偶合的邻近H原子不相同时,裂分数目为(n+1)(n'+1)(n''+1)。例如化合物Cl2CH-CH2-CHBr2中,两端两个基团-CHCl2和-CHBr2中的H并不相同,因而-CH2-应该裂分成为(1+1)(1+1)=4重峰。又如ClCH2-CH2-CH2Br中-CH2-该裂分为(2+1)(2+1)=9重峰 。
2.1核磁共振氢谱中的几个重要参数
1、化学位移
(1)影响化学位移的主要因素:
a.诱导效应。
电负性取代基降低氢核外电子云密度,其共振吸收向低场位移,δ值增大,如
CH3F
CH3OH
CH3Cl
CH3Br
CH3I
CH4
TMS
δ(ppm)
4.06
3.40
3.05
2.68
2.16
0.23
0
X电负性
4.0
3.5
3.0
2.8
2.5
2.1
1.6
对于X-CH<YZ型化合物,X、Y、Z基对>CH- δ值的影响具有加合性,可用shoolery公式估算,式中0.23为CH4的δ,Ci值见下表。
例如:BrCH2Cl(括号内为实测值)
δ=0.23+2.33+2.53=5.09ppm(5.16ppm)
利用此公式,计算值与实测值误差通常小于0.6ppm,但有时可达1pmm。
值得注意的是,诱导效应是通过成键电子传递的,随着与电负性取代基距离的增大,诱导效应的影响逐渐减弱,通常相隔3个碳以上的影响可以忽略不计。例如:
b.磁各向异性效应。
上面所述的质子周围的电子云密度,能阐明大多数有机化合物的化学位移值。但是还存在用这一因素不能解释的事实:如纯液态下的乙炔质子与乙烯质子相比,前者在高场共振;相反苯的质子又在低场下发生共振。这些现象可用磁各向异性效应解释。
当分子中某些基团的电子云排布不是球形对称时,即磁各向异性时,它对邻近的H核就附加一个各向异性磁场,使某些位置上核受屏蔽,而另一些位置上的核受去屏蔽,这一现象称为各向异性效应。在氢谱中,这种邻近基团的磁各向异性的影响十分重要。现举例说明一下:
叁键的磁各向异性效应:如乙炔分子呈直线型,叁键轴向的周围电子云是对称分布的。乙炔质子处于屏蔽区,使质子的δ值向高场移动。
双键:π电子云分布于成键平面的上、下方,平面内为去屏蔽区。与SP2杂化碳相连的氢位于成键的平面内(处于去屏蔽区),较炔氢低场位移。乙烯:5.25ppm;醛氢:9-10ppm。
化学键的各向异性还可由下述化合物(1)至(4)看出:
化合物(1)、(3)中的标记氢分别处于双键和苯环的屏蔽区,而化合物(2)、(4)中相应的氢分别处于双键和苯环的去屏蔽区,δ值增大。
芳环的磁各向异性效应:芳香族化合物的环形π电子云,在外磁场Bo的作用下形成大π电子环流。这电子环流所产生的感应磁场,使苯环平面上下两圆锥体为屏蔽区,其余为去屏蔽区。苯环质子处在去屏蔽区,所心共振信号位置与大多数质子相比在较低场。
B. 化学位移中数字越大是低场还是高场
化学位移中数字越大是低场,不是高场。因为低场矢量为0的分力越小,而分力越小,越容易产生位移,所以化学位移中数字越大是低场。
核磁共振中,化学位移本身是有单位的,其单位是Hz,之所以最终没有单位,是因为我们常说的化学位移指的是化学相对位移。例如,当使用200MHz的NMR时,某个位移值为200Hz,这时就采用相对位移,用200Hz去除以200MHz,得到的是百万分之一,也就是1ppm;
之所以这么表示是因为,位移值会随着机器的不同而改变,例如,在400MHz的NMR下,位移值是400Hz,只是相对位移不变,仍然是1ppm
由于有机分子中各种质子受到不同程度的屏蔽效应,因此在核磁共振谱的不同位置上出现吸收峰。
某一物质吸收峰的位置与标准质子吸收峰位置之间的差异称为该物质的化学位移(chemicalshift),常以δ表示。
四甲基硅吸收峰的δ值为零,其右边的δ值为负,左边δ值为正。
C. 37ppm化学位移对应什么物质
化学位移的单位怎么是ppm的原因是:
ppm的意思是百万分之一。而化学位移,其实是一个相对位移。比如当使用200MHz的NMR时,某个位移值为200Hz,这时就采用相对位移,用200Hz去除以200MHz,得到的相对位移是百万分之一,也就是1ppm。
化学位移的定义:
用核磁共振仪可以记录到有关信号,处在不同化学环境中的氢原子因产生共振时吸收电磁波的频率不同,在谱图上出现的位置也不同,各类氢原子的这种差异被称为化学位移。
D. 在60mhz仪器中,某质子与tms的共振频率相差120hz,则该质子的化学位移是多少
化位移定义:由于机各种质受同程度屏蔽效应,核磁共振谱同位置现吸收峰.
某物质吸收峰位置与标准质吸收峰位置间差异称该物质化位移(chemical shift),δ表示
重要性:
用推测结构重要参数.同官能团相同频率应同化位移数,化位移差别约百万十,精确测量十困难,现采用相数值.四甲基硅(TMS)标准物质,规定:化位移零,,根据其吸收峰与零点相距离确定化位移值.根据谱图便推测结构.
E. 什么是化学位移
原子核在磁场的作用下会发生自旋,当吸收外来电磁辐射时,会发生核自旋能级的跃迁,产生核磁共振现象,有机化合物中,处在不同结构和位置上的各种氢核周围的电子云密度不同,导致共振频率有差异,产生共振吸收峰的位移,称为化学位移。
F. 核磁共振的化学位移
氢的核磁共振谱提供了三类极其有用的信息:化学位移、偶合常数、积分曲线。应用这些信 息,可以推测质子在碳胳上的位置。
根据前面讨论的基本原理,在某一照射频率下,只能在某一磁感应强度下发生核磁共振。例如:照射频率为60 MHz,磁感应强度是 14.092 Gs(14.092×10^-4 T),100 MHz—23.486 Gs(23.486×10^-4 T),200 MHz—46.973 Gs(46.973×10^-4 T)。600 MHz—140.920 Gs(140.920×10^-4 T)。但实验证明:当1H在分子中所处化学环境(化学环境是指1H的核外电子以及与1H 邻近的其它原子核的核外电子的运动情况)不同时,即使在相同照射频率下,也将在不同的共振磁场下显示吸收峰。下图是乙酸乙酯的核磁共振图谱,图谱表明:乙酸乙酯中的8个氢,由 于分别处在a,b,c三种不同的化学环境中,因此在三个不同的共振磁场下显示吸收峰。同种核由于在分子中的化学环境不同而在不同共振磁感应强度下显示吸收峰,这称为化学位移(chemical shift)。 化学位移是怎样产生的?分子中磁性核不是完全裸露的,质子被价电子包围着。这些电子 在外界磁场的作用下发生循环的流动,会产生一个感应的磁场,感应磁场应与外界磁场相反(楞次定律),所以,质子实际上感受到的有效磁感应强度应是外磁场感应强度减去感应磁场强度。即
B有效=B0(1-σ)=B0-B0σ=B0-B感应
外电子对核产生的这作用称为屏蔽效应(shielding effect),也叫抗磁屏蔽效应(diamagnetic effect)。称为屏蔽常数(shielding constant)。与屏蔽较少的质子比较,屏蔽多的质子对外磁场感受较少,将在较高的外磁场B0作用下才能发生共振吸收。由于磁力线是闭合的,因此感应磁 场在某些区域与外磁场的方向一致,处于这些区域的质子实际上感受到的有效磁场应是外磁场B0加上感应磁场B感应。这种作用称为去屏蔽效应(deshielding effect)。也称为顺磁去屏蔽效应(paramagnetic effect)。受去屏蔽效应影响的质子在较低外磁场B0作用下就能发生共振吸收。综上所述:质子发生核磁共振实际上应满足:
ν射=γB有效/2π
因在相同频率电磁辐射波的照射下,不同化学环境的质子受的屏蔽效应各不相同,因此它们发生 核磁共振所需的外磁场B0也各不相同,即发生了化学位移。
对1H化学位移产生主要影响的是局部屏蔽效应和远程屏蔽效应。核外成键电子的电子云 密度对该核产生的屏蔽作用称为局部屏蔽效应。分子中其它原子和基团的核外电子对所研究的 原子核产生的屏蔽作用称为远程屏蔽效应。远程屏蔽效应是各向异性的。 化学位移的差别约为百万分之十,要精确测定其数值十分困难。现采用相对数值表示法,即选用一个标准物质,以该标准物的共振吸收峰所处位置为零点,其它吸收峰的化学位移值根据这 些吸收峰的位置与零点的距离来确定。最常用的标准物质是四甲基硅(CH3)4Si简称TMS。选TMS为标准物是因为:TMS中的四个甲基对称分布,因此所有氢都处在相 同的化学环境中,它们只有一个锐利的吸收峰。另外,TMS的屏蔽效应很高,共振吸收在高场出现,而且吸收峰的位置处在一般有机物中的质子不发生吸收的区域内。现规定化学位移用δ来 表示,四甲基硅吸收峰的δ值为零,其峰右边的δ值为负,左边的δ值为正。测定时,可把标准物与样品放在一起配成溶液,这称为内标准法。也可将标准物用毛细管封闭后放人样品溶液中进 行测定,这称为外标准法。此外,还可以利用溶剂峰来确定待测样品各个峰的化学位移。
由于感应磁场与外磁场的B0成正比,所以屏蔽作用引起的化学位移也与外加磁场B0成正 比。在实际测定工作中,为了避免因采用不同磁感应强度的核磁共振仪而引起化学位移的变化,δ一般都应用相对值来表示,其定义为
δ=(ν样-ν标)/ν仪×10^6④
在式④中,ν样和ν标分别代表样品和标准化合物的共振频率,ν仪为操作仪器选用的频率。多数有机物的质子信号发生在0~10处,零是高场,10是低场。 需注意也有一些质子的信号是在小于0的地方出现的。如安扭烯的环内的质子,受到其外芳环磁各向异性的影响,甚至可以达到-2.99。此外,在不同兆数的仪器中,化学位移的值是相同的。 化学位移取决于核外电子云密度,因此影响电子云密度的各种因素都对化学位移有影响,影 响最大的是电负性和各向异性效应。
⑴电负性(诱导效应)
电负性对化学位移的影响可概述为:电负性大的原子(或基团)吸电子能力强,1H核附近的吸电子基团使质子峰向低场移(左移),给电子基闭使质子峰向高场移(右移)。这是因为吸电子基团降低了氢核周围的电子云密度,屏蔽效应也就随之降低,所以质子的化学位 移向低场移动。给电子基团增加了氢核周围的电子云密度,屏蔽效应也就随之增加,所以质子的 化学位移向高场移动。下面是一些实例。
实例一: 电负性 C2.6 N3.0 O3.5 δ C—CH3(0.77~1.88) N—CH3(2.12~3.10) O—CH3(3.24~4.02) 实例二: 电负性 Cl3.1 Br2.9 I2.6 δ CH3—Cl(3.05)
CH2—Cl2(5.30)
CH—Cl3(7.27) CH3—Br(2.68) CH3—I(2.16) 电负性对化学位移的影响是通过化学键起作用的,它产生的屏蔽效应属于局部屏蔽效应。
⑵各向异性效应
当分子中某些基团的电子云排布不呈球形对称时,它对邻近的1H核产 生一个各向异性的磁场,从而使某些空间位置上的核受屏蔽,而另一些空间位置上的核去屏蔽, 这一现象称为各向异性效应(anisotropic effect)。
除电负性和各向异性的影响外,氢键、溶剂效应、van der Waals效应也对化学位移有影响。氢键对羟基质子化学位移的影响与氢键的强弱及氢键的电子给予体的性质有关,在大多数情况 下,氢键产生去屏蔽效应,使1H的δ值移向低场。有时同一种样品使用不同的溶剂也会使化学位移值发生变化,这称为溶剂效应。活泼氢的溶剂效应比较明显。
当取代基与共振核之间的距离小于van der Waals半径时,取代基周围的电子云与共振核周围的电子云就互相排 斥,结果使共振核周围的电子云密度降低,使质子受到的屏蔽效应明显下降,质子峰向低场移动,这称为van der Waals效应。氢键的影响、溶剂效应、van der Waals效应在剖析NMR图谱时很有用。
(3)共轭效应
苯环上的氢若被推电子基取代,由于P-π共轭,使苯环电子云密度增大,质子峰向高场位移。而当有拉电子取代基则反之。对于双键等体系也有类似的效果。
G. 什么是化学位移,影响化学位移的因素有哪些.简述自旋
化学位移是核磁共振中的一种术语,是化学环境所引起的核磁共振信号位置的变化,具体是用数字来进行表达(相对的,通常使用四甲基硅烷作为基准)。如果你是大学生,有空去帮师兄师姐做做实验你就会很了解,核磁共振是化合物结构解析的常用手段。
影响因素有:
内因:有吸电子基团的向低场移动(因为屏蔽作用减少,弛豫所需的外磁场强度可以不用很高);共轭效应的向低场移动(如苯环上的H向低场移动);还有就是各向异构引起的,比如苯环的上方空间(不是苯环上)的H向高产移动,三键的键方向的向高产移动,双建上方的H向高产移动。这些有机化学的课本上都有,注意分类,别弄混淆。
外因:溶剂,温度(低温的时候有的单峰肯能会列分成双峰,如DMF的)。
H. 核磁共振氢谱中各个基团的化学位移怎么判断
氢谱在核磁共振内有一个峰值,其出现化学位移是因为连接的官能团的影响,极性官能团与非极性官能团对氢谱的影响是一向左移,一向右移。
在有机化学书上,常见的吸电子基团(吸电子诱导效应用-I表示)NO2 > CN > F > Cl > Br > I > C三C > OCH3 > OH > C6H5 > C=C > H羟基的吸电子效应比苯环稍大。
化学位移值是对某个原子的周围的化学环境的专一性的表示,化学环境不同,化学位移值就不同,通过数值,可以知道其周围的原子或者基团有哪些,推测其结构。
核磁共振氢谱中,甲基的和乙基的基本化学位移值分别为多少,咖啡因属于甲基黄嘌呤的生物碱.它的化学式是C8H10N4O2.分子量,194.19.它的化学名是1,3,7-三甲基黄嘌呤或3,7-二氢-1,3,7-三甲基-1H-嘌呤。
(8)简述化学位移是如何定义的扩展阅读:
化学位移符号δ虽称不上精准但广泛存在,因此常常作为谱学分析中的重要参考数据。范围一般在 ±0.2ppm,有时更大。确切的化学位移值取决于分子的结构、溶剂、温度及该NMR分析所用的磁场强度及其他相邻的官能团。氢原子核对键结氢原子的混成轨域和电子效应敏感。核子经常因吸引电子的官能基解除屏蔽。未屏蔽的核子会反应较高的δ值,而有屏蔽的核子δ值较低。
官能基如羟基(-OH)、酰氧基(-OCOR)、烷氧基( -OR )、硝基(-NO2)和卤素等均为吸引电子的取代基。 这些取代基会使Cα上相连的氢峰向低场移动大约2-4 ppm, Cβ上相连的氢峰向低场移动大约1-2 ppm。 Cα是与取代基直接相连的碳原子, Cβ是与Cα相连的碳原子.羰基,碳碳双键和芳香环等含“sp2” 杂化碳原子的基团会使其Cα上相连的氢原子峰向低场移动约1-2 ppm 。
I. 化学位移的单位怎么是ppm
化学位移的单位怎么是ppm的原因是:
核磁共振中,化学位移本身的单位并不是ppm,而其单位是Hz,之所以单位为ppm,是因为我们常说的化学位移指的是化学相对位移。
打个比方,当使用200MHz的NMR时,某个位移值为200Hz,这时就采用相对位移,用200Hz去除以200MHz,得到的是百万分之一,也就是1ppm;之所以这么表示是因为,位移值会随着机器的不同而改变,例如刚才的例子,在400MHz的NMR下,位移值是400Hz,只是相对位移不变,仍然是1ppm。
化学位移的公式表示:
现采用相对数值表示法,即选用一个标准物质,以该标准物的共振吸收峰所处位置为零点,其它吸收峰的化学位移值根据这些吸收峰的位置与零点的距离来确定。
化学位移值普遍采用无量纲的δ值表示,其定义为:
(9)简述化学位移是如何定义的扩展阅读:
影响因素:
化学位移取决于核外电子云密度,因此影响电子云密度的各种因素都对化学位移有影响,影响最大的是电负性和各向异性效应。
1. 电负性
电负性大的原子(或基团)吸电子能力强,降低了氢核外围的电子云密度,屏蔽效应也就随之降低,其共振吸收峰移向低场,化学位移会变大;反之,给电子基团可增加氢核外围的电子云密度,共振吸收峰移向高场,化学位移会变小。
2. 各向异性效应
当分子中的某些基团的电子云排布不呈球形对称时,它对邻近的1H核产生一个各向异性的磁场,从而使某些空间位置上的核受屏蔽,而另一些空间位置上的核去屏蔽,这一现象称为各向异性效应(anisotropic effect)。各向异性效应是由于成键电子的电子云分布不均匀导致在外磁场中所产生的感应磁场的不均匀所引起的,如苯环上质子的化学位移移向低场,δ在7左右。
3. 氢键
氢键对羟基质子化学位移的影响与氢键的强弱及氢键的电子给予体的性质有关,在大多数情况下,氢键产生去屏蔽效应,使1H的δ值移向低场。
4. 溶剂效应
有时同一种样品使用不同的溶剂也会使化学位移值发生变化,这称为溶剂效应。活泼氢的溶剂效应比较明显。能引起溶剂效应的因素很多,如N,N-二甲基甲酰胺在CDCl3中测定时,δαH>δβH,而在被测物中加入适量苯溶剂后可使δαH<δβH, 这是因为苯能与之形成复合物,而使两种氢处于不同的屏蔽区所致。
5. 范德华效应
当取代基与共振核之间的距离小于范德华半径时,取代基周围的电子云与共振核周围的电子云就互相排斥,共振核周围的电子云密度降低,使质子受到的屏蔽效应明显下降,质子峰向低场移动,这称为范德华效应。
J. 化学位移的定义
由于有机分子中各种质子受到不同程度的屏蔽效应,引起外加磁场( )或共振频率(v)偏离标准值而产生移动的现象。
但这种屏蔽效应所造成的差异是非常小的,难以精确的测出其绝对值,因此需要一个参照物(reference compound)来做对比,常用四甲基硅烷(CH3)4Si(tetramethylsilane,简写为TMS)作为标准物质,并人为将其吸收峰出现的位置定为零。(TMS中,Si原子电负性较小,电子云可以较多的流到甲基上,因此H核电子云密度大,其屏蔽系数几乎比其它所有物质的都大,若它的化学位移定为零,则其他化合物H核的共振频率都在左侧,因此其它有机试剂的化学位移δ都是负值。)
Protons are sensitive to their chemical environment -- electron moving near them proce their own magnetic field, that changes the external field experienced by the proton. Protons in different chemical environments therefore experience slightly different magnetic fields and absorb at different frequencies.
The resonance frequencies of the different protons are expressed as chemical shifts relative to a standard.
Tetramethylsilane(TMS) is widely used as a standard because it is inert and has a spectrum with a single absorption.