Ⅰ HF键与NH键哪个长,真实值
查得键长及键能数据(来自大学化学手册):
H-F N-H
键长(10^-10m) 0.9168 1.045
键能(kJ/mol) 565.3 356
Ⅱ 碳氮双键上的氢nmr的化学位移可以到9吗
读取核磁共振氢谱氢信号的化学位移,一是为了解析分子结构,一是为了发表文章报道使用. 为解析结构,只需要精确到小数点后2位即可,后面的四舍五入. 发表论文时,也基本上读到小数点后2位即可. 只在解析高级谱图时,才需要读到小数点后4位,以便于计算使用. 对NMR谱图的峰信号,不论信号峰的形状是否规则、是否对称,信号峰的化学位移值总是位于整个信号峰把基线进行添加后构成封闭图形后的质量重心位置的横坐标上. 为此,先对信号峰进行谱峰分组,再求解包括化学位移在内的所有谱图信息参数. 对谱的每一组峰群进行分组,求解出每一个峰组的谱图信息参数:峰形(宽窄),分裂峰数(单峰s,二重峰d,三重峰t,四重峰q,五重峰,六重峰,多重峰M).峰形与图谱公共基线所围峰面积积分比,化学位移δ值,自旋-自旋耦合常数J值(在非NMR专业论文中,一般都简述这些图谱参数)相互不迭加的谱峰容易进行分组,相互迭加的一级谱或复杂谱,解析的过程也是不断调整进行分组的过程.峰形一般较窄,解析时都是按较窄的峰形处理的.如果较宽,至少是底部较宽时,它的峰较宽的信息本身就代表一定的分子结构信息. 化学位移δ值,现在多使用相对值,即以某一个内标准物质,如四甲基硅等,以内标准物质的NMR信号化学位移δ值为0 ppm或0 Hz,测试物质的信号峰相对于内标物的化学位移δ值.如果NMR谱图内标物信号不在0 位,需要校正之. 常规分裂峰数,s,d,t,q,五重,六重,七重峰,此外还有dd(双二重峰),dt(双三重峰),dq(双四重峰),ddd(双双二重峰),ddt(双双三重峰),dddd(双双双二重峰)等峰形,每一种都代表一定的结构信息.有了峰形分组和谱峰组成,才容易求解δ值――峰形质量中心的横坐标.求J值的过程也是不断解析谱图推导分子结构的过程. 单峰s,二重峰d,三重峰t,四重峰q,五重峰,六重峰,多重峰M,如果是左右对称的峰形,化学位移δ值就在对称峰形的中心峰上或中心处横坐标上读出. 对称的dd(双二重峰),dt(双三重峰),dq(双四重峰),ddd(双双二重峰),ddt(双双三重峰),dddd(双双双二重峰)等峰形,化学位移δ值也是在对称峰形的中心位置上读出. 如果是高级谱图,其中,一部分是一级谱图的变形,即由于耦合关系、相互耦合的内侧峰线高于外侧峰线的,其化学位移δ值稍向峰高的那一侧偏移,偏移得多少依据质量重心法则.另一部分的高级谱图峰形较复杂,如要近似地读出化学位移δ值也是如此即可.如果要想求解出精确的化学位移δ值,可以按照各种不同类型的高级谱图自旋体系的成套的解析公式进行解析,这些高级谱图的自旋类型的判断、计算、解析的整个内容都是很好的可发表论文的实质内容和精华部分. 教科书中都有这方面的内容和专门知识,可去学习.
Ⅲ 关于有机物的化学位移值。为什么甲醛>苯>乙烯>乙炔
质子的化学位移
碳上质子的化学位移值取决于质子的化学环境。因此,我们也可以反过来由质子的化学位移推测质子的化学环境及分子的结构。各类质子的化学位移大体有一个范围,下面给出各类质子的粗略化学位移:
碳上的氢(H)
脂肪族CH(C上无杂原子) 0——2.0
β-取代脂肪族CH 1.0——2.0
炔氢 1.6——3.4
α-取代脂肪族CH(C上有O、N、X或与烯键、炔键相连) 1.5——5.0
烯氢 4.5——7.5
苯环、芳杂环上氢 6.0——9.5 醛基氢 9——10.5
氧上的氢(OH)
醇类 0.5——5.5 酚类 4.0——8.0 酸 9——13.0
氮上的氢(NH)
脂肪族0.6——3.5 芳香胺 3.0——5.0 酰胺 5——8.5
对于大部分有机化合物来说氢谱的化学位移值在0-13 ppm. 大致可分以下几个区
0-0.8 ppm :很少见,典型化合物; 环丙烷,硅烷,以及金属有机化合物。
0.8-1.5 ppm :烷烃区域. 氢直接与脂肪碳相连,没有强电负性取代基。化学位移地次序CH>CH2>CH3.。如果有更多的取代基化学位移移向低场。
2-3 ppm:羰基αH(醛、酮、羧酸、酯)、苄位碳H。
1.5-2ppm:烯丙位碳H
卤代烃(氯、溴、碘)同碳氢:2-4ppm,氟代烃:4-4.5
3.0-
4.5 ppm:醚区域。即醚,羟基或者酯基碳氧单键的αH如果有更多的电负性取代基化学位移移向低场。
5.0-7.0 ppm :双键区域,氢直接与C=C 双键相连。炔氢化学位移2-3。
7.0-8.0 ppm :芳环质子区域. 磁各向异性作用,导致芳环质子处于去屏蔽区。同样现象发生在醛由于羰基地磁各向异性,醛质子化学位移在9-10 ppm
-OH 可以出现在任何位置,谱线的性质由多重因此影响H的交换:pH.浓度,温度,溶剂等。一般芳环酚羟基更趋于低场。醇羟基0.5-5.5ppm,酚羟基4-8ppm 醇在DMSO中4.0-6.5
大多数的-NHR, -NH2和醇一样,可被交换,在2-3 ppm 区域显示宽峰。
脂肪胺 0.6-3.5ppm ,芳香胺3.0-5.0ppm。酰胺5-9ppm
-CO2H 可交换,像醇(>10 ppm)
Ⅳ 氢气在甲醇中的化学位移
氢气在甲醇中的化学位移从峰形上看,位置较尖
氢的化学位移氢的化学位移 常见的活泼氢有:OH、NH、SH 等。这些活泼氢由... 合。如甲醇在常温下羟基氢为单峰,而在-54,羟基氢裂分为四重
一般醇羟基氢我们分析氢谱是都不分析,因为它出峰不固定,很多时候不出峰。
Ⅳ 氮氢键在sp2杂化时的键长是多少啊
你没有理解键长的测定和杂化的含义
键长是一个平均值 无所谓sp2杂化时的键长 杂化是对一个中心原子来说的 怎么扯上键?
键长是键的性质 NH键一般取101皮米
Ⅵ 核磁共振的质子化学位移
由于不同类型的质子化学位移不同,因此化学位移值对于分辨各类质子是重要的,而确定质子类型对于阐明分子结构是十分有意义的。下表列出了一些特征质子的化学位移,表中黑体字的H是要研究的质子。 特征质子的化学位移质子的类型 化学位移 质子的类型 化学位移 RCH3 0.9 ArOH 4.5-4.7(分子内缔合10.5~16) R2CH2 1.3 R3CH 1.5 R2C=CR—OH 15~19(分子内缔合) 0.22 RCH2OH 3.4~4 R2C=CH2 4.5~5.9 ROCH3 3.5~4 R2C=CRH 5.3 RCHO 9~10 R2C=CR—CH3 1.7 RCOCR2—H 2~2.7 RC≡CH 7~3.5 HCR2COOH 2~2.6 ArCR2—H 2.2~3 R2CHCOOR 2~2.2 RCH2F 4~4.5 RCOOCH3 3.7~4 RCH2Cl 3~4 RC≡CCOCH3 2~3 RCH2Br 3.5~4 RNH2或R2NH 0.5~5(峰不尖锐,常呈馒头形) RCH2I 3.2~4 ROH 0.5~5.5(温度、溶剂
、浓度改变时影响很大) RCONRH或ArCONRH 5~9.4 甲烷氢的化学位移值为0.23,其它开链烷烃中,一级质子在高场δ≈0.91处出现,二级质子移向低场在δ≈1.33处出现,三级质子移向更低场在δ≈1.5处出现。例如: 烷烃 CH4 CH3—CH3 CH3—CH2—CH3 (CH3)3CH δ 0.23 0.86 0.86 0.91 1.33 0.91 0.86 1.50 甲基峰一般具有比较明显的特征,亚甲基峰和次甲基峰没有明显的特征,而且常呈很复杂的峰形,不易辨认。当分子中引人其它官能团后,甲基、次甲基及亚甲基的化学位移会发生变化,但其δ值极少超出0.7~4-5这一范围。
环烷烃能以不同构象形式存在,未被取代的环烷烃处在一确定的构象中时,由于碳碳单键的 各向异性屏蔽作用,不同氢的δ值略有差异。例如,在环己烷的椅型构象中,由于C-I上的平伏键氢处于C⑵ — C⑶键及C⑸ — C⑹键的去屏蔽区,而C-I上的直立键氢不处在去屏蔽区,(图环己烷的各向异性屏蔽效应)。所以平伏键氢比直立键氢的化学位移略高0.2~0.5。在低温(-100℃)构象固定时,NMR谱图上可以清晰地看出两个吸收峰,一个代表直立键氢,一个代表平伏键氢。但在常温下,由于构象的迅速转换(图环己烷构象的转换),一般只看到一个吸收峰(见右图)。
其它未取代的环烷烃在常温下也只有一个吸收峰。环丙烷的δ值为0.22,环丁烷的δ值为1.96,别的环烷烃的δ值在1.5左右。取代环烷烃中,环上不同的氢有不同的化学位移,它们的图谱有时呈比较复杂的峰形,不易辨认。 酯中烷基上的质子RCOOCH2R的化学位移δH=3.7~4。酰胺中氮上的质子RCONHR 的化学位移,一般在δ= 5~9.4之间,往往不能给出一个尖锐的峰。
羰基或氮基附近α碳上的质子具有类似的化学位移= 2~3,例如,CH3COCl δH=2.67,CH3COOCH3 δH=2.03, RCH2COOCH3 δH=2.13,CH3CONH2 δH= 2.08,RCH2CONH2 δH=2.23,CH3CN δH=1.98,RCH2CN δH=2.30。 醇的核磁共振谱的特点参见后文。醚α-H的化学位移约在3.54附近。
酚羟基氢的核磁共振的δ值很不固定,受温度、浓度、溶剂的影响很大,只能列出它的大致范 围。一般酚羟基氢的δ值在4~8范围内,发生分子内缔合的酚羟基氢的δ值在10.5~16范 围内。
羧酸H的化学位移在2~2.6之间。羧酸中羧基的质子由于受两个氧的吸电子作用,屏 蔽大大降低,化学位移在低场。R2CHCOOH δH=10~12。
胺中,氮上质子一般不容易鉴定,由于氢键程度不同,改变很大,有时N— H和C一H质子 的化学位移非常接近,所以不容易辨认。一般情况在α-H δH=2.7~3.1,β-H δ=1.1~1.71。N-H δ=0.5~5,RNH2,R2NH的δ值的大致范围在0.4~3.5,ArNH2,ArzNH,ArNHR的δ值的大 致范围在2.9~4.8之间。
Ⅶ 核磁共振氢谱中,甲基的和乙基的基本化学位移值分别为多少
核磁共振氢谱里面也要看你邻位的取代基的性质,一般来说乙基的化学位移较甲基的化学位移更低场,他们的化学位移基本是在1-2之间,但是如果接了其他的基团又不一样了,比如接了醚键成了甲氧基,化学位移就跑到3.8左右了,所以不能一概而论
Ⅷ -NH-如何水解
—CO—NH—称作酰胺键,又称肽键;它的水解生成羧基—COOH和氨基—NH2;也就是将水拆成羟基—OH和氢原子—H,肽键断开,—CO—补上羟基—OH成为羧基—COOH;—NH—补上氢原子成为氨基—NH2
Ⅸ 什么是氢键
氢键的形成
⑴ 同种分子之间
现以HF为例说明氢键的形成。在HF分子中,由于F的电负性(4.0)很大,共用电子对强烈偏向F原子一边,而H原子核外只有一个电子,其电子云向F原子偏移的结果,使得它几乎要呈质子状态。这个半径很小、无内层电子的带部分正电荷的氢原子,使附近另一个HF分子中含有孤电子对并带部分负电荷的F原子有可能充分靠近它,从而产生静电吸引作用。这个静电吸引作用力就是所谓氢键。例如 HF与HF之间:
⑵ 不同种分子之间
不仅同种分子之间可以存在氢键,某些不同种分子之间也可能形成氢键。例如 NH3与H2O之间:
氢键形成的条件
⑴ 与电负性很大的原子A 形成强极性键的氢原子
⑵ 较小半径、较大电负性、含孤电子对、带有部分负电荷的原子B (F、O、N)
氢键的本质: 强极性键(A-H)上的氢核, 与电负性很大的、含孤电子对并带有部分负电荷的原子B之间的静电引力。}
⑶ 表示氢键结合的通式
氢键结合的情况如果写成通式,可用X-H…Y①表示。式中X和Y代表F,O,N等电负性大而原子半径较小的非金属原子。
X和Y可以是两种相同的元素,也可以是两种不同的元素。
⑷ 对氢键的理解
氢键存在虽然很普遍,对它的研究也在逐步深入,但是人们对氢键的定义至今仍有两种不同的理解。
第一种把X-H…Y整个结构叫氢键,因此氢键的键长就是指X与Y之间的距离,例如F-H…F的键长为255pm。
第二种把H…Y叫做氢键,这样H…F之间的距离163pm才算是氢键的键长。这种差别,我们在选用氢键键长数据时要加以注意。
不过,对氢键键能的理解上是一致的,都是指把X-H…Y-H分解成为HX和HY所需的能量。
2.氢键的强度
氢键的牢固程度——键强度也可以用键能来表示。粗略而言,氢键键能是指每拆开单位物质的量的H…Y键所需的能量。氢键的键能一般在42kJ·mol-1以下,比共价键的键能小得多,而与分子间力更为接近些。例如, 水分子中共价键与氢键的键能是不同的。
而且,氢键的形成和破坏所需的活化能也小,加之其形成的空间条件较易出现,所以在物质不断运动情况下,氢键可以不断形成和断裂。
3.分子内氢键
某些分子内,例如HNO3、邻硝基苯酚分子可以形成分子内氢键。分子内氢键由于受环状结构的限制,X-H…Y往往不能在同一直线上。如图所示
4.氢键形成对物质性质的影响
氢键通常是物质在液态时形成的,但形成后有时也能继续存在于某些晶态甚至气态物质之中。例如在气态、液态和固态的HF中都有氢键存在。能够形成氢键的物质是很多的,如水、水合物、氨合物、无机酸和某些有机化合物。氢键的存在,影响到物质的某些性质。
(1)熔点、沸点
分子间有氢键的物质熔化或气化时,除了要克服纯粹的分子间力外,还必须提高温度,额外地供应一份能量来破坏分子间的氢键,所以这些物质的熔点、沸点比同系列氢化物的熔点、沸点高。分子内生成氢键,熔、沸点常降低。例如有分子内氢键的邻硝基苯酚熔点(45℃)比有分子间氢键的间位熔点(96℃)和对位熔点(114℃)都低。
(2)溶解度
在极性溶剂中,如果溶质分子与溶剂分子之间可以形成氢键,则溶质的溶解度增大。HF和HN3在水中的溶解度比较大,就是这个缘故。
(3)粘度
分子间有氢键的液体,一般粘度较大。例如甘油、磷酸、浓硫酸等多羟基化合物,由于分子间可形成众多的氢键,这些物质通常为粘稠状液体。
(4)密度
液体分子间若形成氢键,有可能发生缔合现象,例如液态HF,在通常条件下,除了正常简单的HF分子外,还有通过氢键联系在一起的复杂分子(HF)n。 nHF(HF)n
其中n可以是2,3,4…。这种由若干个简单分子联成复杂分子而又不会改变原物质化学性质的现象,称为分子缔合。分子缔合的结果会影响液体的密度。
H2O分子之间也有缔合现象。 nH2O(H2O)n
常温下液态水中除了简单H2O分子外,还有(H2O)2,(H2O)3,…,(H2O)n等缔合分子存在。降低温度,有利于水分子的缔合。温度降至0℃时,全部水分子结成巨大的缔合物——冰。
氢键形成对物质性质的影响
分子间氢键使物质的熔点(m.p)、沸点(b.p)、溶解度(S)增加; 分子内氢键对物质的影响则反之。
Ⅹ nh键与oh键键能
是的,因为从CH3CH3开始,lp由0增加到3,lp之间的斥力增大,导致F-F距离比C-C大,所以C-C键(CH3-CH3),N-N键(NH2-NH20),O-O键(H2O2),F-F键(F2)键能依次减小