1. 氢气有什么化学性质
在常温下,氢气的化学性质是稳定的。在点燃或加热的条件下,氢气很容易和多种物质发生化学反应。纯净的氢气在点燃时,可安静燃烧,发出淡蓝色火焰,放出热量,有水生成。若在火焰上罩一干冷的烧杯,可以烧杯壁上见到水珠。
2H2+O22H2O
把点燃氢气的导管伸入盛满氯气的集气瓶中,氢气继续燃烧,发出苍白色火焰,放出热量,生成无色有刺激性气味的气体。该气体遇空气中的水蒸气呈雾状,溶于水得盐酸。
H2+Cl22HCl
在点燃氢气之前,一定要先检验氢气的纯度,因为不纯的氢气点燃时可能发生爆炸。实验测定,氢气中混入空气,在体积百分比为H2∶空气=75.0∶25.0~4.1∶95.8的范围内,点燃时都会发生爆炸。氢气不但能跟氧单质反应,也能跟某些化合物里的氧发生反应。例如:将氢气通过灼热的氧化铜,可得到红色的金属铜,同时有水生成。
H2+CuOCu+H2O
在这个反应里,氢气夺取了氧化铜中的氧,生成了水;氧化铜失去了氧,被还原成红色的铜,证明,氢气具有还原性,是很好的还原剂,氢气还可以还原其它一些金属氧化物,如三氧化钨(WO3);四氧化三铁(Fe3O4)、氧化铅(PbO)、氧化锌(ZnO)等。
氢气的化学性质之二
在常温下,氢气比较不活泼,但可用合适的催化剂使之活化。在高温下,氢气是高度活泼的。它在2000K时的分解百分数仅为0.08,5000K时则为95.5。氢的氧化态为+1、-1。氢气的主要反应如下(R为烷基):
H2+Cl22HCl
2H2+COCH3OH
H2+RCH=CH2+CORCH2CH2CHO
H2+非金属非金属氧化物
H2+活泼金属M(如Li、Na、Ca)→盐型氧化物(MH、MH2)
H2+金属氧化物→低价氧化物→金属
H2+烯、炔等不饱和烃饱和烃
氢气的化学性质之三
氢气的化学性质 ①可燃性 发热量为液化石油气的两倍半。在空气中爆炸极限为4.1~75.0%(体积)。燃烧时有浅蓝色火焰。②常温下不活动,加热时能与多种物质反应,如与活泼非金属生成气态氢化物;与碱金属、钙、铁生成固态氢化物。③还原性,能从氧化物中热还原出中等活泼或不活泼金属粉末。④与有机物中的不饱和化合物可发生加成或还原反应(催化剂,加热条件下)。
参考资料:http://www.gymzzx.com/tanglei/tlei99/c/zk09/text/zk09_115.htm
2. 氢气的化学性质
(1)可燃性:纯净的氢气在空气里安静的燃烧,不纯的氢气点燃会发生爆炸。发热量为液化石油气的两倍半。在空气中爆炸极限为4.1~75.0%(体积)。在空气中燃烧时有浅蓝色火焰,生成物只有水
(2)还原性:氢气夺取某些金属氧化物中的氧,使金属还原。
在加热的条件下,氢气可以从许多金属氧化物中还原出金属单质,自身氧化成水,这就是氢气的还原性。所得到的金属纯度很高。
氢气还原氧化铜的实验,是说明氢气还原性的一个典型实验。
(3)稳定性:在常温下氢气的化学性质稳定。常温下不活泼,但在高温下是高度活泼的。加热时能与多种物质反应,如与活泼非金属生成气态氢化物;与碱金属、钙、铁生成固态氢化物。
3. 氢气具有什么化学性质
\氢气的化学性质 ①可燃性 发热量为液化石油气的两倍半。在空气中爆炸极限为4.1~75.0%(体积)。燃烧时有浅蓝色火焰。②常温下不活动,加热时能与多种物质反应,如与活泼非金属生成气态氢化物;与碱金属、钙、铁生成固态氢化物。③还原性,能从氧化物中热还原出中等活泼或不活泼金属粉末。④与有机物中的不饱和化合物可发生加成或还原反应(催化剂,加热条件下)。
2H2+O2=点燃=2H20
4. 氢气具有哪些化学性质
密度比空气小,还原性,可燃性,高能量
5. 氢的化学性质是什么
氢太容易起化学反应,以至于它不能以元素的自由态形式存在。它很容易失去电子提供给其他元素,使它只能以化合物的形式存在于自然界中。氢很容易与氧结合生成水,与氮反应生成氨气(NH3),还可以与碳结合形成有机碳化合物。
如烷烃CnH2n+2(如辛烷,C8H18)、碳水化合物CnH2n+2On(如葡萄糖,C6H12O6)。所以,在自然资源中没有氢分子存在,因此大量的氢气只能通过易分解的含氢化合物(如水和甲烷)的分解而制得。
氢的化学性质很复杂。它参与了许多类型的化学反应,可以由下面的反应进行说明。
(1)作还原剂。氢原子在酸性溶液中通过氧化还原反应将它的电子(HH++e-)给了一个更活泼的金属,如铁,其反应式如下:
Fe2O3+3H22Fe+3H2O
(2)作氢化剂。一个氢分子添加到不饱和有机分子中,在反应过程中碳—碳双键打开,两个氢原子加到打开的键上,其反应式如下:
CxHYCOOH+H2CxHY+2COOH
(3)作结合剂。氢原子和其他元素结合成键形成氢化物。这种类型的反应有两种形式,如共价氢化物,如水或氨,其反应式如下:
2H2+O22H2O或3H2+N22NH3
另一种是离子氢化物,氢作为阴离子[H——H-+P(hole)],从一个金属(或合金)晶格原子接受一个电子形成一种金属氢化物。例如,氢气和钠反应生成离子氢化物NaH,其反应式如下:
2Na+H22NaH
在这个反应中,钠为阳离子(Na+),氢为阴离子(H-)。这类氢化物由氢和合金(如铁—钛和一些地球上的稀有物质)形成,是更多的共价物。这些合金金属氢化物用作汽车的储罐,因为它的形成过程是放热的,需要时,可以通过加热合金来游离氢化物从而获得氢气,作为氢燃料的供应。
值得注意的是,在常温下,氢气的性质很稳定,不容易跟其他物质发生化学反应。但是,当条件发生变化时,比如加热、点燃或使用催化剂等,情况就不同了,氢气就会发生燃烧、爆炸或者化合反应。不纯的氢气点燃时会发生爆炸。这里存在一个界限,当空气中所含氢气的体积占混合体积的4%~74.2%时,点燃都会发生爆炸,这个体积分数范围叫做爆炸极限。
氢气和氟、氯、氧、一氧化碳以及空气混合均有爆炸的危险。其中,氢与氟的混合物在低温和黑暗环境就能发生自发性爆炸;氢与氯的混合比是1∶1时,在光照下也可爆炸。氢由于无色无味,燃烧时火焰是透明的,其存在不易被感官发现,因此,在许多情况下,可以向氢气中加入乙硫醇(乙硫醇是一种无色液体,有蒜气味),以便氢气泄漏时可以闻到,并可同时赋予火焰以颜色。
氢气易燃易爆,曾经有过不少这样的例子。历史上的“兴登堡”火灾就是一起着名的氢气事故。1936年3月,德国的齐柏林飞艇公司完成了梦幻般的飞艇LZ129“兴登堡”号的建造,它是齐柏林飞艇为德国政府建造的飞艇舰队中最先进的也是最大的一艘,人们以当时的德国总统兴登堡的名字为其命名。它是20世纪30年代“空中的豪华客轮”,曾经连续34次满载乘客和货物横跨风急浪高的大西洋,到达北美和南美。
“兴登堡”号飞艇堪称是当时世界上最大、最先进、最豪华的飞艇,它所搭载的旅客也都是成功商人和社会名流。1937年5月6日,这艘大的飞艇正在新泽西州莱克赫斯特海军航空总站上空准备着陆,但在着陆过程中突然起火,仅仅几分钟的时间,华丽的“兴登堡”号飞艇就在这场灾难性的事故中被大火焚毁,97名乘客和乘务人员中至少有23人死亡。当时大家都在思考着一个问题,即为什么飞艇会突然起火呢?具体原因目前尚不清楚,不过很多人认为它是由发动机放出的静电或火花点燃了降落时放掉的氢气所致。
另一种说法是,地面静电通过系留绳索传到艇身,使凝聚在气囊蒙布上的一层水滴导电,把整个艇体变成一个巨大的电容器;雷电交加的暴雨点燃了集结在飞艇后部的氢气。“兴登堡”号失事后,飞艇退出历史舞台。
自古水火不相容,我们都知道这个浅显的道理,因此,通常情况下,我们都是用水来浇灭火,消防部队就是一个很好的例子。如果说海水也能燃烧,海面上燃起通天大火,人们可能会感到不可思议,甚至觉得是天方夜谭。但事实证明,海水确实能燃烧。
1977年11月19日上午,孟加拉湾偏西热带气旋袭击了印度的安德拉邦,狂风过后,数千米的海面上突然燃起了熊熊烈火。发生大火的原因是当时时速达200千米的大风与海水发生猛烈摩擦,瞬间产生了特别高的热量,将水中的氢原子和氧原子分离,在大风中电荷的作用下,使氢离子发生爆炸,从而形成一片“火海”。据科学家估算,这场大火所释放的能量,相当于200颗氢弹爆炸时所释放的全部能量。
这不得不令人感到惊讶。但我们在惊讶之余也会得到很大的启发,那就是海水中蕴藏着氢,蕴藏着巨大的能量,如果把海水中的氢原子与氧原子分离,就可以把氢作为能源加以利用,那时,波涛汹涌的海洋便是人类取之不尽的能源宝库。
的确,在一定条件下,氢与氟、氯、氧等结合会发生爆炸,但这并不影响我们对氢气的开发和利用,也不会影响氢能作用的发挥,相反我们会更多地对氢在人们的生产生活中的神奇力量而称赞,并为之震撼!
6. 氢气具有什么化学性质
可燃性:纯净的氢气在空气里安静的燃烧,不纯的氢气点燃会发生
爆炸
(2)还原性:氢气夺取某些金属氧化物中的氧,使金属还原
(3)稳定性:在常温下氢气的化学性质稳定
7. 氢气的化学性质是什么
化学性质:氢气常温下性质稳定,在点燃或加热的条件下能多跟许多物质发生化学反应。
1、可燃性(可在氧气中或氯气中燃烧):2H2+O2=点燃=2H2O(化合反应)。
2、还原性(使某些金属氧化物还原):H2+CuO 。
氢气的用途:
1、在气象部门可用于气象探测氢气球的填充。
2、航天领域上可用于航天燃料推进剂。
3、化学反应的还原剂,石化反应中的加氢反应等。
4、新开发的氢能源领域,如氢能源汽车,氢能源发动机,氢能源锅炉等都在研制开发中。
8. 氢元素的化学性质有哪些
氢气常温下性质稳定,在点燃或加热的条件下能多跟许多物质发生化学反应。
①可燃性(可在氧气中或氯气中燃烧):2H2+O2=点燃=2H2O(化合反应)
(点燃不纯的氢气要发生爆炸,点燃氢气前必须验纯,相似的,氘(重氢)在氧气中点燃可以生成重水(D2O))
H2+Cl2=点燃=2HCl(化合反应)
H2+F2=2HF(氢气与氟气混合立刻爆炸,生成氟化氢气体)
②还原性(使某些金属氧化物还原)
H2+CuO
Cu+H2O(置换反应)
3H2+Fe2O3=高温=2Fe+3H2O(置换反应)
3H2+WO3
W+3H2O(置换反应)
共价
虽然氢气在通常状态下不是非常活泼,但氢元素与绝大多数元素能组成化合物。碳氢化合物已知有数以百万种,但它们无法由氢气和碳直接化合得到。氢气与电负性较强的元素(如卤素)反应,在这些化合物中氢的氧化态为+1。氢与氟、氧、氮成键时,可生成一种较强的非共价的键,称为氢键。氢键对许多生物分子具有重要意义。 氢也与电负性较低的元素(如活泼金属)生成化合物,这时氢的氧化态通常为 -1,这样的化合物称为氢化物。
氢与碳形成的化合物,由于其与生物的关系,通常被称为有机物,研究有机物的学科称为有机化学,而研究有机物在生物中所起的作用的科学称为生物化学。按某些定义,“有机”只要求含有碳。但大多数含碳的化合物通常都含有氢。这些化合物的独特性质主要是由碳氢键决定的。故有时有机物的定义要求物质含有碳氢键。
无机化学中,H- 可以作为桥接配体,连接配合物中的两个金属原子。这样的特性通常在13族元素中体现,尤以硼烷、铝配合物和碳硼烷中。
氢化物
含有氢元素的二元化合物称为氢化物。“氢化物”一词暗含氢显负价,且其氧化态为-1的意思。氢负离子记做H-,其存在是1916年由吉尔伯特·路易斯预言的。1920年Moers用电解氢化锂,在阳极产生氢气,从而证明了氢化物的存在。对于非IA或IIA族的元素形成的氢化物,“氢化物”一词并不准确,因为氢的电负性并不高。IA族碱金属的氢化物中有一个例外,即高聚物氢化锂。氢化铝锂中4个氢原子紧靠铝原子。虽然氢可与几乎所有的主族元素形成氢化物,但这些氢化物的原子配比却并不单一,例如二元的硼烷已发现100多种,但氢化铝只有一种。二元氢化铟还未被发现,但它存在于更大的配合物中。
质子与酸
对氢原子的氧化,也即让氢原子失去其电子,即可得到H+(氢离子)。氢离子不含电子,由于氢原子通常不含中子,故氢离子通常只含1个质子。这也就是为什么常将H+直接称为质子的原因。H+是酸碱理论的重要离子。
裸露的质子H+不能直接在溶液或离子晶体中存在,这是由氢离子和其他原子、分子不可抗拒的吸引力造成的。除非在等离子态物质中,氢离子不会脱离分子或原子的电子云。但是,“质子”或“氢离子”这个概念有时也指带有一个质子的其他粒子,通常也记做“H+”。
为了避免认为溶液中存在孤立的氢离子,一般在水溶液中将水和氢离子构成的离子称为水合氢离子(H3O+)。但这也只是一种理想化的情形。氢离子在水溶液中事实上以类似于H9O4+的形式存在。
尽管在地球上少见,H3+离子(质子化分子氢)却是宇宙中最常见的离子之一。
可燃性
氢气燃烧
氢气是一种极易燃的气体,燃点只有574℃,在空气中的体积分数为4%至75%时都能燃烧。氢气燃烧的焓变为−286 kJ/mol:
2 H2(g) + O2(g) → 2 H2O(l); ΔH = -572 kJ/mol
氢气占4.1%至74.8%的浓度时与空气混合,或占18.3%至59激下易引爆。氢气的着火点为500 °C。纯净的氢气与氧气的混合物燃烧时放出紫外线。
因为氢气比空气轻,所以氢气的火焰倾向于快速上升,故其造成的危害小于碳氢化合物燃烧的危害。氢气与所有的氧化性元素单质反应。氢气在常温下可自发的和氯气(需要光照)反应 ,氢气和氟气在冷暗处混合就可爆炸,生成具有潜在危险性的酸氯化氢或氟化氢。
在带尖嘴的导管口点燃纯净的氢气,观察火焰的颜色。然后在火焰上方罩一个冷而干燥的烧杯,过一会儿,我们可以看到,纯净的氢气在空气里安静地燃烧,产生淡蓝色的火焰(氢气在玻璃导管口燃烧时,火焰常略带黄色)。用烧杯罩在火焰的上方时,烧杯壁上有水珠生成,接触烧杯的手能感到发烫。
氢气在空气里燃烧,实际上是氢气跟空气里的氧气发生了化合反应,生成了水并放出大量的热。这个反应的化学方程式是:
2H2+O2=点燃=2H2O
反过来,氢气可以用电解水的方式制备。这个反应的化学方程式是:
H2O=H++OH-
H++e-=H
2H=H2
OH--e-=OH
2OH=H2O2
2H2O2=2H2O+O2
总的化学方程式是:2H2O=通电=2H2↑+O2↑
取一个一端开口,另一端钻有小孔的纸筒(或塑料筒等),用纸团堵住小孔,用向下排空气法收集氢气,使纸筒内充满氢气。把氢气发生装置移开,拿掉堵小孔的纸团,用燃着的木条在小孔处点火,注意有什么现象发生。(做这个实验时,人要离得远些,注意安全。)
我们可以看到,刚点燃时,氢气在小孔处安静地燃烧,过一小会儿,突然听到“砰”的一声响,爆炸的气浪把纸筒顶部高高炸起。
实验测定,空气里如果混入氢气的体积达到总体积的4%~74.2%,点燃时就会发生爆炸。这个范围叫做氢气的爆炸极限。实际上,任何可燃气体或可燃的粉尘如果跟空气充分混合,遇火时都有可能发生爆炸。因此,当可燃性气体(如氢气、液化石油气、煤气等)发生泄漏时,应杜绝一切火源、火星,禁止产生电火花,以防发生爆炸。
正是由于这个原因,我们在使用氢气时,要特别注意安全。点燃氢气前,一定要检验氢气的纯度。
用排水法收集一试管氢气,管口朝下,用拇指堵住,试管口移近火焰,移开拇指点火,如果听到尖锐的爆鸣声,就表明氢气不纯,需要再收集,再检验,直到响声很小,只有“扑”的一声或几乎无声才表明氢气已较为纯净,可以安全进行实验。如果用向下排空气法收集氢气,经检验不纯而需要再检验时,应该用拇指堵住试管口一会儿,然后再收集氢气检验纯度,否则会发生爆炸的危险。因为刚检验过纯度的试管内,氢气火焰可能还没有熄灭,如果立刻就用这个试管去收集氢气,氢气火焰可能会点燃氢气发生器里尚混有空气的氢气,使氢气发生器发生爆炸。用拇指堵住试管口一会儿,就使试管内未熄灭的氢气火焰因缺氧气而熄灭。
另外氢气在氧气过量和低温有催化剂的条件下点燃可生成过氧化氢(H2O2)(过氧化物中氧元素的化合价为-1)
9. 氢气具有什么化学性质
氢气是无色并且密度比空气小的气体(在各种气体中,氢气的密度最小。标准状况下,1升氢气的质量是0.0899克,比空气轻得多)。因为氢气难溶于水,所以可以用排水集气法收集氢气。另外,在101千帕压强下,温度-252.87℃时,氢气可转变成无色的液体;-259.1℃时,变成雪状固体。常温下,氢气的性质很稳定,不容易跟其它物质发生化学反应。但当条件改变时(如点燃、加热、使用催化剂等),情况就不同了。如氢气被钯或铂等金属吸附后具有较强的活性(特别是被钯吸附)。金属钯对氢气的吸附作用最强。
10. 氢的化学性质
由于氢原子核密度小,质量轻,且只有1个质子,因此虽然他对电子有很强的吸引力,但其他原子核对电子的引力也相对较大,一旦得到电子,很可能被抢走,所以氢原子不易得电子。而又由于它对自身的电子的吸引力较强,所以也不易失电子,而且,由于氢原子一旦得电子或失电子,电子很容易被自身吸引或抢走,这样他就会形成离子化合物,所以他形成共用电子对的能力较弱。