导航:首页 > 化学知识 > 哪个国家的化学最牛

哪个国家的化学最牛

发布时间:2022-08-27 05:33:59

⑴ 化学史上的之最

化学之最
1、地壳中含量最多的金属元素是铝.
2、地壳中含量最多的非金属元素是氧.
3、空气中含量最多的物质是氮气.
4、天然存在最硬的物质是金刚石.
5、最简单的有机物是甲烷.
6、金属活动顺序表中活动性最强的金属是钾.
7、相对分子质量最小的氧化物是水.最简单的有机化合物CH4
8、相同条件下密度最小的气体是氢气.
9、导电性最强的金属是银.
10、相对原子质量最小的原子是氢.
11、熔点最小的金属是汞.
12、人体中含量最多的元素是氧.
13、组成化合物种类最多的元素是碳.
14、日常生活中应用最广泛的金属是铁
一、化学史之最
1.最早应用湿法炼铜的国家是中国.
2.最早利用天然气的国家是中国.
3.最早发现并制得氧气的科学家有瑞典化学家舍勒和英国化学家普利斯特里.
4.最先提出分子概念的是意大利科学家阿伏加德罗.
5.最先提出近代原子学说的是英国科学家道尔顿.
6.最早运用天平作为研究化学的工具的是法国化学家拉瓦锡.
二、元素之最
1.地壳中含量最多的元素是氧,含量最多的金属元素是铝,含量最少的元素是砹.
2.空气中含量最多的元素是氮.
3.人体中含量最多的元素是氧.
4.形成化合物最多的元素是碳.
5.相对原子质量最小的元素是氢.
三、化合物之最
1.相对分子质量最小的氧化物是水.
2.自然界中最简单的有机物是甲烷.
3.人体中含量最多的物质是水,水占人体重的2/3.
4.含氮量最高的化学肥料是尿素.
四、单质之最
1.密度最小的单质是氢气,最重的气体是氡.
2.天然物质中硬度最大的单质是金刚石.
3.熔点最高的非金属物质是碳(碳的熔点是 ),熔点最低的非金属是氦.
4.最易燃的非金属是磷,白磷的着火点仅 .
5.人工制得纯度最高的单质是硅,其纯度达到12个“9”,即99.9999999999%.
6.地球上最硬的金属是铬,其硬度仅次于金刚石;最软的金属是钠,用刀就可以把它切开.
7.地球上最重的金属是锇和铱,最轻的是锂.
8.熔点最高的金属是钨,为 ;熔点最低的金属是汞,为 .
9.导电性最好的金属是银.
10.用量最大、用途最广的金属是铁.
11.延展性最好的金属是金,380克金拉成细丝,可以由北京沿铁路延伸到上海,由金压成的薄片五万张叠加在一起才有1mm厚.
12.最贵的金属是锎,1克锎价值1千万美元,为黄金价格的50多万倍.

⑵ 哪个国家的化学好

德国,日本,美国

⑶ 世界上有什么化学之最

1、最轻的气体是氢气。

2、最小的分子是氢分子。

3、最简单的原子是氢原子。

4、相对原子质量最小的元素是氢元素。

5、最理想的气体燃料是氢气。

6、最早发现氢气的人是瑞士的帕拉塞斯。

7、宇宙中含量最多的元素是氢元素。

8、相对分子质量最小的氧化物是水。

9、最常用的溶剂是水。

10、最简单的有机化合物是甲烷。

11、含氮量最高的化肥是尿素。

12、动植物体内含量最多的物质是水。

13、地球表面分布最广的非气态物质是水。

14、除锈效果最好的物质是盐酸。

15、最不活泼的非金属是氦,到目前为止还没有制得它的任何化合物。

16、熔点最低的单质是氦,为-272℃。

17、熔点最高的单质是石墨,为3652℃。

18、最硬的天地然物质是金刚石。

19、最容易“结冰”的气体是二氧化碳。

20、形成化合物最多的元素是碳,目前已经知道的含碳化合物有近千万种之多。

21、当今世界上最重要的三大矿物燃料是煤、石油、大然气。

22、空气中含量最多的气体是氮气,约占空气体积的78%。

23、植物生长需要最多的元素是氮。

24、最早通过实验得出空气是由氮气和氧气组成的是法国化学家拉瓦锡。

25、地壳中含量最多的元素是氧,含量约为48.6%,几乎占地壳质量的一半。

26、最早发现并制得氧气的是瑞典化学家舍勒和英国化学家普利斯特里。

27、人体内含量最多的元素是氧。

28、生物细胞里含量最多的元素是氧。

29、海洋里含量最多的元素是氧。

30、地壳里含量最多的金属元素是铝,含量约为地壳质量的7.73%。

31、最活泼的非金属元素是氟,常温下几乎能与所有的元素直接化合。

32、最活泼的金属元素是钫。

33、着火点最低的非金属元素是白磷,为40℃。

34、熔点最低的金属元素是汞,为-38.9℃,熔点最高的金属为钨,是3410℃。

35、最不活泼的金属是金。

36、导电性能最好的金属是银,其次为铜。

37、最富延展性的金属是金,一克金能拉成长达3000米的金丝,能压成厚约为0.0001毫米的金箔,其次是银。

38、目前提得最纯的物质是半导体材料高纯硅,其纯度达99 . 999999999%。

39、人类最早使用的金属是铜。

40、最早利用天然气的国家是中国。

41、最早炼铁,炼钢的国家是中国。

42、最早用湿法炼铜的国家是中国。

43、最早发现电子的人是英国科学家汤姆逊。

44、最早发现稀有气体的人是英国的雷利和拉塞姆。

45、最早应用质量守恒定律的人是俄国的罗蒙诺索夫。

46、最早把天平用于化学研究的人是法国化学家拉瓦锡。

47、创立近代原子学说的人是英国科学家道尔顿。

48、最早提出分子概念的人是意大利科学家阿佛加德罗。

⑷ 世界上研究化学最出名的国家是哪都出过哪些化学名人

莫桑德尔
莫桑德尔(Mosander C.G.,1797~1858)
瑞典化学家,是贝采里乌斯的学生,他对发现和研究稀土元素作出了重大贡献。
门捷列夫
到1869年止,已有63种元素被人们所认识。进一步寻找新元素成为当时化学家最热门的课题。但是地球上究竟有多少元素?怎样去寻找新的元素?却没有人能作比较科学的回答。寻找新元素的工作也固缺乏正确的理论指导,而带有很大的盲目性,常常白白地耗费了许多精力。
在对物质、元素的广泛研究中,关于各种元素的性质的资料,积累日愈丰富,但是这些资料却是繁杂纷乱的,人们很难从中获得清晰的认识。整理这些资料,概括这些感性知识,从中摸索总结出规律,这是摆在当对化学家面前一个急待解决的课题,同时也是科学和生产发展的必然要求。在这样的科学背景下,从事元素分类工作和寻找元素之间内在联系的许多化学家,经过长期的共同努力,取得了一系列研究成果,其中最辉煌的成就是俄国化学家门捷列夫和德国化学家迈尔先后发现的化学元素周期律。
道尔顿提出了科学的原子论后,许多化学家都把测定各种元素的原子量当作一项重要工作,这样就使元素原子量与性质之间存在的联系逐渐展露出来、1829年德国化学家德贝莱纳提出了“三元素组”观点,把当时已知的44种元素中的15种,分成5组,指出每组的三允素性质相似,而且中间元素的原子量等于较轻和较重的两个元素原子量之和的一半。例如钙、锡、钡,性质相似,铬的原子量大约是钙和钡的原子量之和的一半。氯、澳、碘以及银、钠、钾等元素也有类似的关系。然而只要认真一点,就会发现这样分类有许多不能令人满意的地方,所以并没有引起化学家们的重视。
1862年,法国化学家尚古多提出一个“螺旋图”的分类方法。他将已知的62种元素按原子量的大小顺序标记在绕着圆柱体上升的螺旋线上,这样某些性质相近的元素恰好出现在同一母线上。因此他第一个指出了元素性质的周期性变化。可是他的报告照样无人理睬。1864年,德国化学家迈尔在他的《现代化学理论》一书中刊出一个“六元素表”。可惜他的表中只列出了已知元素的一半,但他已明确地指出:“在原子量的数值上具有一种规律性,这是毫无疑义的”。1865年,英国化学家纽兰兹提出了“八音律”一说。他把当时已知的元素按原子量递增顺序排列在表中,发现元素的性质有周期住的重复,第八个元素与第一个元素性质相近,就好像音乐中八音度的第八个音符有相似的重复一样。纽兰兹的工作同样被否定,当时的一些学者把八音律斥之为幼稚的滑稽戏,有人甚至挖谤说:“为什么不按元素的字母顺序排列呢?那样,也许会得到更加意想不到的美妙效果。”“六元素表”、“八音律”是存在许多错误,但是应该看到,从三元素组”到“八音律”都从不同的角度,逐步深入地探讨了各元素间的某些联系,使人们一步步逼近了科学的真理。以前人工作所提供的借鉴为基础,门捷列夫通过顽强努力的探索,于1869年2月先后发表了关于元素周期律的图表和论文。在论文中,他指出:
(1)按照原子量大小排列起来的元素,在性质上呈现明显的周期性。
(2)原子量的大小决定元素的特征。
(3)应该预料到许多未知元素的发现,例如类似铝和硅的,原子量位于65一75之间的元素。
(4)当我们知道了某些元素的同类元素后,有时可以修正该元素的原子量。这就是门捷列夫提出的周期律的最初内容。
门捷列夫深信自己的工作很重要,经过继续努力,1871年他发表了关于周期律的新的论文。文中他果断地修正了1869年发表的元素周期表。例如在前一表中,性质类似的各族是横排,周期是竖排;而在新表中,族是竖排,周期是横排,这样各族元素化学性质的周期性变化就更为清晰。同时他将那些当时性质尚不够明确的元素集中在表格的右边,形成了各族元素的副族。在前表中,为尚未发现的元素留下4个空格,而新表中则留下了6个空格。由此可见,门捷列夫的研究有了重要的进展。
实践是检验真理的唯一标准。门捷列夫发现的元素周期律是否能站住脚,必须看它能否解决化学中的一些实际问题。门捷列夫以他的周期律为依据,大胆指出某些元素公认的原子量是不准确的,应重新测定,例如当时公认金的原子量为169.2,因此,在周期表中,金应排在饿。铱、铂(当时认为它们的原子量分别是198.6, 196.7, 196.7)的前面。而门捷列夫认为金在周期表中应排在这些元素的后面,所以它们的原子量应重新测定。重新测定的结果是:饿为190.9,铱为193.1,铂为195,2,金为197.2。实验证明了门捷列夫的意见是对的。又例如,当时铀公认的原子量是116,是三价元素。门捷列夫则根据铀的氧化物与铬、铂、钨的氧化物性质相似,认为它们应属于一族,因此铀应为六价,原子量约为240。经测定,铀的原子量为238.07。再次证明门捷列夫的判断正确。基于同样的道理,门捷列夫还修正了铟、镧、钇、铒、铈、的原子量。事实验证了周期律的正确性。
根据元素周期律,门捷列夫还预言了一些当时尚未发现的元素的存在和它们的性质。他的预言与尔后实践的结果取得了惊人的一致。1875年法国化学家布瓦博德朗在分析比里牛斯山的闪锌矿时发现一种新元素,他命名为镓,并把测得的关于它的主要性质公布了。不久他收到了门捷列夫的来信,门捷列夫在信中指出关
于镓的比重不应该是4.7,而是5.9一6.0。当时布瓦傅德朗很疑惑,他是唯一手里掌握金属镓的人,门捷列夫是怎样知道它的比重的呢?经过重新测定,镓的比重确实为5,9“这给果使他大为惊奇。他认真地阅读了门捷列夫的周期律论文后,感慨他说:“我没有可说的了,事实证明门捷列夫这一理论的巨大意义。”
下表是个最有力的说明。
类铝

原子量
69
69.72
比重
5.9-6.0
5.94
熔点

30.1
和氧气反应
不受空气的侵蚀
灼热时略起氧化
灼热时能分解水汽
灼热时确能分解水汽
能生成类似明矾的矾类
能生成结晶较好的镓矾
可用分光镜发现其存在
用分光镜发现的
镓的发现是化学史上第一个事先预言的新元素的发现,它雄辩地证明了门捷列夫元素周期律的科学性。1880年瑞典的尼尔森发现了钪,1885年德国的文克勒发现了锗。这两种新元素与门捷列夫预言的类硼。类硅也完全吻合。门捷列夫的元素周期律再次经受了实践的检验。
事实证明门捷列夫发现的化学元素周期律是自然界的一条客观规律。它揭示了物质世界的一个秘密,即这些似乎互不相关的元素间存在相互依存的关系,它变成了一个完整的自然体系。从此新元素的寻找,新物质、新材料的探索有了一条可遵循的规律。元素周期律作为描述元素及其性质的基本理论有力地促进了现代化学和物理学的发展。
门捷列夫于1834年2月7日诞生在俄国西怕利亚的托波尔斯克 市。他父亲是位中学教师。在他出生后不久,父亲双眼固患白内障而失明,一家的生活全仗着他母亲经营一个小玻璃厂而维持着。1847年双目失明的父亲又患肺给核而死去。意志坚强而能干的母亲并没有出生活艰难而低头,她决心一定要让门捷列夫象他父亲那样接受高等教育。
门捷列夫自幼有出众的记忆力和数学才能,读小学时,对数学、物理、历史课程感兴趣,对语文、尤其是拉丁语很讨厌,因而成绩不好。他特别喜爱大自然,曾同他的中学老师一起作长途旅行,搜集了不少岩石、花卉和昆虫标本。他善于在实践中学习,中学的学习成绩有了明显的提高。中学毕业后,他母亲变卖了工厂,亲自送门捷列夫,经过2千公里以上艰辛的马车旅行来到莫斯科。因他不是出身于豪门贵族,又来自边远的西怕利亚,莫斯科、彼得堡的一些大学拒绝他入学。好不容易,门捷列夫考上了医学外科学校。然而当他第一次观看到尸体时,就晕了过去。只好改变志愿,通过父亲的同学的帮忙,进入了亡父的母校——彼得堡高等师范学校物理数学系。母亲看到门捷列夫终于实现了上大学的愿望,不久便带着对他的祝福与世长辞了。举目无亲又无财产的门捷列夫把学校当作了自己的家,为了不辜负母亲的期望,他发奋地学习。1855年以优异的成绩从学校毕业。
毕业后,他先后到过辛菲罗波尔、敖德萨担任中学教师。在教师的岗位上他并没有放松自己的学习和研究。1857年他又以突出的成绩通过化学学位的答辩。他刻苦学习的态度、钻研的毅力以及渊博的知识得到老师们的赞赏,彼得堡大学破格地任命他为化学讲师,当时他仅22岁。
在彼得堡大学,门捷列夫任教的头两门课程是理论化学和有机化学。当时流行的教科书几乎都是大量关于元素和物质的零散资料的杂乱堆积。怎样才能讲好课?门捷列大下决心考察和整理这些资料。1859年他获准去德国海德堡本生实验室进行深造。两年中他集中精力研究了物理化学。他运用物理学的方法来观察化学过程,又根据物质的某些物理性质来研究它的化学结构,这就使他探索元素间内在联系的基础更宽阔和坚实。因为他恰好在德国,所以有幸和俄国化学家一起参加了在德国卡尔斯鲁厄举行的第一届国际化学家会议。会上各国化学家的发言给门捷列夫以启迪,特别是康尼查罗的发言和小册子。门捷列夫是这样说:“我的周期律的决定性时刻在1860年,我参加卡尔斯鲁厄代表大会。在会上我聆听了意大利化学家康尼查罗的演讲,正是他发现的原子量给我的工作以必要的参考材料,而正是当时,一种元素的性质随原子量递增而呈现周期性变化的基本思想冲击了我。”从此他有了明确的科研目标,并为此付出了艰巨的劳动。
从1862年起,他对283种物质逐个进行分析测定,这使他对许多物质和元素的性质有了更直观的认识。他重新测定一些元素的原子量。因而对元素的这一基本特征有了深刻的了解。他对前人关于元素间规律性的探索工作进行了细致的分析。他先后研究了根据元素对氧和氢的关系所作的分类;研究了根据元素电化序所作的分类,研究了根据原子价所进行的分类:特别研究了根据元素的综合性质所进行的元素分类。有比较才有鉴别,有分析才能做好综合。这样,门捷列夫批判地继承了前人的研究成果。在他分析根据元素综合性质而进行的元素分类时,他坚信元素原子量是元素的基本特征,同时发现性质相似的元素,它们的原子量并不相近。相反一些性质不同的元素,它们的原子量反而相差较小。他紧紧抓住原子量与元素性质之间的关系作为突破口,反复测试和不断思索。他在每张卡片上写出一种元素的名称原子量、化合物的化学式和主要的性质。就象玩一副别具一格的元素纸牌一样,他反复排列这些卡片,终于发现每一行元素的性质都在按原子量的增大,从小到大地逐渐变化,也就是发现元素的性质随原子量的增加而呈周期往的变化。第一张元素周期表就这样产生了。
随着周期律广泛被承认,门捷列夫成为闻名于世的卓越化学家。各国的科学院、学会、大学纷纷授予他荣誉称号、名誉学位以及金质奖章。具有讽刺意义的是: 1382年英国皇家学会就授予门捷列夫以戴维金质奖章。1889年英国化学会授予他最高荣——法拉第奖章。相反地在封建王朝的俄国,科学院在推选院士时,竟以门捷列夫性格高做而有棱角为借口,把他排斥在外。后来回门捷列夫不断地被选为外国的名誉会员,彼得堡科学院才被迫推选他为院士,由于气恼,门捷列夫拒绝加入科学院。从而出现俄国最伟大的化学家反倒不是俄国科学院成员的怪事。
门捷列夫除了发现元素周期律外,还研究过气体定律、气象学、石油工业、农业化学、无烟火药、度量衡,由于他的辛勤劳动,在这些领域都不同程度地做出了成绩。1907年2月2日,这位享有世界盛誉的俄国化学家因心肌梗塞与世长辞,享年73岁。
居里
(Marie Sklodowska Curie 1867~1934)
法国物理学家和放射化学家。1867年11月 7日生于波兰华沙,1934年7月4日卒于法国上萨瓦省。1883年中学毕业,并获得金质奖章。由于家中经济困难和当时波兰的大学不接受女生,她担任家庭教师八年。1891年到法国深造,1893年以优异成绩毕业于巴黎大学理学院物理系,1894年毕业于数学系。1895年与P.居里结婚。1904年被巴黎大学聘为助教;1906年P.居里去世后,她接替了丈夫的工作,成为巴黎大学第一位女教授。她是法国科学院第一个女院士,并被15个国家的科学院选为院士。
在H.贝可勒尔发现铀的放射现象以后,M.居里和P.居里首先对各种物质进行放射性考察,发现元素钍也具有放射性,铀矿物则有着比纯铀高得多的放射性;依靠科学推测和精巧实验技术,1898年在铀矿物中发现了放射性元素钋和镭,开创了一门新的科学——放射化学。按照传统的概念,确证一个元素的发现应该提供可以目睹的该元素的足够纯的化合物或单质样品。他们在十分困难的条件下,从数以吨计的铀矿物废渣中提取少量的纯镭盐。最终经光谱分析和原子量测定,证实了元素镭的存在。因对放射性研究的贡献,他们和贝可勒尔共同获得1903年诺贝尔物理学奖。1910年 9月在比利时布鲁塞尔召开的放射学大会上,她和一些专家提出建立镭的放射性标准的建议,这对放射性研究和辐射治疗都是必需的。大会通过镭的放射性单位为居里,以纪念P.居里,并决定由M.居里负责制备镭的标准。M.居里因发现元素镭和钋、分离出镭和对镭的性质及其化合物的研究,又获得1911年诺贝尔化学奖。在第一次世界大战期间,她和她的长女I.约里奥-居里一起参加战地医疗服务,担负伤员的 X射线透视工作。她积极提倡把镭用于医疗方面,使辐射治疗(早期也称为居里治疗)得到推广和提高,使核能造福于人类。
M.居里一生中担任25个国家的104个荣誉职位,接受过 7个国家的24次奖金或奖章。主要着作有《同位素及其组成》、《论放射性》、《放射性物质及其辐射的研究》。

⑸ 化学造诣最高的国家是哪个

美国和日本等发达国家的精细化率最高!大概百分70左右!精细化率是衡量一个国家工业化水平的重要指标!因此在化学造诣上美国、日本的实力都是名列前茅的,当然西欧各国也是很有实力的,特别是德国!在诺贝尔化学奖获得者所在的国家就可以大体判断这个国家在化学方向的造诣!

希望对你有帮助,望采纳!

⑹ 现在哪个国家化学科研及化学工业最强

首先是美国,化学和化工都很厉害.勃克利,MIT等等... 德国,化学和化工也都厉害.一般学化学的第二外语都要学德语 日本,日本的生物化学发展得非常好,其他方向也都数一数二.京都,东京,早稻田...

⑺ 化学武器最多化学能力最强的国家

国际上公认是禁止此类武器,如果说是秘密研究的话,美国拥有优势

⑻ 二战时期哪个国家的(化学)最厉害

化学工业就是德国发展起来的。一直到二战前夕都是德国的化学研究和化学工业最厉害。
当年德国开始搞工业革命时,也曾经想走英国发展反纺织业的老路。结果因为几乎所有棉花场地都被英国控制,导致此路不通。
最后,德国人决定给英国的纺织业搞配套。你的纺织品纺织出来,就需要染色。那么我德国就搞化学染料。德国着名的法本化工,法本就是德语Farben(颜色的复数)的音译。很多德国企业都是从做化学染料起家的。最终德国以化学染料为基础带动了整个化学产业发展。
截至到一战爆发前,虽然美国已经成为世界第一大工业国,但是美国在化工上一直吵超不过德国。美国不得不依赖从德国进口化工产品和原料。结果一战一爆发,德国被协约国封锁,进口渠道中断,让美国非常难受。而长期依赖德国染料的英法两国,甚至连军装的染色加工都一度出现困难了。
一一战德国战败后,吃够了苦头的美国资本迅速进入战败后发生经济危机的德国。背负了沉重的战争赔款负担,饱受恶性通货膨胀之苦的德国以转让专利,专利使用授权,甚至接受美资建立合资企业等各种方式换取美国的投资。美国在一战后对德投资70%是投向了德国的化工领域,而美国对德国除了投资外,也以汽车技术来交换。正式在19世纪20年代,美国的化学技术和化工产业得到了一次大的飞跃发展。
即使是这样,在二战期间,德国在收到封锁的情况下,还是利用自身化学的领先优势,研发出了煤炭的气化和液化,人工合成了汽油等燃料,甚至还合成了其他材料,比如人工合成纤维等。
二战德国又一次战败,虽然美英的对德索赔不像苏俩数额那么大,但是基本是以德国的智能赔偿和人工服务为主,直接的物质赔偿基本都给了法国。这一次,美国再一次从德国获得了很多化学方面的研究成果和人才。最终美国才在化学产业上彻底超过了德国。
但是在二战期间,依然是德国的化学最厉害。

⑼ 哪些国家的化学科研水平高,化学工业发展好

首先是美国,化学和化工都很厉害.勃克利,MIT等等...
德国,化学和化工也都厉害.一般学化学的第二外语都要学德语...你可以猜想...
日本,日本的生物化学发展得非常好,其他方向也都数一数二.京都,东京,早稻田...都不错
现在国际上论文数量第四多的就是中国了.化学里面北大,南开,南京大学,中科大,吉林大学,武汉...化工也还不错,天津大学和清华大学.
法国和新加坡的化学和化工也都非常好.新加坡的国大生物化工已经排名世界前五名了...

阅读全文

与哪个国家的化学最牛相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:666
乙酸乙酯化学式怎么算 浏览:1338
沈阳初中的数学是什么版本的 浏览:1275
华为手机家人共享如何查看地理位置 浏览:959
一氧化碳还原氧化铝化学方程式怎么配平 浏览:812
数学c什么意思是什么意思是什么 浏览:1328
中考初中地理如何补 浏览:1224
360浏览器历史在哪里下载迅雷下载 浏览:634
数学奥数卡怎么办 浏览:1306
如何回答地理是什么 浏览:955
win7如何删除电脑文件浏览历史 浏览:986
大学物理实验干什么用的到 浏览:1408
二年级上册数学框框怎么填 浏览:1619
西安瑞禧生物科技有限公司怎么样 浏览:760
武大的分析化学怎么样 浏览:1176
ige电化学发光偏高怎么办 浏览:1265
学而思初中英语和语文怎么样 浏览:1561
下列哪个水飞蓟素化学结构 浏览:1356
化学理学哪些专业好 浏览:1420
数学中的棱的意思是什么 浏览:977